
SEMIC LDES 2025 A new standardisation trajectory

7 May
2025

Working group I

We start at 14:05

SEMIC Assets

Vocabularies

Application Profiles

Technical

Communication channels

● Online meetings (see previous slide)
● Physical meetings: SEMIC2025
● Core discussions documented in Github issues:

https://github.com/SEMICeu/LinkedDataEventStreams/issues/
● Matrix channel:

https://matrix.to/#/#ldes:chat.semantic.works
● Want to follow up all the working groups and receive the reports?

Leave your e-mail address in the chat!

https://github.com/SEMICeu/LinkedDataEventStreams/issues/

Agenda
14:05 - 14:15 Welcome & Tour de table

14:15 - 14:25 Reminder of the process and goal

14:25 - 14:50 PR71: the overall rewrite as the basis

14:50 - 15:10 Explanation of the basis of the client algorithm and clarifications for
ldes:timestampPath, tree:member, ldes:EventSource done in
PR71.

15:10 - 15:50 PR73: Transactions and revisiting retention policies

Who’s attending?
Tour de table

🎤

The 2025 trajectory🚀
Recap

The spec today
A living document
A vocabulary with terms and usage notes for producers and consumers
So far there has not been a real promise to keep the spec stable

30 issues open on the repository and
a starting note prepared in 2024 by Flanders
Requests for clarity as well as feature requests.

https://files.essentialcomplexity.eu/s/pN9f7FMCis6Zqo7

Ambition of this trajectory
1. At https://w3id.org/ldes/specification

A consumer-oriented backwards-compatible stable release
that this way becomes more testable.

2. At https://w3id.org/ldes/server-primer (proposed)

A server primer with best practices for LDES providers. Principles:

- High performance by default, not after optimization
- Primer remains domain agnostic
- Explaining how to “envelope” your data

Although we might today already
deviate a little bit…

https://w3id.org/ldes/specification
https://w3id.org/ldes/server-primer

Not in this trajectory, but something we will be
able to pick up as a community

1. At https://github.com/SEMICeu/LDES-implementation-reports/

We’ll have implementation reports about:
● DCAT-AP Feeds
● Cultural Heritage Feeds (PR open)
● Your implementation report? Pull request this today!

2. LDES Clients compliance report

Linking to existing implementations, and reporting on to what extent the spec has been
implemented.

https://github.com/SEMICeu/ldes-implementation-reports/

A public review period for implementations from 3rd of July until
SEMIC2025 where we want to publish a stable LDES spec.

In 2025

How will we reach consensus?

Everyone prepares comments on the PRs before the meeting.

Decision during the call can be:
1. Accept and merge
2. Conditional accept: merge when conditions are validated
3. Full reject

Workshops topics

WS1: Restructuring the spec and extending retention policies

Today’s workshop!

WS2: Consumer algorithm: iteration and state management

PRs will be ready 1 week before the workshop and we’ll send out an email

WS3: A server primer with best practices

PRs will be ready 1 week before the workshop and we’ll send out an email

Open issues we want to solve today

After first a consumer-oriented rewrite of the spec
● Definition of ldes:timestampPath and the fact out-of-order is

impossible: #10, #35, #49, #61
● Definition of ldes:EventSource: #34
● ldes:immutable and ldes:expires on a tree:Node: #53
● named graphs and activity streams-like examples in the spec:

#37 , #43
● tree:member in LDES points to an IRI, not a blank node #56
● Retention policies:

○ LatestVersionSubset: better description #47
○ Retention policies with a deletion #50

● Distributed transactions: #46

https://github.com/SEMICeu/LinkedDataEventStreams/issues/10
https://github.com/SEMICeu/LinkedDataEventStreams/issues/35
https://github.com/SEMICeu/LinkedDataEventStreams/issues/49
https://github.com/SEMICeu/LinkedDataEventStreams/issues/61
https://github.com/SEMICeu/LinkedDataEventStreams/issues/34
https://github.com/SEMICeu/LinkedDataEventStreams/issues/53
https://github.com/SEMICeu/LinkedDataEventStreams/issues/37
https://github.com/SEMICeu/LinkedDataEventStreams/issues/43
https://github.com/SEMICeu/LinkedDataEventStreams/issues/56
https://github.com/SEMICeu/LinkedDataEventStreams/issues/47
https://github.com/SEMICeu/LinkedDataEventStreams/issues/50
https://github.com/SEMICeu/LinkedDataEventStreams/issues/46

Today’s meeting: consumer perspective

No MUST/SHOULD/MAY in this meeting for the server.
We will only use MUST/SHOULD/MAY for the client.

From the server perspective, it either works in the client or it doesn’t.

In the server primer (workshop 3), those will be derived from this spec:
● MUST for a server is derived from the fact that the client would not work otherwise.
● SHOULD is a best practice that makes the standard client algorithm perform well
● MAY provides useful information for the consumer later in the pipeline

The basis for fixing these issues
PR71

A PR was opened
as a basis for solving
these issues

https://github.com/SEMICeu/L
inkedDataEventStreams/pull/7
1

Live run through the PR, and
seeing whether we can agree
to merge the PR.

Thanks for the reviews!

https://github.com/SEMICeu/LinkedDataEventStreams/pull/71
https://github.com/SEMICeu/LinkedDataEventStreams/pull/71
https://github.com/SEMICeu/LinkedDataEventStreams/pull/71

What’s the decision?
1. Accept and merge
2. Conditional accept: merge when conditions are validated.

Conditions being…
3. Full reject

Open issues we want to solve today

After first a consumer-oriented rewrite of the spec
● Definition of ldes:timestampPath and the fact out-of-order is

impossible: #10, #35, #49, #61
● Definition of ldes:EventSource: #34
● ldes:immutable and ldes:expires on a tree:Node: #53
● named graphs and activity streams-like examples in the spec:

#37 , #43
● tree:member in LDES points to an IRI, not a blank node #56
● Retention policies:

○ LatestVersionSubset: better description #47
○ Retention policies with a deletion #50

● Distributed transactions: #46

https://github.com/SEMICeu/LinkedDataEventStreams/issues/10
https://github.com/SEMICeu/LinkedDataEventStreams/issues/35
https://github.com/SEMICeu/LinkedDataEventStreams/issues/49
https://github.com/SEMICeu/LinkedDataEventStreams/issues/61
https://github.com/SEMICeu/LinkedDataEventStreams/issues/34
https://github.com/SEMICeu/LinkedDataEventStreams/issues/53
https://github.com/SEMICeu/LinkedDataEventStreams/issues/37
https://github.com/SEMICeu/LinkedDataEventStreams/issues/43
https://github.com/SEMICeu/LinkedDataEventStreams/issues/56
https://github.com/SEMICeu/LinkedDataEventStreams/issues/47
https://github.com/SEMICeu/LinkedDataEventStreams/issues/50
https://github.com/SEMICeu/LinkedDataEventStreams/issues/46

Mainly on context information

● Adding a tree:shape and typing your search tree as an
ldes:EventSource is interesting in the discovery phase

● The Retention Policy, transactions and versioning are interesting for
processors in the consumption pipeline

In Workshop 2 we are going to introduce text that will influence the client
algorithm.

Today, the next consumer related text is going to be lighter: on the fact that
context information

An example of an LDES event source
ex:Collection1 a ldes:EventStream;
 tree:view <> ;
 tree:shape <shape.ttl> ;
 ldes:timestampPath dct:created ;
 ldes:versionOfPath dct:isVersionOf ;
 tree:member ex:Subject1v1, ex:Subject2v1 .

<> a ldes:EventSource; # Just one page, but with a retention policy
 ldes:retentionPolicy [
 a ldes:DurationAgoPolicy ;
 tree:value "P1Y"^^xsd:duration
] .

ex:Subject1v1 a dct:isVersionOf ex:Subject1 ;
 dct:created "2024-12-21T06:00:00Z"^^xsd:dateTime .
ex:Subject1v1 {
 ex:Subject1 ex:value "Rosa" .
}

ex:Subject2v1 a dct:isVersionOf ex:Subject2 ;
 dct:created "2024-12-21T13:00:00Z"^^xsd:dateTime .
ex:Subject2v1 {
 ex:Subject2 ex:value "Nicolas" .
}

State

emittedMembers: [{ root: [ex:Subject1v1, ex:Subject2v1] }]
 → keeps the IDs of the members you saw last time per node

A client: how will it work (fwd: workshop 2)

Based on the caching headers and a client configurable polling interval, it
will keep polling this page, each time keeping a state of members that
were emitted previously.

And it also can traverse a search tree

root

2023 2024

01 … 12

🔒 🔒

🔒 🔒

A client: how will it work (fwd: workshop 2)

root

2023 2024

01 … 12

Starts 2024-12-21
● Fetch root node
● follow 2023 link and emit all members in page
● from the root, you can indicate you’ve seen

2023
● In 2023, you don’t need to keep state: the page

is flagged as cache immutable
● root node needs to be refetched later

State
visitedNodes: [{ <root>: <2023> }]
 → which nodes were already visited last time on non-immutable nodes
emittedMembers: []
 → keeps the IDs of the members you saw last time on non-immutable nodes
refetchNodes: [{<root>: "2025-01-01T02:00Z" }]
 → on the non-immutable nodes, keep an expiry timestamp

🔒 🔒

🔒 🔒

A client: how will it work (fwd: workshop 2)

root

2023 2024

01 … 12

Starts 2024-12-21

● At the same time of the previous slide, also the
2024 node can be processed

● 2024: the page is immutable, but members will
still be added in the leaf node 12

● from the root, you can indicate you’ve seen
2024

State
visitedNodes: [{ <root>: <2023>, <2024> }]
refetchNodes: [{ <root>: "2025-01-01T02:00Z" }]
emittedMembers: []

🔒 🔒

🔒 🔒

A client: how will it work (fwd: workshop 2)

root

2023 2024

01 … 12

Starts 2024-12-21

The immutable month pages are processed just like
2023. Once processed, we also don’t need to keep
them in visited nodes, because 2024 is flagged as
immutable already: no relations will be added
anymore. As the months are immutable, we don’t
need to keep the members that were emitted.

State
visitedNodes: [{ <root>: <2023>, <2024> }]
refetchNodes: [{ <root>: "2025-01-01T02:00Z" }]
emittedMembers: []

🔒 🔒

🔒 🔒

A client: how will it work (fwd: workshop 2)

root

2023 2024

01 … 12

Starts 2024-12-21

On this day, the node 2024-12 is still in
progress.

The members are stored in the emittedMembers
array, and we’ll indicate we’ll need to refetch this
node

State
visitedNodes: [{ <root>: <2023>, <2024> }]
refetchNodes: [{ <root>: "2025-01-01T02:00Z" },
 { <2024-12>: "2024-12-22T02:00Z" }]
emittedMembers: [{ <2024-12>: [<Nicolas>, <Rosa>, …
] }]

🔒 🔒

🔒 🔒

A client: how will it work (fwd: workshop 2)

root

2023 2024 2025

01 … 0501 … 12

Resumes today (2025-05-07)

From the state it will see it
needs to refetch root and
2024-12

From root, it will see it didn’t
visit 2025 yet, and will
continue processing the
pages.

State
visitedNodes: [{ <root>: <2023>, <2024> }]
refetchNodes: [{ <root>: 2025-01-01T02:00Z },
 { <2024-12>: 2024-12-22T02:00Z }]
emittedMembers: [{ <2024-12>: [<Nicolas>, <Rosa>, …
] }]

🔒 🔒

🔒 🔒 🔒 🔒 🔒

ldes:timestampPath

The client can replicate and synchronize without it,
but needs it if it wants to understand what property to use for the order, which is a
prerequisite for consumers that want:
1. the members to be emitted in the intended order
2. to establish the latest version of an entity described in a member
3. to understand retention policies (e.g., keeping the last hour, or latest versions)

A client MAY also use ldes:timestampPath as a way
● to understand certain pages will be immutable, if the tnow surpassed the window

of the subtree already.
● to prioritize certain relations when it needs to process the LDES in the intended

order

FAQ 1: but is it then the logical time,
or the physical/committed time?
Neither and both:

It just points at the literal it can use on which order is guaranteed to implement specific
LDES consumer functionality.

The semantics of the property it points at is formalized by the domain model we’re agnostic
of. E.g., dct:created, dct:modified, as:published, sosa:resultTime,
prov:generatedAt, …

Exotic example: it could be that a historical LDES has been published that replays the events of 10
years ago, and uses the historical timestamp as an ldes:timestampPath.

FAQ 2: But then out-of-order is impossible?

It’s still possible: you just cannot use ldes:timestampPath then,

Use cases for this include:
- a server gets out of order arrivals
- a server makes a part of the stream public at a later stage (e.g., sensor X

can now also be published in the LDES with its history)

A simple fix would then be to add a timestamp of when the member did arrive
in the LDES.

Limitations

1. Multiple members can happen at the same time, and then order is
unspecified within the same timestamp. If we want strict ordering we’ll
need to still look at introducing a different solution at a later time.

2. We cannot have an LDES without ldes:timestampPath that:
a. still documents how the versions supersede each other
b. use a different property for versions that supersede each other

vs. a property that indicates an order in additions for e.g., assessing immutability of
pages.

Possible future proposal

Instead of setting ldes:timestampPath, use 2 other properties:
1. ldes:sequencePath: a literal (xsd:dateTime, xsd:string or

xsd:integer) that can be used by the consumer to assess immutability of
pages

2. ldes:versionSequencePath: a literal (xsd:dateTime, xsd:string or
xsd:integer) that can only be used by the consumer to assess the latest
version, but this can come in out-of-order if this path is not the same as
the sequencePath.

Setting all 3 properties differently MUST result however in an illegal LDES
exception?

ldes:EventSource

A chronological search tree that is optimized for the LDES client for an
ordered full or latest state replication and synchronization

For discovery to indicate that:
● ldes:timestampPath has been set
● the path of the relations are primarily based on this ldes:timestampPath

An extra promise of the server
● each member only appears once in this chronological search tree (not yet

in the text)

FFW to workshop 2:
establishing when a tree:Node is immutable

Proposal: a tree:Node can be considered immutable, when at least one of the
following is true:

1. it is flagged as immutable in the caching response headers
Cache-Control: public, immutable

2. as an alternative to 1 for when you cannot set HTTP headers:
it is explicitly flagged as immutable using a newly proposed
ldes:immutable property

3. the window of the subtree defined by the ldes:timestampPath relations
on the parent is < tnow , given that we clarify ldes:timestampPath decides
the order of entities as they appear in the LDES.

FFW to workshop 2:
When to re-fetch a tree:Node?
1. Calculating a fetch time based on caching headers:

a. If both max-age and Age are set: t
refetch

= t
now

 + (max-age - age)

b. If only max-age is set:
we do not know how long the page already exists, so we need to apply a heuristic

2. Based on a client’s configured polling interval
3. New proposal to be made for next group: indicating an expiration at a

specific moment in time… Something like:
ldes:expiration [

ldes:lastModified: dateTime at which the Node was last modified

 ldes:timeToLive: duration from the modified date in which the node is expected to

update

]

Open issues we want to solve today

● Definition of ldes:timestampPath and the fact out-of-order is
impossible: #10, #35, #49, #61

● Definition of ldes:EventSource: #34
● ldes:immutable and ldes:expires on a tree:Node: #53
● named graphs and activity streams-like examples in the spec:

#37 , #43
● tree:member in LDES points to an IRI, not a blank node #56
● Simple transactions: #46
● Retention policies:

○ LatestVersionSubset: better description #47
○ Retention policies with a deletion #50

https://github.com/SEMICeu/LinkedDataEventStreams/issues/10
https://github.com/SEMICeu/LinkedDataEventStreams/issues/35
https://github.com/SEMICeu/LinkedDataEventStreams/issues/49
https://github.com/SEMICeu/LinkedDataEventStreams/issues/61
https://github.com/SEMICeu/LinkedDataEventStreams/issues/34
https://github.com/SEMICeu/LinkedDataEventStreams/issues/53
https://github.com/SEMICeu/LinkedDataEventStreams/issues/37
https://github.com/SEMICeu/LinkedDataEventStreams/issues/43
https://github.com/SEMICeu/LinkedDataEventStreams/issues/56
https://github.com/SEMICeu/LinkedDataEventStreams/issues/46
https://github.com/SEMICeu/LinkedDataEventStreams/issues/47
https://github.com/SEMICeu/LinkedDataEventStreams/issues/50

Named graphs are now exemplified

But more context will be needed in the server primer (workshop 3)

It is a result of relying on the TREE CG member extraction algorithm which currently is being revisited at the W3C CG to
become more unambiguous. https://github.com/TREEcg/specification/issues/139

Planned at the TREE CG meeting next week, same time. See https://github.com/TREEcg/specification

https://github.com/TREEcg/specification/issues/139
https://github.com/TREEcg/specification

tree:member points at an IRI in LDES
State
visitedNodes: [{ <root>: <2023>, <2024> }]
refetchNodes: [{ <root>: "2025-01-01T02:00Z" },
 { <2024-12>: "2024-12-22T02:00Z" }]
emittedMembers: [{ <2024-12>: [<Nicolas>, <Rosa>, …
] }]

Because they’re used by consumers as
a key, for example as used in the state
by the client

Open issues we want to solve today

● Definition of ldes:timestampPath and the fact out-of-order is
impossible: #10, #35, #49, #61

● Definition of ldes:EventSource: #34
● ldes:immutable and ldes:expires on a tree:Node: #53

○ ⇒ next workshop
● named graphs and activity streams-like examples in the spec:

#37 , #43
● tree:member in LDES points to an IRI, not a blank node #56
● Simple transactions: #46
● Retention policies:

○ LatestVersionSubset: better description #47
○ Retention policies with a deletion #50
○ Log compaction

https://github.com/SEMICeu/LinkedDataEventStreams/issues/10
https://github.com/SEMICeu/LinkedDataEventStreams/issues/35
https://github.com/SEMICeu/LinkedDataEventStreams/issues/49
https://github.com/SEMICeu/LinkedDataEventStreams/issues/61
https://github.com/SEMICeu/LinkedDataEventStreams/issues/34
https://github.com/SEMICeu/LinkedDataEventStreams/issues/53
https://github.com/SEMICeu/LinkedDataEventStreams/issues/37
https://github.com/SEMICeu/LinkedDataEventStreams/issues/43
https://github.com/SEMICeu/LinkedDataEventStreams/issues/56
https://github.com/SEMICeu/LinkedDataEventStreams/issues/46
https://github.com/SEMICeu/LinkedDataEventStreams/issues/47
https://github.com/SEMICeu/LinkedDataEventStreams/issues/50

Introducing transactions
Main discussion happened in:

https://github.com/SEMICeu/LinkedDataEventStreams/issues/46

https://github.com/SEMICeu/LinkedDataEventStreams/issues/46

For a consumer who uses the LDES client

Tells a consumer the event should only be “committed” once the transaction has
been finalized.

Three new properties on top of an LDES entity:

<LDES> a ldes:EventStream ;
 # Points at a named node or literal that is the string identifying a transaction
 ldes:transactionPath (…) ;
 # The path of the finalized indication
 ldes:transactionFinalizedPath (…) ;
 # this is the default: looking for a boolean true,
 # but it can also look for e.g., ex:committed.
 ldes:transactionFinalizedObject true .

Transaction IDs MUST be unique in an LDES

And understanding whether something is
possibly a Create, an Update or a Delete?
ex:yourLDES ldes:versionDeletePath rdf:type ; #defaults to rdf:type
 ldes:versionDeleteObject as:Delete ;
 ldes:versionCreatePath rdf:type ;
 ldes:versionCreateObject as:Create ;
 ldes:versionUpdatePath rdf:type ;
 ldes:versionUpdateObject as:Update ;
 ldes:versionOfPath as:object .

Example:
<https://example.org/Dataset1#Event1> a as:Create ;
 as:object <https://example.org/Dataset1> ;
 as:published "2026-10-01T12:00:00Z"^^xsd:dateTime .

<https://example.org/Dataset1#Event1> {
 <https://example.org/Dataset1> a dcat:Dataset ;

 ...
}
<https://example.org/Dataset1#Event2> a as:Delete ;
 as:object <https://example.org/Dataset1> ;

 as:published "2026-10-01T13:00:00Z"^^xsd:dateTime .

And with transactions
ex:yourLDES a ldes:EventStream ;
 ldes:transactionPath ex:transaction ;
 ldes:transactionFinalizedPath ex:transactionEnded ;
 ldes:versionDeleteObject as:Delete ;
 ldes:versionCreateObject as:Create ;
 ldes:versionUpdateObject as:Update ;
 ldes:versionOfPath as:object .

Example:
<https://example.org/Dataset1#Event1> a as:Create ;
 as:object <https://example.org/Dataset1> ;
 ex:transaction 123456 ;
 as:published "2026-10-01T12:00:00Z"^^xsd:dateTime .

<https://example.org/Dataset1#Event1> {
 <https://example.org/Dataset1> a dcat:Dataset ;

 ...
}
<https://example.org/Dataset1#Event2> a as:Delete ;
 as:object <https://example.org/Dataset1> ;
 ex:transaction 123456 ;
 ex:transactionEnded true ;
 as:published "2026-10-01T13:00:00Z"^^xsd:dateTime .

Open issue:
How does a consumer separate the

envelope from the payload?

Revisiting retention policies
And potentially deprecating the way of

doing retention policies today.

LDES retention policies today

ldes:LatestVersionSubset
Retention policy for X amount of latest versions based on the ldes:versionOfPath

�� �� ��

ldes:PointInTimePolicy
All members from a certain point in time ti

�� �� �� ��

ldes:DurationAgoPolicy
Sliding window based on a duration

�� �� �� �� �� �� �� ��

t0 tnowti

"P1D"^^xsd:duration

�� ���� �� ��

What is the functionality a consumer could
implement based on a retention policy?

1. Checking whether you are fast enough to get a valid replication

2. Selecting a search tree in the discovery phase
⇒ but this algorithm is not specified or not part of the scope of this
standardization trajectory. See TREE Discovery nonetheless.

Today however, the main purpose is metadata to manually select the right
provider you want to use for a particular use case. Client check is not yet
implemented.

More complex retention policies needed

● Different retention policy for deletions
● Composite retention policies taking the intersection of multiple?

… Although not all intersections make sense.
● Log compaction
● Respecting transaction boundaries

Inspiration: log compaction in Kafka

https://docs.confluent.io/kafka/design/log_compaction.html

https://docs.confluent.io/kafka/design/log_compaction.html

�� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

t0 tnow

Defining no retention policy means a search tree will keep everything.

ex:LDES a ldes:EventStream ;
 tree:view <> .

�� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

t0 tnow

This retention policy keeps nothing in the search tree
although this is of course useless

<> ldes:retentionPolicy [] .

�� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

t0 tnowtstartingFrom

When we add a startingFrom property, all members after or equal to the startingFrom
are added.

<> ldes:retentionPolicy [
 ldes:startingFrom "t

startingFrom
"^^xsd:dateTime ;

] .

Use case:
I’m an archiver that archives from an LDES event source starting a certain point

�� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

t0 tnow

You can also keep a window of members using a duration from the “now”. Overwrites possible
other properties, except for the ldes:startingFrom property.

<> ldes:retentionPolicy [
 ldes:fullLogDuration "d

fullLog
"^^xsd:duration

] .

full log window
tnow - dfullLog

Use case:
I’m an event source that only wants to keep the raw sensor values for 1 hour

�� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

t0 tnow

They can be combined both. There is only one possible interpretation that makes sense here.

<> ldes:retentionPolicy [

 ldes:startingFrom "t
startingFrom

"^^xsd:dateTime ;
 ldes:fullLogDuration "d

fullLog
"^^xsd:duration ;

] .

full log window
tnow - dfullLog

tstartingFrom

Use case:
I’m an archiver that only wants to keep the raw sensor values for 1 year, but this
is still longer than the event source I started syncing with at a specific time.

A full log window MUST respect transaction boundaries if documented!

�� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

t0 tnowfull log window
tnow - dfullLog

�� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

t0 tnow

This retention policy only keeps the latest version of entities

<> ldes:retentionPolicy [
 ldes:versionAmount 1 ;
] .

�� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

t0 tnow

This retention policy keeps the last versions, but will not keep tombstones after dversionDeleteDuration

<> ldes:retentionPolicy [
 ldes:versionAmount 1 ;
 ldes:versionDeleteDuration "d

versionDeleteDuration
"^^xsd:duration ;

] .

keep deletes window

tnow - dversionDeleteDuration

How do we know what a deletion is?

<LDES> ldes:versionDeletePath rdf:type ;
 ldes:versionDeleteObject as:Delete ;
 ldes:versionCreatePath rdf:type ;
 ldes:versionCreateObject as:Create ;
 ldes:versionUpdatePath rdf:type ;
 ldes:versionUpdateObject as:Update .

 ⇒ From the transactions

versioned window

�� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

t0 tnow

And you can combine it with the keep all to indicate how much of the full event stream you’re
going to keep regardless of versions. Also here there’s only 1 possible interpretation that makes
sense.

<> ldes:retentionPolicy [
 ldes:fullLogDuration "d

fullLog
"^^xsd:duration ;

 ldes:versionAmount 1 ;
 ldes:versionDeleteDuration "d

versionDeleteDuration
"^^xsd:duration ;

] .

full log window

tnow - dfullLog

keep tombstones
window

tnow - dversionDeleteDuration

versioned window

�� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

t0 tnow

And you can also limit the duration you keep those latest versions

<> ldes:retentionPolicy [
 ldes:fullLogDuration "d

fullLog
"^^xsd:duration ;

 ldes:versionAmount 1 ;
 ldes:versionDuration "d

versionDuration
"^^xsd:duration ;

 ldes:versionDeleteDuration "d
versionDeleteDuration

"^^xsd:duration ;
] .

full log window

tnow - dfullLog

keep deletes window

tnow - dversionDeleteDurationtnow - dversionDuration

Use case:
I’m an event source that keeps the latest reading of a sensor for 1 year.

versioned window

�� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

t0 tnow

Everything together for the sake of putting everything together

<> ldes:retentionPolicy [

 ldes:startingFrom "t
startingFrom

"^^xsd:dateTime ;
 ldes:fullLogDuration "d

fullLog
"^^xsd:duration ;

 ldes:versionAmount 1 ;
 ldes:versionDuration "d

versionDuration
"^^xsd:duration ;

 ldes:versionDeleteDuration "d
versionDeleteDuration

"^^xsd:duration ;
] .

full log window

tnow - dfullLog

keep deletes window

tnow - dversionDeleteDurationtnow - dversionDuration

tstartingFrom

Limitations of this new proposal

1. No type-specific retention policies
e.g., in a mixed stream I cannot indicate I want to keep a certain type for a
duration of X and another type for a duration of Y

2. I cannot say I just keep 100 members
This used to be possible as an exotic case of the LatestVersionSubset
retention policy, but we agreed this would be a bad contract

3. I cannot state I want to set a retention policy using a different version
key or a different timestampPath than what’s documented on the LDES

Should we allow to redefine the ldes:timestampPath here? What property would we propose?

Pull request ready

Transactions and retention policy rework

https://github.com/SEMICeu/LinkedDataEventStreams/pull/73

https://github.com/SEMICeu/LinkedDataEventStreams/pull/73

What’s the decision?
1. Accept and merge
2. Conditional accept: merge when conditions are validated.

Conditions being…
3. Full reject

Communication channels

● Online meetings: next one is next week Wednesday same time
● Physical meetings: SEMIC2025
● Core discussions documented in Github issues:

https://github.com/SEMICeu/LinkedDataEventStreams/issues/
● Matrix channel:

https://matrix.to/#/#ldes:chat.semantic.works
● Want to follow up all the working groups and receive the reports?

Leave your e-mail address in the chat!

https://github.com/SEMICeu/LinkedDataEventStreams/issues/

Thanks for joining and see you next month for the
second workshop!

Sneak peak of topics

● British Oceanographic Data Centre
● Exchange of industrial emission data
● Chatbot on mobility data
● Base registry of address data
● …

Register now via the link in the chat

