
SEMIC LDES 2025 A new standardisation trajectory

30 April
2025

SEMIC Assets

Vocabularies

Application Profiles

Technical

Communication channels

● Online meetings (see previous slide)
● Physical meetings: SEMIC2025
● Core discussions documented in Github issues:

https://github.com/SEMICeu/LinkedDataEventStreams/issues/
● Matrix channel:

https://matrix.to/#/#ldes:chat.semantic.works
● Want to follow up all the working groups and receive the reports?

Leave your e-mail address in the chat!

https://github.com/SEMICeu/LinkedDataEventStreams/issues/

Agenda

14:05 - 14:15 Welcome & Tour de table

14:15 - 14:45 The new trajectory & plan for the workshops

14:45 - 15:15 Q&A

15:15 - 16:00 A technical walk-through of the current LDES spec & why we’re
going to take on certain issues

Who’s attending?
Tour de table

🎤

The 2025 trajectory🚀

The spec today
A living document
A vocabulary with terms and usage notes for producers and consumers
So far there has not been a real promise to keep the spec stable

30 issues open on the repository
Requests for clarity as well as feature requests.

Implementations in toolchains
- The Flanders Smart Data Space

https://informatievlaanderen.github.io/VSDS-Tech-Docs/
- RDF Connect

https://github.com/rdf-connect/ldes-client
- IncRML: incremental RDF mapping language to LDES

https://rml.io/yarrrml/spec/incrml/
- Semantic Works LDES consumer

https://github.com/redpencilio/ldes-consumer-service
- LDES in Solid

https://github.com/woutslabbinck/VersionAwareLDESinLDP
Plenty of custom implementations, such as

Rijksmuseum, Ocean data, a DCAT-AP Feed through Github Actions, …

https://informatievlaanderen.github.io/VSDS-Tech-Docs/
https://github.com/rdf-connect/ldes-client
https://rml.io/yarrrml/spec/incrml/
https://github.com/redpencilio/ldes-consumer-service
https://github.com/woutslabbinck/VersionAwareLDESinLDP
https://github.com/Rijksmuseum/resolver_data_service
https://github.com/iodepo/odis-arch/tree/master/utils/LDFeed
https://github.com/pietercolpaert/DCAT-AP-Dumps-To-Feeds

Ambition of this trajectory

A consumer-oriented backwards-compatible stable release.

We don’t want to write a client for one specific server

Instead, we want to establish a loose coupling, and
write many possible servers for many possible clients.

We want consumers to become unambiguously testable.

Consumer-oriented spec:
a new structure

The new LDES spec will be structured as follows:

1. An overview of the LDES terms and intended use

2. Explaining what a consumer MUST implement: initialization, traversing,
state management, handling HTTP error codes, …

3. Interpreting retention policies

4. The vocabulary and a definition of the semantics of each term

At https://w3id.org/ldes/specification

https://w3id.org/ldes/specification

And an opinionated server primer

At https://w3id.org/ldes/server-primer (proposed)

Non-normative, but contains best practices
applying how a consumer will interpret what has been published

Use case focusing on harvesting
such as data.europa.eu, RINF, or Europeana; also relevant for base registries.

Principles
- High performance by default, not after optimization
- Primer remains domain agnostic
- Explaining how to “envelope” your data

https://w3id.org/ldes/server-primer

The server primer is a common basis for
the implementation reports

At https://github.com/SEMICeu/LDES-implementation-reports/

We’ll have implementation reports about:
● DCAT-AP Feeds
● Cultural Heritage Feeds (PR open)
● Your implementation report? Pull request this today!

Explains the activity-based model of your domain:
e.g., a dcat:Dataset can be created, updated or can be deleted.

https://github.com/SEMICeu/ldes-implementation-reports/

In preparation of this trajectory

A preparation was done in 2024 by Digital Flanders,
as a result of the experiences when building their toolchain.

Input document
 ⇒ this was processed into this presentation, workplan and issue list

https://files.essentialcomplexity.eu/s/pN9f7FMCis6Zqo7

A public review period for implementations from 3rd of July until
SEMIC2025 where we want to publish a stable LDES spec.

In 2025

How will we reach consensus?

Everyone prepares comments on the PRs before the meeting.

Decision during the call can be:
1. Accept and merge
2. Conditional accept: merge when conditions are validated
3. Full reject

Workshops and issues

WS1: Restructuring the spec and extending retention policies

PRs ready for your comments today:
https://github.com/SEMICeu/LinkedDataEventStreams/pulls

WS2: Consumer algorithm: iteration and state management

PRs will be ready 1 week before the workshop and we’ll send out an email

WS3: A server primer with best practices

PRs will be ready 1 week before the workshop and we’ll send out an email

https://github.com/SEMICeu/LinkedDataEventStreams/pulls

Github issues were tagged

Workshop 1
1. Preparing a rewrite of the spec towards a consumer perspective:

a. Overview: defaulting to using named graphs in examples
b. The vocabulary of LDES at the end

2. Proposed additions to the overview
a. ldes:EventSource: the view to select when multiple are available
b. Introduction of simple transactions support
c. ldes:immutable and ldes:timeToLive for overruling HTTP caching directives
d. clear semantics for ldes:timestampPath
e. add tree:member MUST be an IRI and not a blank node
f. sequence numbers?

3. Retention policies
a. better description of existing retention policies
b. transaction awareness in retention policies
c. having a separate policy on types: a deletion
d. adding text on combining multiple retention policies

4. Vocabulary changes
a. Fixing datatypes (e.g., xsd:nonNegativeInteger for ldes:amount should just be xsd:integer

– the constraint should then however be a SHACL constraint: ldes:amount needs to be >0
b. New terms for immutability of nodes and for transactions – see overview
c. A formal definition of ldes:EventSource

Workshop 1 fixes these open GH issues

● Definition of ldes:timestampPath and the fact out-of-order is
impossible: #10, #35, #49, #61

● Definition of ldes:EventSource: #34
● named graphs and activity streams-like examples in the spec:

#37 , #43
● tree:member in LDES points to an IRI, not a blank node #56
● Retention policies:

○ LatestVersionSubset: better description #47
○ Retention policies with a deletion #50

● ldes:immutable and ldes:timeToLive on a tree:Node: #53

https://github.com/SEMICeu/LinkedDataEventStreams/issues/10
https://github.com/SEMICeu/LinkedDataEventStreams/issues/35
https://github.com/SEMICeu/LinkedDataEventStreams/issues/49
https://github.com/SEMICeu/LinkedDataEventStreams/issues/61
https://github.com/SEMICeu/LinkedDataEventStreams/issues/34
https://github.com/SEMICeu/LinkedDataEventStreams/issues/37
https://github.com/SEMICeu/LinkedDataEventStreams/issues/43
https://github.com/SEMICeu/LinkedDataEventStreams/issues/56
https://github.com/SEMICeu/LinkedDataEventStreams/issues/47
https://github.com/SEMICeu/LinkedDataEventStreams/issues/50
https://github.com/SEMICeu/LinkedDataEventStreams/issues/53

A PR was opened as a basis for solving
these issues

https://github.com/SEMICeu/L
inkedDataEventStreams/pull/7
1

https://github.com/SEMICeu/LinkedDataEventStreams/pull/71
https://github.com/SEMICeu/LinkedDataEventStreams/pull/71
https://github.com/SEMICeu/LinkedDataEventStreams/pull/71

Please review the PRs by next week

During the workshop, we’ll walk through the
issues, the PRs and their comments

We need your help☝

What’s planned for WS2 and WS3?

Workshop 2: Iterating and state management

1. “Fragmenting and pagination” chapter 2 in the spec needs to
become “iterating and state management”

2. A high-level algorithm and a standardized state management
3. Expected behaviour of a consumer for Error handling of HTTP

codes
4. Retention policies: what must happen when retention policies

conflict with the consumer configuration? An error needs to be
given when the polling happens too slowly.

Workshop 2 will fix these Github issues

● Standardized client iterator: #31
● Supporting a streaming profile of LDES: #42
● Expected behaviour on HTTP status codes: #69

https://github.com/SEMICeu/LinkedDataEventStreams/issues/31
https://github.com/SEMICeu/LinkedDataEventStreams/issues/42
https://github.com/SEMICeu/LinkedDataEventStreams/issues/69

Workshop 3: the server primer

● Best practices in the server primer says that this ldes:EventSource is best structured
using a chronological search tree on timestampPath

● Creating 2 SHACL shapes for an LDES: for the root node and for any subsequent node
● Best practices for the use case of replication/synchronization on how to build a

high-performance LDES server, elaborating on various features with a.o. the TREE
profile: indicating a streaming profile

● Consumer status log
● Note on relative IRIs: desired
● Log compaction with retention policies
● Provenance (We should move the text on version materialization here)
● Searching for LDESs through a DCAT catalog: best practices
● Best practices for a signing the members in an LDES and/or providing sticky policies for

them
● How to manage a derived LDES

Workshop 3: Fixing these open issues

● Indicating you have a derived LDES: #44
● Status indication of a derived view: #5
● Recommendation on using relative IRIs: #41
● Status log of a consumer service: #54
● Note on consistent graph replication and how that could be done #51
● Server publishing data handling out of order arrivals #63
● Creating a SHACL for the root node and further nodes, fixing things

like constraints on literals: #66 #70

https://github.com/SEMICeu/LinkedDataEventStreams/issues/44
https://github.com/SEMICeu/LinkedDataEventStreams/issues/5
https://github.com/SEMICeu/LinkedDataEventStreams/issues/41
https://github.com/SEMICeu/LinkedDataEventStreams/issues/54
https://github.com/SEMICeu/LinkedDataEventStreams/issues/51
https://github.com/SEMICeu/LinkedDataEventStreams/issues/63
https://github.com/SEMICeu/LinkedDataEventStreams/issues/66
https://github.com/SEMICeu/LinkedDataEventStreams/issues/70

Any questions?
🙋 Q&A

A walk through the LDES spec today
and where we’re heading

Onboarding🚏

Integrating a data dump is a one-off.
Integrating a stream is for a lifetime.

Given a start URL, an LDES client returns a stream of members of the corresponding ldes:EventStream.

 First, the history that is available from this entry point is emitted, and once the client has caught up with the
stream, it remains synchronized as new members are published.

🎣

LDES is built upon TREE hypermedia

A specification by the W3C TREE community group
with an overlapping community with the SEMIC LDES working group

Meets once a month
https://www.w3.org/community/treecg/

https://www.w3.org/community/treecg/

To discuss the TREE hypermedia specification

https://w3id.org/tree/specification

https://w3id.org/tree/specification

An example: a collection with members

ex:Collection1 a tree:Collection;

 tree:view <> ;

 tree:member ex:Subject1, ex:Subject2 .

ex:Subject1 a ex:Subject ;

 rdfs:label "Subject 1" ;

 ex:value 1 .

ex:Subject2 a ex:Subject ;

 rdfs:label "Subject 2" ;

 ex:value 2 .

1. Initialisation
ex:Collection1 a tree:Collection;

 tree:view <> ;

 tree:member ex:Subject1, ex:Subject2 .

ex:Subject1 a ex:Subject ;

 rdfs:label "Subject 1" ;

 ex:value 1 .

ex:Subject2 a ex:Subject ;

 rdfs:label "Subject 2" ;

 ex:value 2 .

A client will be looking for the
tree:view triple to find the
collection this page contains
a fragment of.

Features of the TREE spec

Note: we use Turtle / TRiG,
but works equally as well in JSON-LD
{
 "@context": { … },
 "@id": "ex:Collection1",
 "@type": "tree:Collection",
 "tree:view": {
 "@id": ""
 },
 "tree:member": [
 {
 "@id": "ex:Subject1",
 "@type": "ex:Subject",
 "rdfs:label": "Subject 1",
 "ex:value": 1
 },
 {
 "id": "ex:Subject2",
 "@type": "ex:Subject",
 "rdfs:label": "Subject 2",
 "ex:value": 2
 }
]
}

Features of the TREE spec

2. Member extraction
ex:Collection1 a tree:Collection;

 tree:view <> ;

 tree:member ex:Subject1, ex:Subject2 .

ex:Subject1 a ex:Subject ;

 rdfs:label "Subject 1" ;

 ex:value 1 .

ex:Subject2 a ex:Subject ;

 rdfs:label "Subject 2" ;

 ex:value 2 .

A client may extract all
statements related to a
member

Features of the TREE spec

2. Member extraction
ex:Collection1 a tree:Collection;
 tree:view <> ;
 tree:member ex:Subject1v1, ex:Subject1v2.

ex:Subject1v1 a dct:isVersionOf ex:Subject1 ;
 dct:created "2025-04-30T12:00:00Z" .

ex:Subject1v1 {
 ex:Subject1 ex:value 1 .
}

ex:Subject1v2 {
 ex:Subject1 ex:value 2 .
}

Which becomes more
tedious in more complex
examples.

E.g., with named graphs, but also
out-of-band members are supported.

There’s also possibility for using shape
topologies using a SHACL shape.

Features of the TREE spec

3. Traversing a search tree
ex:Collection1 a tree:Collection;

 tree:view <> ;

 tree:member ex:Subject1v1, ex:Subject1v2.

<> tree:relation ex:R1 .

ex:R1 a tree:GreaterThanOrEqualToRelation ;

 tree:node ex:AnotherNode ;

 tree:value 3;

 tree:path ex:value .

Features of the TREE spec

Root Node

Another
Node

ex:R1
ex:value >= 3

Based on the description, a client can understand
whether it wants to follow the relation or not.

TREE: the overview

The members

tree:Collection

tree:member

tree:view

tree:relation
tree:Node

«tree:Relation»

tree:path → SHACL property path

tree:value → “...”

tree:node → link

1
n

Your domain
model

sh:NodeShapetree:shape

tree:SearchTree
dcat:Distribution
dcat:DataService

…

tree:viewDescription

LDES extends TREE with a couple of terms

Your entities

ldes:EventStream

ldes:EventSource

tree:member

tree:view

tree:relation

tree:Node

«tree:Relation»

tree:path → SHACL property path

tree:value → “...”

tree:node → link

sh:NodeShape
tree:shape

«ldes:RetentionPolicy»

ldes:timestampPath → SHACL property path
ldes:versionOfPath → SHACL property path

tree:viewDescription

ldes:retentionPolicy

An example of an LDES

ex:Collection1 a ldes:EventStream;
 tree:view <> ;
 tree:shape <shape.ttl> ;
 ldes:timestampPath dct:created;
 ldes:versionOfPath dct:isVersionOf;
 tree:member ex:Subject1v1, ex:Subject1v2 .

ex:Subject1v1 a dct:isVersionOf ex:Subject1 ;
 dct:created "2025-04-30T12:00:00Z" .
ex:Subject1v1 {
 ex:Subject1 ex:value 1 .
}

ex:Subject1v2 a dct:isVersionOf ex:Subject1 ;
 dct:created "2025-04-30T13:00:00Z" .
ex:Subject1v2 {
 ex:Subject1 ex:value 2 .
}

What if this page grows too large?

1. Fragmentations
2. Retention policies

Root Node

Using TREE relations to fragment
an event stream as a chronological search tree

2025-01 2025-02

�� �� �� �� �� �� �� �� ��
2025-03 2025-04

�� �� ��

2025-04-01

��

�� �� ��

…

LDES retention policies

ldes:LatestVersionSubset
Retention policy for X amount of latest versions based on the ldes:versionOfPath

�� �� ��

ldes:PointInTimePolicy
All members from a certain point in time ti

�� �� �� ��

ldes:DurationAgoPolicy
Sliding window based on a duration

�� �� �� �� �� �� �� ��

t0 tnowti

"P1D"^^xsd:duration

�� ���� �� ��

A walk through the LDES spec today

Now: The abstract currently defines what an LDES is.

Should become: specifying why you should read the spec any further – the
fact that this spec will define how you can build a client.

● Defines the term EventStream (overview/vocabulary)
● Says it relies on the TREE specification and you should check that out, and the fact

that this would be compatible with other specifications
● Note: This reference implementation is deprecated by now, and a new one is

available.

The TREE specification

LDES is built on top of W3C TREE CG specifications.

So we need to build a TREE client then first… The TREE spec also went through
the same evolution: from a producer primer to a consumer specification.
https://w3id.org/tree/specification

Upcoming: a discovery specification at
https://w3id.org/tree/specification/discovery

https://w3id.org/tree/specification
https://w3id.org/tree/specification/discovery

Versioned identifiers are a headache to handle

Thanks to TREE, we now however also support named graphs. E.g.,

<C1> a ldes:EventStream ;

 tree:member <streetname1-v1>, <streetname1-v2> .

<streetname1-event1> a as:Create ; # using the Activity Streams vocabulary

 as:object <streetname1> ;

 as:published "2026-01-01T00:10:00Z"^^xsd:dateTime .

<streetname1-event1> {

 <streetname1> rdfs:label "Station Road" ;

 ex:locatedIn <municipalityname>.

 <municipalityname> rdfs:label "Ghent" ;

}

Elaborates on how to apply the TREE spec

More server primer like notes follow

Multiple problems with this text today however:
1. tree:importStream has never been implemented and was removed from the TREE spec
2. Note 1:

a. We now know a 1-dimensional pagination is not at all the best way to publish an LDES.
A Chronological search tree is also very easy to implement and comes with a lot of benefits

b. We have learned a lot of other good practices for servers in the meantime (Working Group 3)
3. Note 2: Using hydra:search is a patch for the 1-dimensional pagination that is not needed with a

chronological search tree.

● tree:View was never introduced in TREE in the end and the range of tree:viewDescription was
left open. Recommended is to add retentionPolicies mainly on the root node of a search tree
now.

● We will also need support for intersecting retention policies, and not only taking the union of it

What is the functionality a client must
implement based on a retention policy?

1. Checking whether you are fast enough to get a valid replication
⇒ needs to be part of the client algorithm

2. Source selection ⇒ but this algorithm is not specified or not part of the
scope of this standardization trajectory. See TREE Discovery nonetheless.

Today however, the main purpose is metadata to manually select the
right search tree you want to use for a particular use case.

More complex retention policies needed

● Based on transactions
● Different retention policy for deletions
● Composite retention policies taking the intersection of multiple

Was the idea to describe a dataset an interpretation
of an event stream

A PR was opened as a basis for solving
these issues

Please help reviewing this by
next week

https://github.com/SEMICeu/L
inkedDataEventStreams/pull/7
1

https://github.com/SEMICeu/LinkedDataEventStreams/pull/71
https://github.com/SEMICeu/LinkedDataEventStreams/pull/71
https://github.com/SEMICeu/LinkedDataEventStreams/pull/71

Communication channels

● Online meetings: next one is next week Wednesday same time
● Physical meetings: SEMIC2025
● Core discussions documented in Github issues:

https://github.com/SEMICeu/LinkedDataEventStreams/issues/
● Matrix channel:

https://matrix.to/#/#ldes:chat.semantic.works
● Want to follow up all the working groups and receive the reports?

Leave your e-mail address in the chat!

https://github.com/SEMICeu/LinkedDataEventStreams/issues/

Thanks for joining and see you next week for getting
some standardisation work done!

Every time a term gets added

● must be added in the JSON-LD context
● must be added in the vocabulary ttl
● must be added in the vocabulary.md
● may be added in the overview
● must be added in the SHACL shapes

