

WP6

DIGIT B1 - EP Pilot Project 645

Deliverable 3: General Reflection on the Experience of Performing the Code

Reviews for European institutions

Specific contract n°226 under Framework Contract n° DI/07172 – ABCIII

 October 2016

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 3. General reflection on the Experience of Performing the Code Reviews for European

institutions

Page 2 of 31

Author:

Disclaimer

The information and views set out in this publication are those of the author(s) and do not necessarily

reflect the official opinion of the Commission. The Commission does not guarantee the accuracy of the data

included in this study. Neither the Commission nor any person acting on the Commission’s behalf may be

held responsible for the use which may be made of the information contained herein.

© European Union, 2016

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 3. General reflection on the Experience of Performing the Code Reviews for European

institutions

Page 3 of 31

Contents

CONTENTS... 3

LIST OF TABLES ... 4

LIST OF FIGURES ... 5

ACRONYMS AND ABBREVIATIONS ... 6

1 INTRODUCTION .. 7

1.1. CONTEXT .. 7

1.2. OBJECTIVE .. 7

1.3. SCOPE .. 8

1.4. MODIFICATION HISTORY ... 8

1.5. DELIVERABLES .. 8

2 SUMMARY OF THE EXPERIENCE PERFORMING THE CODE REVIEW 9

2.1. CODE REVIEW METHODOLOGY ... 10

2.2. CODE REVIEW EXECUTION ... 12

2.3. RESULTS OF THE CODE REVIEW ... 14

2.4. LESSONS LEARNT RESULTING FROM THE FOSS COMMUNITIES FEEDBACK 16

2.5. EFFORT ESTIMATION TO CONDUCT A CODE REVIEW .. 21

3 CONCLUSIONS AND FUTURE ACTIONS ... 24

3.1. CODE REVIEW METHOD ... 24

3.2. SECURITY FRAMEWORK FOR FREE AND OPEN SOURCE SOFTWARE ... 25

3.3. EUROPEAN INSTITUTIONS AND FOSS COMMUNITIES ... 25

4 ANNEXES .. 27

4.1. ANNEX 1: FUTURE ACTIONS ... 27

4.2. ANNEX 2: CODE REVIEW METHODOLOGY –CODE REVIEW MODES .. 29

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 3. General reflection on the Experience of Performing the Code Reviews for European

institutions

Page 4 of 31

List of Tables

Table 1: EU-FOSSA pilot project - Future Actions ... 27

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 3. General reflection on the Experience of Performing the Code Reviews for European

institutions

Page 5 of 31

List of Figures

Figure 1: Code Review Analysing Functionalities .. 14

Figure 2: Code review execution order .. 29

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 3. General reflection on the Experience of Performing the Code Reviews for European

institutions

Page 6 of 31

ACRONYMS AND ABBREVIATIONS

API Application Programming Interface

APR Apache Portable Runtime

DG Directorate General

EC European Commission

EUI European institutions

FOSS Free and Open Source Software

FOSSA Free and open Source Software Auditing

GUI Graphic User Interface

IDE Integrated Development Environment

SME Subject Matter Expert

WP Work Package

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 3. General reflection on the Experience of Performing the Code Reviews for European

institutions

Page 7 of 31

1 INTRODUCTION

1.1. Context

The security of the applications used nowadays has become a major concern for organisations, companies

and citizens in general, as they are becoming a more common part of our daily lives, and are being used

for business and leisure purposes alike. The information these applications manage has become an

essential asset to protect, as it includes personal information, internal data, industrial property, etc.

From a security point of view, this new scenario presents many new challenges that need to be addressed

in order to protect the integrity and confidentiality of the data managed by the applications and their users.

Furthermore, their exposure to the Internet has made them a prime target, due to the value that this private

and internal information has.

One of the advantages of Free and Open-Source Software (FOSS) is that its source code is readily

available for review by anyone, and therefore it virtually enables any user to check and provide new

features and fixes, including security ones. Also, from a more professional point of view, it allows

organisations to review the code completely and find the vulnerabilities or weaknesses that it presents,

allowing for a refinement of their security and, in turn, a safer experience for all the users of the

applications.

1.2. Objective

The objective of this document is to provide a reflection on the experience and knowledge gained during

the Code Review process, providing a stepping ground for further improvements in the process and its

continued evolution.

It covers all aspects and phases carried out during the execution of the code review by:

1. comparing the code review methodology developed in WP2 with the actual process that was

executed;

2. analysing the points that could be optimised or improved in the form of Lessons Learnt;

3. providing recommendations so future upgrades can be added to the process.

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 3. General reflection on the Experience of Performing the Code Reviews for European

institutions

Page 8 of 31

1.3. Scope

This document covers the reflection of the code review experience, including all phases, tasks and

activities that have been carried out during the code review process

1.4. Modification History

Date Version Author Comments

21/10/2016 0.1 Juan Ortega Valiente

Francisco de Borja González Carro

Alberto Dominguez

Magaly Estévez

Initial draft

25/10/2016 0.2 SP Landercy 75% completion quality review

27/10/2016 0.3 Juan Ortega Valiente

Francisco de Borja González Carro

Alberto Dominguez

Magaly Estévez

Amendments after 75% quality

review

02/11/2016 0.4 SP Landercy 100% completion quality review

02/11/2016 0.5 Juan Ortega Valiente

Francisco de Borja González Carro

Alberto Dominguez

Magaly Estévez

Amendments after 100% quality

review

Final draft

04/11/2016 0.6 SP Landercy Additional 100% completion

quality review

07/11/2016 0.7 Juan Ortega Valiente

Francisco de Borja González Carro

Alberto Dominguez

Magaly Estévez

Final version

1.5. Deliverables

WP2 - Deliverable 11: Design of the methods for performing the code reviews for the European

institutions

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 3. General reflection on the Experience of Performing the Code Reviews for European

institutions

Page 9 of 31

2 SUMMARY OF THE EXPERIENCE

PERFORMING THE CODE REVIEW

Conducting a code review entails gaining a deep understanding of the inner workings or the

software application, library or segment analysed, understanding not only the functionalities it

provides, but also the approach taken in order to make them available and even gain a little

understanding of the authors’ school of thought.

Information was collected during the code review process as the code reviewers encountered

challenges, difficulties or different ways of doing the checks. All of this information was analysed,

resulting in various sets of lessons learnt, and the respective recommendations developed that could

further improve the code review process.

The following sections show in more detail the lessons learnt and recommendations for each of the

sub-processes:

 Code Review Methodology

 Code Review Execution

 Code Review Results

 Code Review Effort Estimation

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 3. General reflection on the Experience of Performing the Code Reviews for European

institutions

Page 10 of 31

2.1. Code Review Methodology

The first set of lessons learnt was made regarding the methodology defined and used for the code

review.

The following points indicate areas where improvement can be made:

Lesson Learnt 1 General security controls are too generic, lack technical detail.

Generic controls need to apply to all languages (added or to be added in

future release of the methodology), and should include specific details as to

what to check in the code and how to identify issues.

Gap o lack of technical details in general controls

Quick win mitigation

for code review

process

o around 10% of the general controls were updated to include more detail

Improvement o general controls need to be further refined, following an iterative

process. This to ensure that they provide enough detail for code

reviewers to check them, and that they are applicable regardless of the

language in which the code is reviewed.

Lesson Learnt 2 General security controls are mainly focused on interconnected

applications, especially C and C++ applications for desktop1 software.

This is very useful for the code reviewed but lacks scalability if other

types of applications are included in the review.

Gap o security controls focused on interconnected desktop software

Quick win mitigation

for code review

process

o N/A

Improvements o Upgrade the controls to cover a wider range of software, including

mobile solutions, server applications, etc., as well as providing support

for additional programming languages.

o add templates for each software to increase scalability

1 Applications installed directly on an OS in a computer, Workstation or Server.

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 3. General reflection on the Experience of Performing the Code Reviews for European

institutions

Page 11 of 31

Lesson Learnt 3 Lack of controls covering sockets and their connections in the code

review controls

Gap o no controls covering socket implementations in general controls, nor in

any language-specific controls

Quick win mitigation

for code review

process

o N/A

Improvement o research possible controls to add for socket implementations, also

covering different programming languages.

Lesson Learnt 4 The number of controls that apply to a specific file is small compared

to the total number of controls

Gap o lack of efficiency when running large files on all potential controls.

Quick win mitigation

for code review

process

o partial filtering performed by adding programming language tags to

specific checks in general controls.

Improvement o further refine the list of controls and checks, adding tags, filters and

references to quickly identify those that can apply and those that need to

be overlooked.

Lesson Learnt 5 The different methodology code review modes defined provide

enough flexibility, but the steps defined are somewhat rigid

Gap o code review modes are too rigid

Quick win mitigation

for code review

process

o add flexibility to include mixed modes, including a manual mode aided by

automated checks and/or focus on specific code sections.

Improvement o further analyse potential flexible modes to adapt in different applications

to review, in line with time/resource restrictions.

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 3. General reflection on the Experience of Performing the Code Reviews for European

institutions

Page 12 of 31

2.2. Code Review Execution

The second set of lessons learnt was made during the actual code review process.

The following points indicate areas where improvement can be made:

Lesson Learnt 6

The defined document templates (text-based files) proved to be

complex to use when registering the temporary results during the

code review

Gap o existing templates were adequate to present results but not for the

collection of evidence during the code review.

Quick win mitigation

for code review

process

o a spreadsheet template was generated to optimise the code review

process, allowing reviewers to quickly review each control, provide the

necessary result and evidence data, and later on provide a detailed

assessment of the risk level of each finding. Code reviewers had to work

in a separate spreadsheet, which was later merged into one for the final

results.

Improvement o ideally, an application should be defined for this purpose, using a

database to allow the concurrent work of multiple users (code

reviewers), as well as providing an easy-to-use interface, help and

guidelines and an easy way of providing an assessment. From the point

of view of the report, this tool should also automate the process of

generating and providing a final assessment, with corresponding graphs

and indicators (such as CVE/CWE export data).

Lesson Learnt 7 The code analysis in large applications proved to be very time-

consuming, requiring a large number of resources and increased time

allocation.

Gap o the time needed for the manual code review stage was significant. See

Section 2.4 for detailed information on the effort estimation.

Quick win mitigation

for code review

process

o resource and queue optimisation to ensure the code review timing is

respected. This was carried out by adding a procedure in the code

review method.

Improvement o define an updated and optimised working queue that should allow the

efficient processing of code reviews regardless of the software reviewed.

Another solution contemplates the application of mixed modes, where a

manual review is aided by automated tools

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 3. General reflection on the Experience of Performing the Code Reviews for European

institutions

Page 13 of 31

Lesson Learnt 8 When analysing large applications, it was observed that it is

necessary to modularise the code itself in order to allow multiple

code reviewers to work in parallel

Gap o need to modularise the code to process it

Quick win mitigation

for code review

process

o the code was divided into modules (code libraries, etc.) and then in

‘batches’ (sets of files related to each other)

Improvement o need to define a structured process to modularise the code to be

reviewed in large applications, allowing the possibility of multiple

reviewers working in parallel and ensuring that the results are not

negatively impacted, by avoiding overlaps .

Lesson Learnt 9 An issue arose regarding the analysis of functionalities that use calls

to functions in other files or libraries. Due to the segmentation of the

code, and the limits of its scope, it is hard to analyse every single

library added, such as those that are part of C, or external

components of the software. Additionally, the code already analysed

file by file should be examined following the hierarchy of calls, as

shown in Figure 1: Code Review Analysing Functionalities.

Gap o not all functions can be properly analysed to ensure that the calls made

to ‘third party’ functions, or between files, are secure.

Quick win mitigation

for code review

process

o calls made to functions within the code were double-checked whenever

possible; external calls (OS; libraries not included in the scope, etc.)

were not considered

Improvement o in future versions of the methodology, consider how to include the

evaluation of the calls to that functions as well as the ones made to

external libraries or OS functions, mainly in cases where specific

versions are required (such as VS Runtime libraries).

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 3. General reflection on the Experience of Performing the Code Reviews for European

institutions

Page 14 of 31

Figure 1: Code Review Analysing Functionalities

2.3. Results of the Code Review

The last set of lessons learnt was made regarding the results of the code review

The following points indicate areas where improvement can be made:

Lesson Learnt 10 The evidence field has no template or indicator of the data it should

contain, allowing each code reviewer to add the information that

he/she considers appropriate

Gap o lack of structure in the evidence field

Quick win mitigation

for code review

process

o temporary templates and indications were given to the code reviewers to

ensure that they provide enough evidence to validate the findings

identified

Improvement o a structured format should be provided in order to ensure that the pieces

of evidence are concrete, adequate, and to the point, unequivocally

providing assurance that the findings are correct and proportionate.

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 3. General reflection on the Experience of Performing the Code Reviews for European

institutions

Page 15 of 31

Lesson Learnt 11 It was observed that after the code review reports were given by the

code reviewers, an additional Quality and Assurance (Q&A) stage had

to be added to ensure that all results were adequate (findings position

in the code, justification) and had the same format

Gap o lack of standardised means of providing feedback.

Quick win mitigation

for code review

process

o a Q&A stage was added to ensure that the results and evidence were

correct and complete.

Improvement o ensure that the results and evidence are provided adequately with

templates and guidelines. This also applies to the assessment of the

findings (risk). If an application is defined, it would have to include

specific templates and guidelines to ensure that code reviewers know

exactly which information to provide and include in their reports.

Lesson Learnt 12 The number of controls to include in the final report is excessive; for

applications written in several languages this could mean 200+

controls

Gap o need to optimise the final report to ensure that findings are properly

identified and easily accessible

Quick win mitigation

for code review

process

o controls that were not checked, or that passed successfully, were

identified in the summary control table. However, their individual tables

were not included

Improvement o define which control tables should appear on the final report; the

consideration is to include only those that have any findings, or that have

relevant evidence for the developers of the software reviewed

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 3. General reflection on the Experience of Performing the Code Reviews for European

institutions

Page 16 of 31

2.4. Lessons Learnt Resulting from the FOSS Communities Feedback

Feedback from the Apache HTTPD community resulted in the following areas of improvement:

Lesson Learnt 13 The current code review workflow does not detect all occurrences of

a finding

Gap o The approach followed by the EU-FOSSA project aimed at reducing the

code review time by sampling each finding, instead of listing every

single occurrence in the code. To accomplish this, we prioritised the

amount of code reviewed in a given period of time, instead of prioritising

the number of occurrences of a finding.

Since FOSS communities have expert knowledge in their software, this

approach assumed that they would be the best candidates to detect all

the occurrences in a limited sample. However, the FOSSA team did not

take into account that FOSS communities do not necessarily have the

required amount of resources for this purpose.

It turned out that the Apache community is interested in all occurrences

because their workflow is adapted for this kind of input.

Quick win mitigation

for code review

process

o N/A

Improvement o The following modification of the code review procedure is proposed:

In the queue systems proposed in the procedure of the code review

method (Annex 3 of Deliverable 11: Design of the method for performing

the code reviews for the European institutions), a new queue (called ‘X’)

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 3. General reflection on the Experience of Performing the Code Reviews for European

institutions

Page 17 of 31

Lesson Learnt 13 The current code review workflow does not detect all occurrences of

a finding

is added, with the objective of finding all occurrences of a finding.

While queues ‘A’ and ‘B’ work on detecting up to three occurrences of a

finding, the queue ‘X’ will work in parallel conducting the following

activities:

 First Q&A review in order to discard false positives.

 If it is not a false positive, find all occurrences of a finding in a code

file.

It is assumed that if a finding appears in several files, queues ‘A’ and ‘B’

will identify the code files affected, and queue ‘X’ will detect all

occurrences of a finding in a code file.

Following this new approach, the results will gather all occurrences of a

finding with low impact in time (due to the queues working in parallel).

However, the efforts and cost of the code review project will increase, as

more code reviewers will be needed to work in queue ‘X’.

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 3. General reflection on the Experience of Performing the Code Reviews for European

institutions

Page 18 of 31

Lesson Learnt 14 The “FOSS version” of the code review report that is sent to the

FOSS Communities should directly address the findings.

Gap o the current report template includes information that might not be

relevant to FOSS communities, as their interested is focused mainly on

the findings.

o Currently, the findings are added by controls (following the approach

explained in lesson learnt 13) and presented in this way in the report.

Quick win mitigation

for code review

process

o N/A

Improvement o Section 1 – Introduction should be eliminated

o Section 3 – Methodology should be eliminated

o To improve the presentation of the findings and expand on the

information provided, a table should be included with the following

information: the finding, a description, the associated failed control, and

the location (file and line of code) of each occurrence.

o To ensure the document integrity, each page should have a watermark,

indicating that it is a draft, to be removed once the document is approved

the FOSS community. This is a countermeasure to prevent information

leakages before the FOSS community final approval, and to avoid

misunderstandings about the results of the code review.

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 3. General reflection on the Experience of Performing the Code Reviews for European

institutions

Page 19 of 31

Lesson Learnt 15 Find alternative methods to improve the communication with the

FOSS communities

Gap o The documentation should not be sent to email lists, as it is likely to be

sent to thousands of people around the globe, causing

misunderstandings and inconveniences. An email list might create

confusion about the results, instead of being an efficient mechanism to

interact with the FOSS communities.

Quick win mitigation

for code review

process

o N/A

Improvement o European institutions should have a contact list for code review projects

with several key points of contact (POCs) from the FOSS communities

and the project owners.

o These POCs should be engaged in the discussions about the code

review results.

o The list should be updated regularly, and the key contacts from FOSS

communities should be willing to act as a contact point with the

European institutions and be aware of the code review activities being

executed by the European institutions on their software.

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 3. General reflection on the Experience of Performing the Code Reviews for European

institutions

Page 20 of 31

Lesson Learnt 16 The selection of the project for code review should be based on the

community size, as larger communities may already have their own

code review processes and more resources to commit to this

activity.

Gap o The two code reviews conducted were considerably different in terms of

lines of code, size of the community and communication method with the

community to discuss the results.

This could lead to the following:

 A more challenging communication process with larger

communities, as they may have more than one point of contact;

 Longer discussion process to agree on the findings and the

resolution process;

 Long reports and not enough resources to attend them.

Quick win mitigation

for code review

process

o N/A

Improvement o Select a project that does not have all the resources to conduct a

security code review.

o Prioritise smaller communities that are strategic for the European

institutions.

o If a larger community is selected, agree beforehand on the scope of the

code review and the point of contact responsible from the community

side.

o Involve the community in the planning process, as per the Code Review

methodology developed.

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 3. General reflection on the Experience of Performing the Code Reviews for European

institutions

Page 21 of 31

2.5. Effort Estimation to Conduct a Code Review

In order to be able to estimate the effort required to conduct a code review, the following activities

were conducted

1. Analysis of the FOSSA project data when reviewing the code of Apache (C) and KeePass

(C++):

LoC (Lines of
Code)

1. around 61 000 LoC analysed in C

2. around 84 000 LoC analysed in C++

Code review
team

1. three code reviewers analysing C code

2. four code reviewers analysing C++ code

Code review
timeline

Four weeks

Number of

controls

1. 160 code controls applied to C-based software:

o 68 controls corresponding to the managed and defined

modes (about 42.5 % of the total of controls)

o 92 controls corresponding to the optimised mode (The

remaining 57.5%).

2. 218 code controls applied to C++-based software:

o 68 controls corresponding to the managed and defined

modes (about 31% of the total of controls)

o 150 controls corresponding to the optimised mode (the

remaining 69%).

2. The above data resulted in

 145 000 LoC analysed

 Team of 28 reviewers/week (4 reviewers x 4 weeks and 3 reviewers x 4 weeks).

 129.5 lines of code per reviewer and hour. This is the result of the following calculation:

145 000 lines of code / (28 reviewers/week x 5 days/week x 8 hours/day) =

129.5 lines of code/reviewer/hour

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 3. General reflection on the Experience of Performing the Code Reviews for European

institutions

Page 22 of 31

 The above result is calculated using the optimised mode (which by default includes the

managed and defined modes)2

3. Managed and defined modes: a total of 136 controls analysed (68 applied to Apache and 68

applied to KeePass).

4. For the optimised mode, a total of 242 controls (92 applied to Apache and 150 applied to

KeePass) were analysed.

3. Taking the above data into account:

 around 36% of the analysed controls were from managed and defined modes

 around 64 % of the controls were examined from the optimised mode.

 This implies that, for each hour spent conducting a code review:

i. One third of the time (22 minutes) was spent analysing controls from the

managed and defined modes

ii. Two thirds of the time (38 minutes) was spent analysing controls from the

optimised mode.

4. Results:

 Apache code review: eight failed controls (one from managed and defined modes, and

seven from optimised controls). As a result, 12.5% of the failed controls come from the

managed and defined modes, while the remaining 87.5% come from the optimised mode.

 KeePass code review: 14 failed controls (four from managed and defined modes, and ten

from optimised controls. As a result, 29% of the failed controls come from the managed

and defined modes, while the remaining 71% come from the optimised mode.

To conclude, the FOSSA pilot project resulted in a total of five failed controls from the managed and

defined modes in FOSSA project (about 23%), and 17 from the optimised mode (about 77%),

highlighting the importance of the optimised or manual code review.

As final remarks, it is important to take into account:

1. The number of lines of code/reviewer/hour depends on the nature of the software, its type

(web application, mobile application, etc.) and the programming language used in the

software. Analysing a web application will most likely produce different statistics from a

workstation software.

2 See “Annex 2: Code Review Methodology –Code Review modes” for explanation of the code review modes.

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 3. General reflection on the Experience of Performing the Code Reviews for European

institutions

Page 23 of 31

2. The effort estimation is only for conducting the code review on the specified software, and as

such does not include the Quality assessment, analysis and report writing tasks, which can

take more time than the code review itself.

3. However, the effort estimation of the FOSSA code review can be used to plan future code

review projects.

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 3. General reflection on the Experience of Performing the Code Reviews for European

institutions

Page 24 of 31

3 CONCLUSIONS AND FUTURE ACTIONS

To conclude, the results of the EU-FOSSA pilot project were satisfactory, with areas of improvement

identified, and a set of future actions proposed for the European institutions to ensure the continuation of

this initiative.

The future actions have been grouped in three sets, to target specific areas or groups, and to optimise the

management of the Action Plans that should be created to ensure that the security of the critical software is

continuously improved

3.1. Code Review Method

The current code review method can be improved to maximise the benefits using the knowledge gathered

during the FOSSA project. The code review method is the essential element of the code review projects,

where it impacts the project costs and duration, as well as the potential results.

1. Code review is a time-consuming activity that needs to be optimised to be feasible regarding costs

and duration. Taking that into account, the FOSSA team has proposed a procedure where different

working queues correspond to different code review levels. These levels have different time limits

and knowledge to find security flaws in the code, as explained in Deliverable 11: Design of the

methods for performing the code reviews for the European institutions. Therefore, the procedure of

the code review should be refined according to the type of software analysed, to improve its

efficiency.

2. The FOSSA team realised that it was required to perform a Q&A of the findings and their

assessment, to integrate and normalise the information of the different code reviewers. This

harmonises the results to make them more coherent. The process can be considered iterative, and

during its development the methodology is continuously improved and updated, to include newer

features in the languages supported, as well as adding support for other programming languages,

systems and environments (e.g. mobile applications, web applications, etc.).

3. It is advisable for future actions to analyse the rest of Apache HTTP Server, as well as the rest of the

libraries that it uses. This software is widely used as a web server and proxy server, and it should be

analysed according to that fact.

4. The development or acquisition of an automated software tool to assist the code review process

would be quite advisable to improve the efficiency of the code review process, as well as its

feasibility. Possible features can be such as integration with automatic tools, centralised assessment

and Q&A, etc.

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 3. General reflection on the Experience of Performing the Code Reviews for European

institutions

Page 25 of 31

3.2. Security Framework for Free and Open Source Software

Overall, it can be considered that the Code Review is just a phase in a bigger Security Framework concept,

which includes a dynamic analysis, penetration testing, etc. This would provide the ideal revision of the

security of an application, providing developers with the knowledge needed to ensure that their software is

up-to-date in terms of security and allowing users to feel a bit more secure when using these solutions.

5. A single type of security audit (code review, penetration testing, etc.) will not detect all possible

security issues in any software. This is why it is recommended to use several security tests to

improve the security of the software;

6. Taking advantage of the knowledge acquired during the code review, security development guides

and study material can be produced for software developers in order to improve the security of the

European systems and applications;

7. Open wikis by security experts may be created to exchange information and best practices in

software development, following the same philosophy as FOSS communities.

3.3. European institutions and FOSS Communities

Some FOSS software is a key part of the IT infrastructure of many European organisations, and such

software provides a key value for the European society. Because of this, it is of utmost importance to

develop mechanisms for collaboration between the European institutions and FOSS communities.

As other elements are part of the infrastructure needed for the member states, such as motorways and rail

networks, some FOSS software might be considered as IT infrastructure. This means that the European

public administration should promote and support FOSS software.

European institutions could collaborate with FOSS communities in the following ways:

8. Conduct security tests (Penetration testing, code analysis, etc.) on the FOSS, providing feedback

and recommendations to FOSS communities;

9. Expand the scope of the security tests to include the solution of security issues detected during

those tests;

10. Collaborate in the software development, either in an official way or allowing the developers of the

European institutions to contribute to FOSS communities (sharing the code developed in the EUI,

allocating time slots so developers can contribute to the FOSS communities development tasks,

etc.).

11. Create documentation and guides for FOSS communities to improve software security;

12. Create forums or wikis to generate knowledge about software security, where experts can provide

information;

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 3. General reflection on the Experience of Performing the Code Reviews for European

institutions

Page 26 of 31

13. Create webinars for developer about secure coding (per language), or about security in essential

technologies used in software development (HTTP, etc.);

14. Develop subject matter experts (SMEs) in the areas of secure software and security in the software

lifecycle, etc;

15. Promote the sponsorship of FOSS software regarded as IT infrastructure that is in a bad situation (at

risk of being discontinued). However, this software at risk can be critical and used in many other

projects (FOSS or proprietary software);

16. Promote the use of FOSS software within the European institutions by increasing its usage, by

contributing to the development of FOSS software or by helping with the dissemination of that

software.

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 3. General reflection on the Experience of Performing the Code Reviews for European

institutions

Page 27 of 31

4 ANNEXES

4.1. Annex 1: Future Actions

The Free and Open Source Software Audits are an important contribution to the European institutions open

source strategy, and to ensure the reliability and security of the IT infrastructure we all rely on.

To ensure that this pilot project becomes an ongoing activity, a series of future actions are proposed, that

should be analysed by the European institutions to ensure the continuation of this critical process.

Table 1 depicts in detail the future actions, grouped in three areas.

Table 1: EU-FOSSA pilot project - Future Actions

Area Future Action

Code Review Method 1. The FOSSA team has proposed a process where different working

queues correspond to different code review levels. These levels have

different time limits and code reviewer know-how to find security flaws

in the code, as explained in Deliverable 11: Design of the methods for

performing the code reviews for the European institutions

2. Perform a Q&A of the findings and their assessment, to integrate and

normalise the information of the different code reviewers.

3. Analyse the rest of Apache HTTP Server, as well as the rest of the

libraries that it uses.

4. Develop or acquire an automated software tool to assist in the code

review process to improve its efficiency and feasibility.

Security Framework

for Free and Open

Source Software

5. Conduct different types of security audits, like code reviews,

penetration testing, etc., to improve the security of the software.

6. Create security development guides and study material for software

developers in order to improve the security of the European systems

and applications.

7. Create, open wikis of security experts to exchange information and best

practices in software development, following the same philosophy as

the FOSS communities.

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 3. General reflection on the Experience of Performing the Code Reviews for European

institutions

Page 28 of 31

Area Future Action

European institutions

and FOSS

Communities

8. Conduct security tests (Penetration testing, code analysis, etc.) on the

FOSS, providing feedback and recommendations to FOSS

communities.

9. Expand the scope of the security test to include the solution of the

security issues detected during those tests.

10. Collaborate in the FOSS development, either in an official way or by

allowing the developers of the European institutions to contribute to

FOSS communities. This can be accomplished in several ways, such

as:

a. sharing the code developed in the EUI

b. allocating time slots so developers can contribute to the FOSS

communities development tasks.

11. Create documentation and guides for FOSS communities to improve

software security

12. Create forums or wikis to generate knowledge about software security,

where experts can provide information

13. Develop subject matter experts (SMEs) in the areas of secure software

and security in the software lifecycle, etc.

14. Create webinars for developers about secure coding (per languages),

or about security in essential technologies used in software

development (HTTP, etc.)

15. Promote the sponsorship of FOSS software regarded as IT

infrastructure that is in a bad situation (at risk of being discontinued).

However, this software at risk can be critical and used in many other

projects (FOSS or proprietary software).

16. Promote the use of FOSS software within the European institutions by

increasing its usage, by contributing to the development of FOSS

software or by helping with the dissemination of that software.

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 3. General reflection on the Experience of Performing the Code Reviews for European

institutions

Page 29 of 31

4.2. Annex 2: Code Review Methodology –Code Review modes

The execution process was divided into three sequential phases, each providing data as input for

the next one, as depicted in Figure 2. All of them were carried out by the code review team, using

both automated and manual tools.

Figure 2: Code review execution order

Each phase corresponds to a code review mode, as explained below:

 Managed mode: covers the execution of the automated tools selected for the analysis of the

code. The following categories were analysed:

o Data/Input Management (DIM): The data entry points of an application, service or library

are one of the weak points that must be controlled against unexpected values. The

subcategories covered are as follows:

 File Input / Output Management (FIM)

 Data stream management (DSM)

 Character encoding management (CEM)

 Input validation and sanitisation (IVS)

 Sensitive Data Management (SDM)

 Entry point validation (EPV)

 XML schema validation (XSV)

o Authentication Controls (AUT): It covers any aspect related to the process during which

the solution reviews and verifies the identity of another entity, such as a user. The

subcategories covered are as follows:

 Authentication verification (AUV)

 Password policy usage (PPU)

 Credential storage security (CST)

 User account protection (UAP)

 Password recovery process (PRP)

Managed mode

Tests using
automated tools

Defined mode

Manual tests to
verify and expand
the results

Optimised mode

Manual tests to
evaluate specific
scenarios

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 3. General reflection on the Experience of Performing the Code Reviews for European

institutions

Page 30 of 31

o Session Management (SMG): It covers all parts of the protection and management of user

sessions once they are authenticated against the solution. The subcategories covered are

as follows:

 Session creation (SCP)

 Session ID management (SID)

 Session lifecycle (SLC)

 Session logout (LGP)

o Authorisation Management (ATS): This process is designed to ensure that when a user or

entity correctly authenticates against the application, s/he gets the proper privileges

assigned to it. The subcategories covered are as follows:

 Access control system (ACS)

 Privilege revision (PRV)

o Cryptography (CPT): Covers all aspects related to the protection via encryption of the

information and data in transit and at rest. The subcategories covered are as follows:

 Credential protection at rest (CPR)

 Cryptographic configuration (CRC)

o Error Handling/Information Leakage (EHI): The information provided by the application

errors, page metadata and sample content must be filtered to avoid a leakage of sensitive

information. The subcategories covered are as follows:

 Information leakage (INL)

 Sample files (SFL)

 Error handling (EHD)

o Software communications (COM): it comprises those functions that manage and control

network connections, including sockets and protocol functions. The subcategories

covered are as follows:

 HTTP Secure Management (HSM)

o Logging/Auditing (LOG): The logs generated by an application are a superb source of

information about its contents, workings and potential weaknesses. The subcategories

covered are as follows:

 Log configuration management (CFG)

 Log generation (GEN)

 Log sensitive information (LSI)

o Secure Code Design: There are several aspects related to the application itself and the

technologies and frameworks used for its implementation. The subcategories are as

follows:

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 3. General reflection on the Experience of Performing the Code Reviews for European

institutions

Page 31 of 31

 Framework requirements (FWK)

 Variable types / operations (VTY)

 Expressions/Methods (EXM)

 Defined Mode: once the managed mode is finished, the code review team will have a set of

results generated from the automated tools. These results, together with the manual tests

needed, are checked in order to fill the controls and checks that will provide the final results.

 Optimised Mode: focuses on those sections of the application that are found to be most at risk,

alongside several more specific tests that require further evaluation. They are divided into the

following subcategories:

 Concurrency (CCR)

 Denial of Service (DOS)

 Memory and resource management (MRM)

 Code Structure (COS)

 Role-privilege matrix (RPM)

The optimised mode covers the set of language-specific (C, C++, JAVA and PHP) controls, and

other controls related to the code unique particularities. The language specific controls for C

(CBC) are divided into the following subcategories:

o Pre-processor (PRE)

o Variable Management (VMG)

o Memory Management (MEM)

o File I/O Management (FIO)

o Environment (ENV)

o Signal and Error Handling (SEH)

o Concurrency (CON)

o Miscellaneous (MSC)

