

WP6

DIGIT B1 - EP Pilot Project 645

Deliverable 2: Summary of the Evaluation of Results

Apache Core & APR

Specific contract n°226 under Framework Contract n° DI/07172 – ABCIII

 October 2016

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 2: Summary of the evaluation of results - Apache Code Review

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 2 of 23

Author:

Disclaimer

The information and views set out in this publication are those of the author(s) and do not necessarily

reflect the official opinion of the Commission. The content, conclusions and recommendations set out in

this publication are elaborated in the specific context of the EU – FOSSA project.

The Commission does not guarantee the accuracy of the data included in this study. All representations,

warranties, undertakings and guarantees relating to the report are excluded, particularly concerning – but

not limited to – the qualities of the assessed projects and products. Neither the Commission nor any person

acting on the Commission’s behalf may be held responsible for the use that may be made of the

information contained herein.

© European Union, 2016.

Reuse is authorised, without prejudice to the rights of the Commission and of the author(s), provided that

the source of the publication is acknowledged. The reuse policy of the European Commission is

implemented by a Decision of 12 December 2011.

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2011:330:0039:0042:EN:PDF

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 2: Summary of the evaluation of results - Apache Code Review

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 3 of 23

Report Summary

Title Summary of the evaluation of results : Apache Core & APR

Project Owner Apache Community

DIGIT Sponsor EU-FOSSA project

Author DIGIT

Type Public

Version V 0.5 Version date 10/10/2016

Reviewed by EU-FOSSA Team Revision date 08/11/2016

Approved by European Commission - Directorate-
General for Informatics (DIGIT)

Approval date To be
approved

 Nº Pages 23

Distribution list

Name and surname Area Copies

IT contacts To be identified To be identified

Communities Apache security Team 1

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 2: Summary of the evaluation of results - Apache Code Review

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 4 of 23

Contents

CONTENTS... 4

LIST OF TABLES ... 5

LIST OF FIGURES ... 6

ACRONYMS AND ABBREVIATIONS ... 7

1 INTRODUCTION .. 8

1.1. CONTEXT .. 8

1.2. SCOPE .. 9

1.3. DELIVERABLES .. 9

2 EXECUTIVE SUMMARY ... 10

3 CODE REVIEW ENVIRONMENT .. 12

4 SECURITY ASSESMENT .. 13

4.1. LOW RISK CONTROLS WITH FINDINGS ... 14

4.2. INFORMATIONAL CONTROLS WITH FINDINGS .. 15

4.2.1. Specific C Controls ... 15

4.2.2. Build Tool (build folder) ... 16

4.2.3. Findings controlled programmatically ... 19

5 RECOMMENDATIONS .. 20

5.1. DETAILS .. 20

5.2. PRIORITISATION ... 23

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 2: Summary of the evaluation of results - Apache Code Review

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 5 of 23

List of Tables

Table 1: Security Assessment of CBC-MEM-001 .. 14

Table 2: Security Assessment of CBC-FIO-001 ... 15

Table 3: Security Assessment of CBC-VMG-004 .. 15

Table 4: Security Assessment of CBC-VMG-011 .. 16

Table 5: Security Assessment of CBC-MEM-005 .. 17

Table 8: Security Assessment of CBC-SEH-007 ... 18

Table 7: Security Assessment of SCD-FWK-001 ... 19

Table 8: Controls with Findings and Recommendations/Specific Solutions .. 20

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 2: Summary of the evaluation of results - Apache Code Review

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 6 of 23

List of Figures

Figure 1: Risk Level ... 10

Figure 2: Priority levels ... 23

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 2: Summary of the evaluation of results - Apache Code Review

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 7 of 23

Acronyms and Abbreviations

APR Apache Portable Runtime

CWE Common Weakness Enumeration

EU-FOSSA Free and open Source Software Auditing project

FOSS Free and Open Source Software

IDE Integrated Development Environment

OS Operating system

WP Work Package

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 2: Summary of the evaluation of results - Apache Code Review

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 8 of 23

1 INTRODUCTION

1.1. Context

The security of the applications used nowadays has become a major concern for organisations,

companies and citizens in general, as they are becoming a more common part of our daily lives, and

are being used for business and leisure purposes alike. This information has become the most

essential asset to protect, as it includes personal information, internal data, industrial property, etc.

From a security point of view, this new scenario presents many new challenges that need to be

addressed in order to protect the integrity and confidentiality of the data managed by the

applications and their users. Furthermore, their exposure to the Internet has made them a prime

target, due to the value that this private and internal information has.

One of the advantages of Free and Open-Source Software (FOSS) is that its source code is readily

available for review by anyone, and therefore enables virtually any user to check and provide new

features and fixes, including security ones. Also, from a more professional point of view, it allows

organisations to review the code completely and find the vulnerabilities or weaknesses that it

presents, allowing for a refinement of their security and in turn a safer experience for all the users of

the applications.

Objective

The objective of this document is to provide, in a summarised format, the results of the code review

ran on the Apache Core & APR software. This goes with a set of recommendations focused on

increasing the overall security level of the application. This review is carried out within the EU-

FOSSA project, focusing on the security aspects of the software.

The objective of this code review is to examine the Apache Core & APR software, focusing mainly

on its security aspects, the risk that they pose to its users and the integrity and confidentiality of the

data contained within.

Apache HTTP Server is one of the most used HTTP and proxy servers and it is FOSS. It is a mature

FOSS project running since 1995 and many security flaws have been detected and corrected since

its conception.

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 2: Summary of the evaluation of results - Apache Code Review

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 9 of 23

1.2. Scope

The scope of the project is as follows:

Application name Apache Core & APR Review start 25/07/2016

Code review owner
European Commission - Directorate-General for
Informatics (DIGIT)

Review end 22/08/2016

Objective Security Code Review

Num. Lines 61 286 Version
Apache 2.4.23

APR 1.5.2
Programming language C

Code Review Mode 1-Managed 2-Defined 3-Optimised

Libraries

 Apache Core (version 2.4.23)

 Apache Portable Runtime (APR, version v1.5.2)

Extensions/plugins N/A

Services required N/A

Result visibility Internal Restricted Public

Critical notification During assessment Apache Security Group

Categories

Data/Input
Management

Error Handling /
Information Leakage

 Specific C controls

Authentication
Controls

Software
Communications

Specific C++
controls

X

Session
Management

 Logging/Auditing
Specific JAVA
controls

X

Authorisation
Management

 Secure Code Design
Specific PHP
controls

X

Cryptography
Optimised Mode
Controls

1.3. Deliverables

1 WP6 - Deliverable 1: Code Review Results Report – Apache Core & APR

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 2: Summary of the evaluation of results - Apache Code Review

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 10 of 23

2 EXECUTIVE SUMMARY

This document presents a high-level report of the code review carried out for the Apache Server

(version 2.4.23). As this software includes a large number of optional and third-party modules and

extensions, the review has focused on its core: the modules/core module and the Apache Portable

Runtime (APR, version v1.5.2) library. The results from this code review, alongside the assessment

of any findings identified, will be presented as well. For technical details, please see the complete

“Code Review Results Report – Apache Core & APR”1

This code review has been carried out following a manual review process aided by two open-source

review tools:

1. CodeLite: A Free Open-Source Integrated Development Environment (IDE) for C, it is one

of the most used IDE for C and C++, quite easy to install and use.

2. FlawFinder: A Free Open-Source code review tool developed by David A. Wheeler, an

expert in Free and Open Source Software and secure software development. This tool

specialises in finding security flaws in C and C++.

The assessment of the findings pointed out by the code review has been performed form the

attackers’ point of view, where:

 The ‘threat’ is related to the attacker;

 The ‘vulnerability’ is related to the potential issue that may be caused (it means

‘weakness’) and;

 The ‘impact’ is related to the consequences of the attack being successful.

Apache Core and APR can be considered mature as far security is concerned, as it is periodically

updated/patched and reviewed by the different users. This fact is corroborated if we take a look at

the results:

Figure 1: Risk Level

All of the findings can be solved easily without undergoing complex developments, and the risk of

them being exploited is either low or not possible without modifying the source code itself.

1 See the EU-FOSSA Community on Joinup.

0 0 0

2

5

0

2

4

6

Critical High Medium Low Info

https://joinup.ec.europa.eu/community/eu-fossa/og_page/project-deliveries

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 2: Summary of the evaluation of results - Apache Code Review

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 11 of 23

Furthermore, these weaknesses are hard to exploit. This makes it difficult to take advantage of the

vulnerabilities in normal environments. However, in custom implementations these needs to be

double-checked, as oversights or changes may make these vulnerabilities directly exploitable by

attackers.

It is important to notice that this code review does not guarantee that all of the vulnerabilities are

detected. Some security issues can remain undetected; therefore it is advisable to carry out other

security tests to complement this code review.

As far as the he prioritisation is concerned, it is proposed according to their criticality: low risk

findings in the mid-term, and the informative ones in the long-term.

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 2: Summary of the evaluation of results - Apache Code Review

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 12 of 23

3 CODE REVIEW ENVIRONMENT

In order to carry out the code review and analysis, there was a need for a specific code review

environment with the necessary tools (including both automated and manual tools).

For the manual code review, an IDE (Integrated Development Environment) was used:

CodeLite: a FOSS application that is light, user-friendly and has a high maturity

level (version: 9). It is a cross-platform (supporting Windows, the major Linux

distributions and Mac OS). It supports the following languages:

 C

 C++

 JavaScript

 PHP

One of the main reasons why it was chosen: its excellent support of C and

C++ code.

Source: http://www.codelite.org/

Alongside this IDE, an automated tool was also used to help complement the findings and potential

results:

FlawFinder: a FOSS automatic secure code review tool mainly focused on C and

C++ code. It supports Linux and Unix-based operating systems mainly, although

it can also be run on Windows when compiled using Cygwin. It is compatible with

Common Weakness Enumeration (CWE), providing useful feedback on any

finding. As a side note, this tool was developed by David A. Wheeler, an authority

in the fields of secure software development and open-source software.

Source: http://www.dwheeler.com/flawfinder/

http://www.codelite.org/

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 2: Summary of the evaluation of results - Apache Code Review

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 13 of 23

4 SECURITY ASSESMENT

Findings are identified in seven controls. These controls are grouped based on their overall risk

level, as follows:

 Low risk

 CBC-MEM-001

 CBC-FIO-001

 Informational risk

 CBC-VMG-004

 CBC-VMG-011

 CBC-MEM-005

 CBC-SEH-007

 SCD-FWK-001

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 2: Summary of the evaluation of results - Apache Code Review

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 14 of 23

4.1. Low Risk Controls with Findings

Table 1: Security Assessment of CBC-MEM-001

CBC-MEM-001 Do not access freed memory Low

Finding

Legacy Finding: the following finding is mentioned to

create awareness among users that keep running Apache

servers on older OS (Windows XP, Windows Server

2003…), but it does not have to be fixed as those

systems are not supported (by neither Microsoft nor

httpd).

 It does not impact on the Control assessment results.

Threat Low

Vulnerability Medium

Impact Low

Detections

File/s: Line/s:

%APR%\threadproc\win32\proc.c 430

%APR%\misc\win32\misc.c 223

%APR%\locks\win32\thread_cond.c 52

%APR%\locks\win32\thread_mutex.c 64

Assessment

The findings identified within this control are not considered vulnerabilities, as they

affect legacy systems not officially supported by Microsoft nor the Apache HTTP

project.

 Threat (Low): it is a publicly known vulnerability.

 Vulnerability (Medium): it affects low-memory scenarios in Windows OS.

 Impact (Low): it only affects sections of the application related to low-memory

scenarios causing instability.

Related vulnerability code: N/A.

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 2: Summary of the evaluation of results - Apache Code Review

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 15 of 23

Table 2: Security Assessment of CBC-FIO-001

CBC-FIO-001 Exclude user input from format strings Low

Finding
The sprintf function is used in the code and it can result
in a buffer overflow if the length is not checked.

Threat Low

Vulnerability Medium

Impact Low

Detections
File/s: Line/s:

%APR%\misc\win32\misc.c 228

Assessment

These functions do not provide adequate variable length controls and can result in
buffer overflow scenarios.

 Threat (Low): the string passed to the function is not commonly obtained from

direct user input.

 Vulnerability (Medium): the lack of length control can be exploited to cause a
buffer overflow.

 Impact (Low): it would only affect a section of the code, too complex to cause

severe damage.

Related vulnerability code: CWE-120

4.2. Informational Controls with Findings

4.2.1. Specific C Controls

Table 3: Security Assessment of CBC-VMG-004

CBC-VMG-004 Do not declare or define a reserved identifier Info

Finding

The usage of the _MAX suffix in names of variables can

lead to conflicts with reserved macros. While it is mostly
related to nomenclature formatting, it can lead to the
confusion or misuse of the affected variable.

Threat Low

Vulnerability Low

Impact Low

Detections
File/s: Line/s:

%APR%\shmem\unix\shm.c 32

Assessment

The use of the MAX suffix is reserved for macros; using it for other variables or
function names can lead to the misuse of said functions if wrongly used in other parts
of the code or in extensions/plugins.

 Threat (Low): the code would need to be modified directly in order to exploit this
vulnerability.

 Vulnerability (Low): it can compromise the integrity of the data managed by the

application.

 Impact (Low): it requires direct access to the code and recompilation of the code,
would not affect official versions.

Related vulnerability code: N/A.

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 2: Summary of the evaluation of results - Apache Code Review

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 16 of 23

4.2.2. Build Tool (build folder)

These findings are related to the compilation support libraries that are part of the APR library but

take no part on the final executable code generated. The purpose of this library is to assist

compilation, therefore the findings are not directly related to the running APR, but to the compilation

process. They are included here to serve as a reference for future upgrades and development on

them.

Important: these findings do not have a direct impact on the security of the runtime code or on the

execution of the server, as they are part of a separate block (build tool) used exclusively during

compilation time.

Before deciding to change them, one must take into account the risk of adding more complexity to

the code.

Table 4: Security Assessment of CBC-VMG-011

CBC-VMG-011 Do not form or use out-of-bounds pointers or array subscripts Info

Finding

There is a risk of affecting unexpected memory locations
(out of bounds of arrays) or trying to access invalid
locations, causing the function involved to crash and
cause system instability.

Threat Low

Vulnerability Low

Impact Low

Detections

File/s: Line/s:

%APR%\build\jlibtool.c 353

%APR%\build\jlibtool.c 341

%APR%\tables\apr_hash.c 531

Assessment

In the code, a decreasing negative loop control variable (loop limit) is used with a
function to obtain data from an array.

 Threat (Low): users cannot directly modify the loop limit, as it is assessed
programmatically.

 Vulnerability (Low): the risk of losing the integrity of the memory locations
managed within the function (or those accessed by it).

 Impact (Low): it is complex to exploit this vulnerability, but the lack of a size

control of arrays in the code can result in an overflow.

Related vulnerability code: N/A.

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 2: Summary of the evaluation of results - Apache Code Review

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 17 of 23

Table 5: Security Assessment of CBC-MEM-005

CBC-MEM-005 Allocate sufficient memory for an object Info

Finding
The use of the strcpy and strcat functions within the
code can lead into a buffer overflow as there is no default
control to validate the size of the parameters received.

Threat Low

Vulnerability Low

Impact Low

Detections
File/s: Line/s:

%APR%\build\aplibtool.c 157, 272, 850

Assessment

The strcpy, strcat functions are used within the code reviewed and there are no
additional controls to validate the size of the parameters. These calls should be
replaced with their updated counterparts (strcpy_s and strcat_s). Several times,
memory operations done using memcpy are used without checking the size of the
source and destination.

 Threat (Low): applies only if variable-length strings are used on the section of the
code; does not depend on user input.

 Vulnerability (Low): can result in a buffer overflow as the size of the string
processed (input and output) are not controlled.

 Impact (Low): publicly known but complex to execute.

Related vulnerability code: CWE-120.

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 2: Summary of the evaluation of results - Apache Code Review

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 18 of 23

Table 6: Security Assessment of CBC-SEH-007

CBC-SEH-007 Detect and handle standard library errors Info

Finding

Several functions are used without checking if an error
has taken place, thus they are not managed correctly.
These functions are: malloc, remove and fgets.

Threat Low

Vulnerability Low

Impact Low

Detections

File/s: Line/s:

%APR%\build\jlibtool.c 325, 969

%APR%\build\aplibtool.c 606

Assessment

A memory allocation (malloc) that can result in a ‘NULL’ value is not controlled when

an error happens. Therefore, any function that depends on this memory allocation will
fail during execution if the NULL value is the result.

The remove function has to be used with an error checking functionality, so that if an
error happens in that line, it should be detected.

The fgets function has to be used with an error checking functionality, so that if an
error happens in that line, it should be detected.

The buffer creation process does not have any measures in order to control the result
obtained from the process, which can be a problem if it results in a ‘NULL’ value due to
an error.

 Threat (Low): it can only be exploited if an attacker is able to trigger errors in
those functions (malloc, remove, fgets).

 Vulnerability (Low): the results of the use of those functions are not checked

against the corresponding error result.

 Impact (Low): very complex to exploit, it might modify the software execution
lightly.

Related vulnerability code: N/A.

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 2: Summary of the evaluation of results - Apache Code Review

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 19 of 23

4.2.3. Findings controlled programmatically

Table 7: Security Assessment of SCD-FWK-001

SCD-FWK-001 All frameworks and third party components are up-to-date Info

Finding
Obsolete functions are used in the code, such as getpass
and _alloca.

Threat Low

Vulnerability Medium

Impact Low

Detections

File/s: Line/s:

%APR%\password\apr_getpass.c 242

%APR%\network_io\win32\sendrecv.c 118

Assessment

_alloca: In the finding detected in the code, the use of this function in the version

evaluated is controlled by ensuring that the parameter is not large enough to cause
instability in its use.

Taking into account that this function is considered deprecated according to MSDN (for
Windows systems) due to the free-up memory controls it provides, it is recommended
to consider updating it to use the _malloca function alternative.

getpass: In the finding detected in the code, the use of this function in the version
evaluated is controlled by ensuring that the function will not be used under Operating
Systems in which this function could represent a security flaw.

Nevertheless this function is obsolete and not portable. This finding is highlighted in
order to keep it in mind for future developments.

It is something that adds risk to the code and should be mitigated whenever possible.
It is a bad practise to have deprecated or legacy code, as it leads to instability and
weaker security, even if it is controlled in its current version. Later versions may
override this and raise the finding again. Before deciding to change it, one must take
into account the risk of adding more complexity to the code.

 Threat (Low): it is publicly known and detectable, but can only be exploited
indirectly. Nevertheless, it is controlled programmatically.

 Vulnerability (Medium): Legacy code is present in the code, nevertheless it is
controlled programmatically.

 Impact (Low): it only affects a limited part of the application.

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 2: Summary of the evaluation of results - Apache Code Review

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 20 of 23

5 RECOMMENDATIONS

5.1. Details

The code review evaluated the security level of the application analysed and identified vulnerabilities

that can put it at risk.

In this section, for each finding a corresponding recommendation is given to help increase the

overall security level of the application.

Table 8 shows the recommendations that should be implemented for each of the findings described

and assessed in Section 4.

Table 8: Controls with Findings and Recommendations/Specific Solutions

Controls with Findings Recommendation/Specific Solution

CBC-MEM-001

Do not access freed memory

R01_CBC-MEM-001

These findings only affect implementations of the Apache Server

in older operating systems. However, these operating systems are

no longer supported by Apache or Microsoft. Furthermore, adding

fixes to these legacy findings would introduce complexity to the

code and, as it is no longer supported, it is discouraged.

Specific Solution: Although it is discouraged to use Apache in

older operating systems, and taking into consideration that this

should not be fixed by the Apache Foundation, the following

information is provided for any older user of legacy OS:

Replace InitializeCriticalSection with

InitializeCriticalSectionAndSpinCount.

CBC-FIO-001.

Exclude user input from

format strings

R02_CBC-FIO-001

The use of weak vulnerable functions should be avoided whenever

possible as to increase the robustness of the code and prevent

related risks as well.

Specific Solution: For the case of sprint, it should not be used

but replaced with sprintf_s, snprintf, or vsnprintf.

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 2: Summary of the evaluation of results - Apache Code Review

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 21 of 23

Controls with Findings Recommendation/Specific Solution

CBC-VMG-004.

Do not declare or define a

reserved identifier.

R03_CBC-VMG-004

Ensure that there is no common variables defined making use of

the _MAX suffix, and replace any uses identified. If needed, add

controls to ensure that the change does not impact in the code

functions that make use of that variable/s.

CBC-VMG-0011.

Do not form or use out-of-

bounds pointers or array

subscripts.

R04_CBC-VMG-011

This finding does not have a direct impact on the security of the

runtime code, as it is part of a separate block (build tool) used

exclusively during compilation time.

Before deciding to change it, one must take into account the risk of

adding more complexity to the code.

Recommendation:

Implement control functionality to check the value of the loop limit

variable in order to ensure that it is a valid positive number and

larger than zero.

Any access to arrays (especially within structures) should be done

after checking the bounds of that array.

CBC-MEM-005.

Allocate sufficient memory

for an object

R05_CBC-MEM-005

This finding does not have a direct impact on the security of the

runtime code, as it is part of a separate block (build tool) used

exclusively during compilation time. Before deciding to change it,

one must take into account the risk of adding more complexity to

the code.

Specific Solution: Put in place controls to ensure that the source

can be allocated into the destination or:

o Replace all instances of strcpy with strcpy_s.

o Replace all instances of strcat with strcat_s.

Recommendation: The use of memcpy should only be

considered after checking the size of the destination memory

position against the source, to avoid an overflow.

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 2: Summary of the evaluation of results - Apache Code Review

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 22 of 23

Controls with Findings Recommendation/Specific Solution

CBC-SEH-007.

Detect and handle standard

library errors

R06_ CBC-SEH-007.

This finding does not have a direct impact on the security of the

runtime code, as it is part of a separate block (build tool) used

exclusively during compilation time. Before deciding to change it,

one must take into account the risk of adding more complexity to

the code.

Recommendation:

o A ‘NULL’ check should be used after the buffer creation to

detect possible errors and handle it properly.

o A ‘0’ check should be done after using the remove

function in order to detect possible errors.

o A ‘NULL’ check should be used after using fgets to detect

possible errors and handle it properly.

SCD-FWK-001.

All frameworks and third

party components are up-to-

date

R07_ SCD-FWK-001.

Despite that this finding is controlled within the code it is included

under this section to keep them in mind for future development.

Before deciding to change it, one must take into account the risk of

adding more complexity to the code.

Recommendation: The getpass function is obsolete due to its

high insecurity. It should never be used; instead, the functionality

should be defined manually in the code to ensure the proper

processing of the information according to the needs of the

application.

Specific Solution: The _alloca function allocates memory on the

stack in a Windows system. This function is deprecated because a

more secure version is available. The recommendation is to use

the new version: _malloca

DIGIT Fossa WP6 – Governance and Quality of Software Code – Auditing of Free and Open Source

Software.

Deliverable 2: Summary of the evaluation of results - Apache Code Review

Document elaborated in the specific context of the EU – FOSSA project.

Reuse or reproduction authorised without prejudice to the Commission’s or the authors’ rights. Page 23 of 23

5.2. Prioritisation

Once the severity of the issues found in the code review has been determined, the following step in

the methodology includes a prioritisation process and an action plan definition. This allows the

stakeholders and project owners to identify the most urgent findings to solve, allowing the planning

of the fixes as part of the standard development cycle.

For this purpose, the following priority sets have been established. The low findings should be

tackled in the mid-term, and finally the Informative findings do not require any priority.

Thus, the following graph has been generated:

Figure 2: Priority levels

Mid-term

•CBC-MEM-001

•CBC-FIO-001

Long-term

•SCD-FWK-001

•CBC-VMG-004

•CBC-VMG-011

•CBC-MEM-005

•CBC-SEH-007

