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A bottom-up electricity characterisation methodology of the building stock at the local level is pre-
sented. It is based on the statistical learning analysis of aggregated energy consumption data, weather
data, cadastre, and socioeconomic information. To demonstrate the validity of this methodology, the
characterisation of the electricity consumption of the whole province of Lleida, located in northeast
Spain, is implemented and tested. The geographical aggregation level considered is the postal code

Keywords: since it is the highest data resolution available through the open data sources used in the research
Building-stock models work. The development and the experimental tests are supported by a web application environment
Electricity formed by interactive user interfaces specifically developed for this purpose. The paper’s novelty relies

Characterisation

Data-dr on the application of statistical data methods able to infer the main energy performance characteristics
ata-driven

of a large number of urban districts without prior knowledge of their building characteristics and with
the use of solely measured data coming from smart meters, cadastre databases and weather forecasting
services. A data-driven technique disaggregates electricity consumption in multiple uses (space heating,
cooling, holidays and baseload). In addition, multiple Key Performance Indicators (KPIs) are derived
from this disaggregated energy uses to obtain the energy characterisation of the buildings within a
specific area. The potential reuse of this methodology allows for a better understanding of the drivers

of electricity use, with multiple applications for the public and private sector.
© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction online services. Given the recent advances in machine learning
and big data processing, we are in an excellent position to de-

Enhancing energy efficiency has become a priority for the velop and validate statistically-based methodologies capable of

European Union (Anon, 2018). Several policies and initiatives
aim to improve buildings’ energy performance and collect data
of sufficient quality on the effect of energy efficiency policies
on building stock across Europe. Knowledge about the energy
characteristics of buildings and their occupants’ usage is essential
to define and assess strategies for energy conservation.

For the last years, dynamic measured data has been mas-
sively accessible for a significant part of the European building
stock, especially electricity consumption (Anon, 2021a). Besides,
accurate location-based data such as weather, cadastre and socio-
economic conditions became available with the explosion of gov-
ernmental open data platforms and price-competitive weather
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inferring, with no human interaction, the main energy features
contained in the available data sets to determine how build-
ings perform and how their occupants consume energy at the
local level. The outcomes of these data-driven methodologies
can become essential to understand the building stock energy
dynamics and, therefore, to support the transition to renewable
and distributed generation at district or regional levels. A recent
study (Fonseca and Schlueter, 2015) has shown the necessity
to explore energy efficiency solutions for buildings at the local
aggregated level (e.g. district, neighbourhood, city, region). The
implementation of local Energy Conservation Measures (ECM)
and the increase of in-situ renewable generation in buildings are
key factors to satisfy energy security and limit global warming in
future. This local geographical level is large enough to infer prior
unknown patterns of energy consumption and to address several
ECM scenarios or, at least, to support decision-making in setting
up energy transition plans. Additionally, this is the geographical
scale where most of the urban transformations in Europe occur
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and where the newest instruments for financing energy efficiency
strategies in the building sector exist.

In literature, the energy characterisation based on modelling
groups of buildings is named building stock modelling. Three
major typologies of groups of buildings exist residential, indus-
trial and services. Each of them corresponds to its own building
archetypes, uses and occupancy patterns. Two main approaches
for building stock modelling can be identified: top-down and
bottom-up methods. Langevin et al. (2020) provided an extensive
and updated literature review based on Swan and Ugursal (Swan
and Ugursal, 2009) classification methods. They extended it by
considering three major developments of the last ten years: big
data, increased computing power, and new modelling techniques.
The bottom-up approach begins with a detailed representation
of a system’s constituent part that is further aggregated to the
whole-system level. In this case, building archetypes are used to
characterise each building or a sample of buildings. The outcomes
or the key performance indicators (KPIs) are scaled up to sum-
marise the whole building stock of the analysed area. By contrast,
top-down approaches begin with an aggregated view of the over-
all stock of the area, which is then disaggregated into subsequent
sub-systems. In this approach, the energy performance of groups
of buildings is analysed as a black box, in statistical terms, defined
as a large sink with inputs and outputs following historical trends.

In both bottom-up and top-down approaches, energy char-
acterisation of existing buildings at multiple geographical levels
(district, city, region) can be used to understand trends in energy
use, to correlate the energy consumption to characteristics of
the territory and to identify specific locations where there are
buildings with poor energy performance. Nonetheless, it is often
difficult to obtain this characterisation, which can be tackled from
different viewpoints, with widely varying accuracy and associated
costs. Traditionally, in the case of bottom-up approaches, the
characterisation of the energy performance of a given region is
performed employing Building Energy Simulation (BES) models.
In these cases, a calibration of the simulated data against real
monthly or annual energy consumption data should be con-
sidered since the energy performance gap between simulated
and real data should be minimised. Although these models are
robust, this type of calibration procedures usually ignore the
changes in the behaviour of the users over time, and in many
cases, the dynamics between the real consumption and the cli-
mate conditions are not properly captured. Moreover, in several
methodologies, a subset of representative buildings should be
considered to depict the archetype of a particular region. There-
fore, this model could experience large biases against reality if
the sample is not statistically significant or the calibration proce-
dure is not properly implemented. These limitations can result
in high inaccuracies in the estimates of energy performance.
For the last years, data-driven techniques have been applied to
bottom-up approaches to overcome the limitations of simulation-
based procedures. Abbasabadi and Ashayeri (2019) presented
a review paper where several data-driven techniques for urban
energy modelling are classified. They detected that the future
tendency should integrate data-driven models and simulation-
based models, as each of them provides interesting advantages.
In Voulis et al. (2018a), urban electricity demand modelling was
tested for Dutch municipalities, where a combination of multiple
data sets (reference electricity demand profiles, local customers
composition data and aggregated local annual demand data) were
used to train a regression model for local electricity demand
prediction with an interesting application for local renewable
energy transition plans (Voulis et al., 2018b). Kontokosta and Tull
(2017) developed a predictive energy use model at the building,
district, and city scales using training data from energy disclosure
policies and predictors from the widely available property and
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zoning information. Their method was validated in New York, and
the results demonstrated that electricity consumption could be
reliably predicted using real data from a relatively small subset
of buildings. In contrast, natural gas use presented a more com-
plicated problem given the bimodal distribution of consumption
and infrastructure availability. An interesting conclusion from
this paper is that Ordinary Least Squares (OLS) methods perform
better when applied to district and city scales, compared to other
statistical techniques, such as Random Forest (RF) or Support Vec-
tor Machines (SVM). Oliveira Pando and Brito (2018) developed a
bottom-up approach to model the aggregated hourly electricity
consumption based on a Monte Carlo model. They used proba-
bility distribution functions of the building stock characteristics,
web surveys for user behaviour characterisation and energy con-
sumption data from national statistics and smart meters data sets
as input of the model. The Mean Average Percentage Error (MAPE)
and the Coefficient of Variation of the Root Mean Squared Error
(CVRMSE) obtained during the validation of the hourly prediction
against actual data are 11% and 16%, respectively. Using data from
Gothenburg, Osterbring et al. (2016) proposed a methodology for
building-stock energy characterisation based on characteristics of
the buildings, energy performance certificates, building envelope
geometries from 2.5D GIS models and measured energy.

In other cases, building stock models are used as a toolbox for
specific applications. For instance, in the case of Spain, a study
from Romero Rodriguez et al. (2018) showed the possibilities
to mitigate energy poverty in low-income districts by combining
Photo-Voltaic (PV) generation and building thermal storage us-
ing actual data and calibrated deterministic models. In this case
study, the authors estimated an improvement in thermal comfort
of households of up to 33% in winter and 67% in summer by
using individual heat pumps and the surplus production of the
district PV system. Furthermore, Gouveia et al. (2019) estimated
the regional energy poverty vulnerability index for Portugal at
the civil parish level, based on socio-economic data, building
stock characteristics, actual consumption data and theoretical
consumption using the EN ISO 13790 approach.

The novelty of this paper lies in the development of a data-
driven technique to characterise the electricity consumption of
large areas at the district level (e.g. postal code level in Spain)
and upper levels, with the particularity that actual hourly con-
sumption is considered, which makes it quite innovative con-
sidering actual state of the art. Besides, an innovative imple-
mentation of multiple statistical techniques to model the build-
ings stock energy consumption is performed. It is based on in-
ferring knowledge from actual weather data, aggregated con-
sumption data from smart meters and building stock and socio-
economic characteristics data. The aim is to obtain normalised
energy trends and KPIs to describe the energy consumption of
each analysed region - e.g. yearly consumption per built area
or monthly-averaged daily load curve due to heating or cool-
ing needs. This characterisation requires the implementation of
modelling techniques that segment the total energy consumption
into different weather-dependent and non-weather-dependent
components, well-described in Section 4.

Ideally, the main final energy fuel types related to buildings
should be taken into account in the building stock characterisa-
tion. The International Energy Agency (IEA), estimate that globally
in 2019, and by order of importance, the main fuel types used in
buildings are: electricity (32.4%), natural gas (23.4%), traditional
biomass (18.5%), oil (10.5%), renewable energy (5.9%), commer-
cial heat (4.9%) and coal (4.1%). However, multiple issues still
exist nowadays regarding the availability of energy consumption
datasets at the needed aggregation levels, both in terms of geo-
graphical resolution and time-frequency. Therefore, considering
the broader implementation of the Advanced Metering Infrastruc-
ture (AMI) for electricity consumption in certain EU countries, it
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is much more feasible to obtain detailed sets for electricity than
for the rest of them. In summary, and as a first validation of
the data-driven characterisation methodology presented in this
paper, electricity consumption has been considered as the only
one to be characterised due to the problems in obtaining detailed
data for the other main resources.

In literature, an electricity consumption segmentation at the
household level using clustering techniques was developed by
Kwac et al. (2014). This work helps to determine that the method-
ology presented in this paper need to integrate an interpreter of
similar daily seasonalities, as they may not be directly related
to calendar features, but to time-varying changes in the general
behaviour of the consumers. In Gouveia et al. (2017) energy
consumption data profiles from smart meters were used to detect
active behaviour regarding space heating and cooling using the
deviations from normal behaviour and survey data on socio-
economic conditions, building structure, equipment and use. Even
though the relatively small sample of participants (19 households
with survey and smart metered data), this research enlighten the
necessity to consider the non-linearity between consumption and
outdoor temperature, either for cooling and heating usages. In our
paper, multiple cooling and heating change-point temperatures
along the day are considered as rectifiers of the model outdoor
temperature regressors. The objective is to linearise their rela-
tionship, and thus, model properly their influence considering
linear regression models. Furthermore, a first order low pass filter
accounts for the thermal inertia of buildings, which helps to boost
the model accuracy, especially when are based on data frequen-
cies higher than daily (e.g. hourly). In more recent literature,
several authors applied advanced energy signatures to model
daily thermal consumption to characterise the linear and non-
linear heat usage dependency on outdoor temperature, wind and
solar irradiation (Rasmussen et al., 2020). Similar techniques are
applied in our research, focusing on the characterisation of build-
ing stock instead of individual households. Furthermore, in Wang
et al. (2021), regression and machine learning techniques were
also used to detect how electricity use was influenced by weather
and COVID-19 lockdowns over three large metropolitan areas
city-scale aggregated forecasting (Los Angeles, Sacramento and
New York). The daily models’ forecasting accuracy was between
4%-6% of CVRMSE. In our paper, similar accuracy is reached 4%-
12% of CVRMSE, highly depending on the number of consumers
aggregated on each case. Even though, and considering the 4h-
frequency aggregation considered in our analysis, the increase in
error compared to the daily aggregation is very low. The results
are also more accurate than the 16% CVRMSE obtained in Oliveira
Panao et al. research (Oliveira Pando and Brito, 2018).

Besides the definition and implementation of the method-
ology, a validation case study is presented in Section 5. The
outcomes are shared through a Shiny web dashboard (Chang
et al.,, 2021) that depicts multiple plots related to the electricity
consumption characterisation for each postal code and interactive
maps to benchmark the whole set of KPIs, among other visual-
isations. The Spanish province of Lleida (> 12500 km?) is the
area selected for the case study. Section 2 extensively describe
the main data sources used for the case study validation. The final
goal is to provide a geographically aggregated characterisation
methodology for building performance and usage trends of elec-
tricity consumption, both for the residential and public/tertiary
buildings.

2. Input data

This section explains the data requirements, gathering, clean-
ing, and transformation procedures needed to successfully char-
acterise the electricity consumption over the case study in Spain.
Moreover, it defines the initial requirements to implement this
methodology in other countries or use cases.
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2.1. Cadastral data

Buildings characteristics are gathered from national cadastral
datasets. The data format used by these entities across EU coun-
tries is harmonised using the INSPIRE Buildings theme (Anon,
2021b). In the case of Spain, the massive downloadable pub-
lic information of cadastral datasets is available through ATOM
files (Anon, 2021c), where Geography Markup Language (GML)
files regarding “buildings” and “building parts” can be obtained
for all the Spanish municipalities. Those files contain a set of
georeferenced information for each building and, depending on
the type of information described. Each variable could be grouped
in:

1. Geometry information, including information about 2D ge-
ometries of the building parts, gross floor area, number of
floors above and below ground.

2. Typology information, including variables, such as the ma-
jor current use, the total number of dwellings and building
units.

3. Construction information, including the actual conditions
of the building and the year of construction.

Even if the amount of information is pervasive, it has to be
considered that multiple drawbacks exist when using cadastral
data gathered through ATOM files. In the case of the variables
belonging to groups 2 and 3, it should be considered that many
data inaccuracies can exist compared to the real conditions. Some
of the encountered issues are:

e Problems dealing with buildings with several main uses
(services + residential, or industrial + services), as only one
use is related to each building.

e Non-realistic dwelling areas based on the gross floor area,
due to the influence of large parking and/or community
areas.

e Some building information is not available for all the re-
gions (Buildings located in the countryside vs those lo-
cated in cities). For instance, in certain rural areas of the
Lleida province, up to 30% of buildings without current use
information.

To avoid unrealistic estimations when aggregating this data
to postal code geographical level, some filters were considered
- e.g. subtract ground floors and basements from the total gross
area in residential buildings with more than three floors.

2.2. Socioeconomic data

The economic status and the demographics indicators consid-
ered in this methodology are gathered through national statistics
institutes. In the case of Spain, this data can be obtained from an
experimental project of the Spanish Statistical Office (INE), named
“Household income distribution map” (Anon, 2021d). This project
proposes constructing statistical indicators of the level and dis-
tribution of household income at the municipal and census tract
geographical levels from the link between INE’s demographics
information and the tax data from the National and the Au-
tonomous Treasuries. Some of the indicators obtained at the
census tract geographical level are the average income per person
and household, the income primary sources, the income quantile
80 and 20 ratio, the number of inhabitants, the average pop-
ulation age, the percentage of people under 18 and over 65,
the number of people per household, the percentage of single
households, and the Gini index.
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2.3. Electricity consumption data

Datadis platform (Anon, 2021e) supplies the historical hourly
electricity consumption aggregated by postal code, economic sec-
tor, tariff and DSO for Spain. This platform is participated by
most Spanish DSOs, who provide electricity services to around 28
million consumption points. The aggregated hourly consumption
is gathered through the Datadis API, which requires authenti-
cation using an FNMT electronic certificate (Anon, 2021f) of a
legal entity. On average, most of the postal codes contain two
years of historical data. The aggregated information for each
obtained item through the API is the hourly consumption and
online contracts.

In Spain, the electricity tariffs available through Datadis during
the period represented in the case study (from beginning 2018 to
mid-2020) are specified in Table 1.

Data within the same economic sector sometimes contains
gaps, multiple energy trends, and seasonality between different
tariffs. Due to this fact, a synthetic tariff is created, named “all”,
weighting its values using the number of contracts per each of
the tariffs. This aggregated tariff improves the representativeness
of each postal code when the results are visualised over a map.

Even considering the use of aggregated consumption data at
a postal code level, which alleviates the influence of poorly mea-
sured data at some particular site, some problems were detected
during the initial quality checks. Hence, it became mandatory
the implementation of a data cleaning process before modelling
steps. In essence, the outlier filtering avoids any measure which
accomplishes, at least, one of the following conditions:

1. Hourly consumption equal to 0. It is certainly impossible to
have zero consumption considering that several contracts
are aggregated per each postal code.

. Hourly consumption lower than the maximum feasible
contracted power, depending on the tariff restrictions. For
instance, the contracted power must be lower than 10 and
15 kW, respectively, for 2.0 and 2.1 tariffs.

. Hourly consumption is six times higher than the 3rd quar-
tile of all the historical consumptions.

. Hourly consumption outside the right-aligned moving av-
erage plus-minus three moving standard deviations, con-
sidering a window of 15 days.

2.4. Weather data

Outdoor weather conditions are obtained through the Dark
Sky API service (Apple, 2019) for the whole area in analysis.
In essence, the historical weather data for the same period is
downloaded for each of the postal codes considered. The most
important variables in our analysis are the outdoor temperature
and wind speed.

2.5. Geographical levels

Data used in the framework of this energy characterisation is
related to multiple geographical levels. In this subsection, each
of the available geographical levels is described. Moreover, in
the data integration section, it is described how all data sets are
normalised to the same level, which is a necessary step to analyse
the datasets.

2.5.1. Building level

Data referenced to this level contains the exact location where
the building is physically placed. Cadastral data is an example of
a dataset with this geographical level. Beyond cadastral informa-
tion, and mainly due to privacy issues, there are not many other
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open datasets available at this level. It is worth mentioning that
this geographical level would be the most interesting due to its
flexibility for aggregation purposes. For instance, characterisation
results could be easily aggregated by streets, blocks of buildings,
neighbourhoods or custom aggregations which could provide
differences within the census tract or postal code levels.

2.5.2. Postal code level

The postal code is a code that is assigned to different areas
or places in a country. Initially, it was a code to facilitate and
mechanise the delivery of mail. It usually consists of a series
of digits, although in some countries, it includes letters. In the
case of Spain, it is composed of the province code (two first
digits) and then three more digits which represent each different
postal code. The institution that defines them is the 'Sociedad
Estatal Correos y Telégrafos, S.A.". Many other companies, or even
the government, widely use this geographical level to refer their
data to its location. It strikes a good balance between anonymity,
simplicity and detail. The shape of each postal code is obtained
from KML files (Anon, 2021g).

2.5.3. Census tract level

Census tracts are the lowest level units for disseminating
statistical information and are also used to organise electoral
processes. Being basically operational in nature, they are always
defined by more or less fixed sizes: the number of statistical
surveys that an interviewer agent can distribute and collect for
population counting purposes in the time of one or two months,
or the number of people who can vote in a ballot box without
crowding on an election day.

The most updated shapefiles of the census tract in Spain are
obtained from the National Statistical Office (Anon, 2021h).

For urban areas, the census tract level offers much more detail
than the postal code one. The number of building blocks inside
a certain census tract is much lower than in the postal code.
However, for rural areas, the representativity of both levels is very
similar, as they usually represent areas of similar size.

3. The architecture of the solution

The implementation of this methodology consists of combin-
ing and analysing multiple layers of data, as shown in Fig. 1. Con-
sidering that this information has heterogeneous characteristics,
both in terms of frequency, geographical reference and typology,
one of the mandatory aspects regarding the cross-analysis is the
harmonisation of these layers. Specific aggregations and transfor-
mations are done for each input dataset. For instance, GML files of
cadastre data are transformed to tabular data and aggregated to
several geographical levels to correlate cadastral information to
socioeconomic conditions, electricity consumption and weather
data. Python 3.8 (Anon, 2021i) is used to extract, transform, and
load data processes, using QGIS 3.10 (Anon, 2020) as a backend to
analyse geospatial data. Regarding the electricity characterisation
model, it is implemented in R 4.1 (Anon, 2021j). All these scripts
store the raw, intermediate and final results to a MongoDB 4
non-relational database (Anon, 2021k).

The relationships and transformations among the different
databases are depicted in the UML model shown in Fig. 2, where
the classes are named by the name of the provider and the
name of the collection, separated using “:”. In the case of in-
termediate or final classes used by the data analytics backend
or by the frontend to visualise results, the provider’s name is
“beegeo”. The calculations considered for the aggregations to
higher geographical levels are explained following SQL format
in yellow notes. The implementation of this UML representa-
tion is made using a combination of open-source analytics and
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Table 1
Electricity tariffs description in the Spanish market.
Access Time-of-use Contracted Main usage
toll name structures power range
(n2 periods)
2.0 A (1) < 10 kW All-kind of
DHA (2) < 10 kW dwellings, houses,
DHS (3) < 10 kW small-sized shops
or offices
21 A1) > 10 and < 15 kW Big-sized houses
DHA (2) > 10 and < 15 kW medium-sized shops
DHS (3) > 10 and < 15 kW or offices
3.0 A (3) > 15 kW Public buildings,
or big-sized shops,
or office buildings
3.1 A (3) < 450 kW Industrial buildings

(high voltage)

Georeferenced data
(*.GPKG *.shp *.geolson,

Geographical levels
(*.GPKG *.shp)

Tabulardata

(*.csv, *.xls, API’s) Representative models

* GML)

Census tracts Cadastre (Building parts)
L [

Socio-economicdata
[ ]

KPIs estimation
|1:> Interactive maps

Postal czdes Cadastre (Building) C°"5“"‘F’£°" data |1> Interactive plots
Municipalities Meteo data
Analytics and visualization
(R)
GEODATA DOWNLOAD DATA DOWNLOAD
S TRANSFORMATION CLEANING PROCESS AND
Database (MongoDB
(Python +QGIS) 7 1api AR DATA HARMONIZATION OF L

‘ GEOGRAPHICAL LEVELS

Fig. 1. General view of the data flow and the architecture of the software.

data storage technologies that allow validating the methodology
over the province of Lleida. The visualisation is made using a
Shiny frontend application (Chang et al,, 2021), which has been
developed on purpose for this case study. In general, the data
prompted into this web application is always read from the Mon-
goDB database. However, some of the normalisation calculations
are computed on-demand using the serialised characterisation
models estimated in the analytics backend. The web application
is mounted on Docker containers, hence it should be prepared
to be horizontally scalable, which is an interesting feature for
future deployment of the application, either for Spain or other
EU countries. The time period extends from the beginning of 2018
until June 2020, but the ETL processes are prepared to recursively
obtain new data as soon as it becomes available online. To sum
up, the web application is divided into four tabs: KPIs on a map,
Characterisation, Benchmarking and KPIs correlation.

4. Electricity characterisation method

The characterisation methodology consists in the execution of
the following steps per each region, tariff, and economic sector
under analysis:

o Clustering the daily load curves to infer the most represen-
tative usage patterns.

e Estimate a regression model of the electricity consump-
tion using calendar features, clustering results and weather
conditions as exogenous variables.

e Disaggregate the raw electricity consumption in baseload,
holidays, heating and cooling components.

o Calculate the performance KPIs.

5671

4.1. Clustering model

A clustering of the daily load curves for each postal code
combination, tariff and economic sector is performed to detect
similar usage patterns. The representative groups obtained should
be used along the algorithm to increase the reliability of the
characterisation due to the consideration of the multiple season-
ality’s that could not be related to calendar variables or weather
conditions.

Clustering can be achieved using various algorithms, which
differ in their way to define the constituents of a cluster and
how to find them efficiently. The best-suited clustering algorithm
depends on the particular data set and the intended use of the
results. In this study, the achieved outcome of the clustering
technique is to obtain a model to define the typical usage patterns
for each case based on the original consumption time series.

The first step is to encode the input data appropriately to the
usage pattern recognition. To do so, the original hourly frequency
is resampled to 4 h, as the objective is to cluster daily load curves
based on their approximate peak and valley consumptions -
e.g. morning consumers, double-valley consumers, or nightly con-
sumers. Then, two normalisations and one encoding procedure
are considered:

1. Conversion of the original consumption time series (Q®*)
to a daily relative consumption time series (Q™). Q[ =
Qrubs
Zteday Qtabs ’
2. Generation of a matrix of days (day) as rows, and parts of
the day (dh) as columns, using the daily relative consump-
tion time series.
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+ reference : string

+ currentUse : CurrentUseValue

+ value  int

+ numberOfBuildingUnits : integer
+ numberOfDwellings : integer

+ buildingGeometry2D : GM_Object

1
1o
cadaster:building_part

+ localld  string
+ numberOfFioors AboveGround : integer
+ numberOfFioorsBelowGround : integer

1 1| + reference : string

+ localld : string + buikingAreaBelowGround  fioat
+ conditionOfConstruction : ConditionOfConstructionValue + buikdingAreaAboveGround : float
+ beginning : date + buldingArea : float

+end: date + yearConstruction : integer

+ dwellingArea : float
+ numberOfDwellings : integer

+ numberOfBuildingUnits : integer
+ censusTract] : string

+ censusTract2 : string

+ censusTract3 : sting

+ postalCode : string

+ regionCode : string
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Fig. 2. UML of the used data model.

3. Transformation of the values using a Z-score normalisa-
tion, which improves the performance of the clustering

algorithm.
zrel QJZ'y.dn—’"e“”(QéZ')
Qday,dh - Sd(Qéﬁl)

Among the different clustering techniques, distribution-based
clustering is chosen because it is the one that most closely re-
sembles the way energy measurement data sets are generated
by sampling random objects from a distribution. The distribution
of every observation is specified by a probability density func-
tion through a finite mixture model of G components, as shown
in Eq. (1).

G
fxi;¥) = ZﬂkN(Mk, )

k=1

(1)

Where ¥ {T[], ey TTG=1s M1y« ooy MG, X1, ., EG} are the
parameters of the mixture model. Ny(x;; uy, Xk) is the kth com-
ponent Gaussian density for observation x; with parameter vector
(g, X%). (71, ..., mG_1) are the mixing weights or probabilities
(such that 7y > 0, Y m, = 1. And G is the number of mixture
components (in the model-based approach to clustering, each
component is associated with a group or cluster). Assuming that
G is fixed, the mixture model parameters ¥ are usually unknown

and should be estimated. In the case described above, it is as-
sumed that all component densities arise from the same paramet-
ric distribution family: the Gaussian. Thus, clusters are ellipsoidal,
centred at the mean vector u, and with geometric features such
as volume, shape and orientation, determined by the covariance
matrix Y. The mixture of multi-dimensional Gaussian probabil-
ity distributions that best fit the input dataset is estimated via the
expectation-maximisation algorithm for maximum likelihood es-
timation. The covariance (X} ) structures for parameter estimation
of Gaussian mixture models are the following:

e Spherical: variance is equal in all directions (where the
directions are the daypart columns of the input matrix)

e Diagonal: each direction has a different variance

e Ellipsoidal: allows covariance terms to orient ellipse in dif-
ferent directions plus constraints regarding shape and vol-
ume of the Gaussian density functions

The Gaussian Mixture Model is computed for G clusters be-
tween 2 and 10. The optimum total amount of clusters is selected
using the Integrated Completed Likelihood (ICL) criterion, and the
model fit is done using the Bayesian Information Criterion (BIC).
The key difference between the BIC and ICL is that the latter
includes an additional term (the estimated mean entropy) that
penalises clustering configurations exhibiting overlapping groups.
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Fig. 3. Clustering of the daily load curves, only using days which are presumably
not affected by weather conditions. These six profiles represent the usage
patterns of the case study.

Finally, an important point regarding the usage pattern detec-
tion is that to infer patterns not accounting for the weather de-
pendence or holidays component, a clustering-classification ap-
proach with a different subset of days is considered. The cluster-
ing technique explained above is used to detect the patterns from
a subset of the daily load curves when low, or even null, weather
dependence is expected (during March, April, May, September,
October, and November). Subsequently, in a second step, a classi-
fication of the rest of the daily load curves is predicted using the
clustering model obtained in the first stage. An example of the
clustering results is depicted in Fig. 3. The red curves correspond
to the usage patterns, and the black ones are the actual daily
loads during the training phase of the clustering procedure. Using
the same representation, the results of the classification stage
are depicted in Fig. 4, where the whole period, including winter
and summer seasons, are considered. As it can be seen, the
weather conditions’ influence tends to increase energy consump-
tion in certain usage patterns. However, in all cases, they tend to
maintain the relative shape.

4.2. Regression model

The technique used to characterise the electricity consumption
consists of a penalised multiple linear regression model. The
terms of this model are explained more in detail in the following
subsections. However, in essence, the consumption is decom-
posed into multiple parts: the usage patterns estimated with
the previous clustering-classification technique; the calendar fea-
tures, which allow modelling the hourly and weekly baseload
patterns; and the weather features, which enable to estimate
the increase in consumption when severe weather conditions
occur. Eq. (2) describes the major components of the penalised
regression model.

QFf = (Be x 8¢) + (He x dhy) + (Cr x dh) + & (2)

Where Q/ is the electricity consumption at instant t; B; are the
baseload terms interacting with the usage patterns (s;), H; and C;
are the weather dependence terms during heating and cooling
periods interacting with the hour of the day (dh,). Lastly, &, is the
error term of the model, where &, ~ N(0, o%).
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Fig. 4. Classification of the complete series using the representative usage
patterns detected with the clustering technique.

4.2.1. Baseload terms

The baseload component is one of the most significant parts
of electricity consumption. The formal definition of baseload con-
sumption consists of the minimum level of demand on an elec-
trical grid over a span of time. However, in the framework of this
methodology, it is understood as hourly consumption with no
weather dependence at all. Hence, the baseload component only
depends on the representative usage pattern and the calendar
variables of a certain day. Given the regression model presented,
differences in consumption along the week and the day are con-
sidered. For both of them, a Fourier series describing the weekly
and daily cycle was used. This decomposition transformation
reduces the dimension of the fitting problem in the cases where
input variables are periodic. The baseload terms are described in
detail in Eq. (3).

B: = wp + Sy (p{) + Sn, (p}") (3)
Ny
SNd(p?) = Z @p,d,n,cos COS(ZﬂnPf)
n=1
. dh
+ Wp.d,n,sin 51n(27mpf) p? = 274t (4)
Ny
SNy (PY') = @.u.n.cos COS(27mp}’)
n=1
4 w w wh
+ Wp,w,n,sin Sln(27'”1pt ) py = fSt (5)

Where w, is the linear intercept; SNd(pf) and Sy, (py’) are the
Fourier series of the daily and weekly cycles, where wp 1. cos,
Wh,w.n.sin» Ob,w.n.cos AN Wp oy nsin are the coefficients estimated
within the regression model, Ny and N,, are the number of har-
monics of both series, and finally, pf and py are the relative part
the day or the week at instant t. The dh; and wh, variables mean
the hour of the day and the hour of the week at instant t. The
advantage of using the Fourier series is that it avoids the use of
an excessive number of dummy variables which would require
the fit of all-possible combinations (24 + 168 dummy variables,
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in the case of fitting the regression model using an hourly-
frequency dataset, multiplied by the number of usage patterns
detected in the clustering step). This transformation reduces the
fitting problem to the number of harmonics considered (normally,
between 3 and 5 harmonics per cycle), which are enough to infer
the underlying correlation between the electricity consumption
and the seasonal cycle without a considerable loss of information.
Additionally, an interesting feature of the Fourier series trans-
formations is that, in some sense, it coerces the regression to
maintain a relationship between closer parts of the cycle and
between the beginning and the end of the cycle itself.

4.2.2. Weather dependence components

Besides the baseload terms, heating and cooling dependent
components account for the consumption related to weather con-
ditions, energy performance and characteristics of the buildings,
and Heating, Ventilation, and Air Conditioning (HVAC) systems
operation.

These components estimate the increase in consumption due
to weather severity. They are important to understanding elec-
tricity consumption and infer characteristics of how the reference
building/dwelling in a certain zone is composed and operated.
Ideally, one of the most interesting building characteristics that
could be inferred using this type of modelling is the building
envelope’s Heat Transfer Coefficient (HTC). This coefficient highly
depends on the considerations made during its definition. For
instance, depending on the inclusion of certain phenomena, such
as ventilation or air leakage, the HTC can be different. If ventila-
tion and air infiltration are not considered, the HTC is calculated
considering the energy transfer through the building envelope,
i.e. all the surrounding surfaces of the building in contact with the
outdoors, ground or other buildings. If they are considered, the
energy transfer due to ventilation and air infiltrations is included
in the HTC definition. Furthermore, to estimate HTC some vari-
ables are needed, such as indoor temperatures or performance
characteristics regarding the HVAC systems installed in the build-
ings. Without this additional information, it becomes nearly im-
possible to estimate the HTC. Therefore, in the framework of this
methodology, instead of characterising the HTC as a heat flow
rate quantification, it is estimated as the change in electricity
consumption, compared to the baseload, due to a variation in
indoor-outdoor temperature difference. To do so, and considering
that only the wind speed and the outdoor temperature are avail-
able, multiple-input transformations over these features account
for the different interactions between the electricity consumption
and the outdoor conditions.

The first transformation considers the temperature differences
between a theoretical balance temperature and the actual out-
door temperature. The main reason is to overcome the non-
linearities between the outdoor temperature and consumption.
Furthermore, different balance temperatures are considered dur-
ing the heating and cooling season, and during multiple parts
of the day. This feature helps the model to characterise cer-
tain situations better. For instance, regions that require heating
and cooling needs at the same time or significant differences of
weather dependence along the day. The increase in consumption
due to an increase of this feature tends to be more related to
ventilation systems without heat recovery units or window oper-
ations. Physically, it could be translated into the colder or hotter
outdoor air, compared to indoor air, which enters the building,
increasing HVAC systems energy consumption.

The second transformation uses the product of the wind speed
and the theoretical temperature difference obtained by the first
transformation to correlate consumption and the air infiltrations
caused by the infiltration of outside air into a building, typically
through cracks in the building envelope, doors, windows, and
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chimneys. This infiltration is caused by wind, negative pressurisa-
tion of the building, and air buoyancy forces, commonly known as
the stack effect. In general, the higher the product between wind
speed and indoor-outdoor temperature difference, the more en-
ergy consumption is experienced due to air infiltrations. Making a
similar interpretation as in the first transformation feature, HVAC
systems need to increase consumption to maintain the normal
indoor thermal conditions.

Finally, the third transformation is the consideration of low
pass filters in the inputs of the model. Due to building inertia
and heat transfer through the envelope, the indoor temperature
of buildings does not react instantly to changes in the outdoor
temperature. Then, to linearise the correlation between energy
losses and energy consumption, a first-order low pass filter of
the outdoor temperature T° with a certain « parameter is con-
sidered. This tuned temperature is called T®”, and, afterwards, it
is transformed using the same differential process used in the first
transformation. The low pass filter retains the slow undisturbed
variations (signals with a low frequency), while the fast variations
are damped (filtered). It allows transforming the temperature,
used as input in the models, into a variable that better repre-
sents the system’s dynamics, enhancing the model fitness. This
transformation assumes that the dynamics of the buildings can
be described by lumped parameter RC (resistance-condenser)
models. In turn, this assumption means that the response in
consumption due to envelope energy transfers can be modelled
as a first-order low pass filter. To summarising, the space heating
and cooling terms are mathematically described in Egs. (6) and

(7).

h,l]
He= oy T + of T + oAt (6)
N
Co= ), T, + o Tf + oA (7)
h,l] X N N/ N X
T = (Tgy = T7P)d To¥ = (1% — Top, ),
bal,h bal,
Trh = (le‘:[ - Tro )ds, th = (Tro - Tdﬁ[ C)dSr
Al = WEThd,, A = WETE dy,
0 1 J—
ToP oT; =0, | o tamping/re28)
aT? + (1 —a)T2? if t > 0.

1
0

if weather dependence in s;,

if no weather dependence in s;.

d&:[

Where: o, is the always-positive linear coefficient for the heat-
ing dependent term that considers the thermal inertia of the
reference building (T[h‘lp ), which is related to the heat losses
through the envelope and is calculated as the difference between
balance heating temperature (Té’,ftl’h) at the portion of the day (dh;)

and the low-pass filtered outdoor temperature (T, Ip ) at instant
t; a)f{ is the always-positive linear coefficient for the raw heating
dependent term (Tth), which is usually related to ventilation heat
losses, and it is calculated as the difference between balance
heating temperature (Tf,’,f["h) at the part of the day (dh;) and the
raw outdoor temperature (T7); a)(; is the always-positive linear
coefficient for the heat losses due to air infiltrations (A"), which
is the wind speed (W;) multiplied by the raw heating dependent
term (Tth); wcf,p is the always-positive linear coefficient for the
cooling dependent term that considers the thermal inertia of
the reference building (T{""), which is related to the heat gains
through the envelope and is calculated as the absolute difference
between balance cooling temperature (Té’ﬁ:’c) at the part of the
day (dh;) and the low-pass filtered outdoor temperature (Tto‘lp)

+
wC

)

is the always-positive linear coefficient for the raw cooling



G. Mor, J. Cipriano, G. Martirano et al.

dependent term(Ty), which is usually related to ventilation heat
gains, and it is calculated as the difference between balance
cooling temperature (Tf,f["c) at the part of the day (dh;) and the
raw outdoor temperature (T?); w/. is the always-positive linear
coefficient for the heat gains due to air infiltrations (A7), which
is the wind speed (W) multiplied by the raw cooling dependent
term (7). Besides, the « value of the low-pass-filtered outdoor
temperature depends on the t;ampling, which is the number of
measures per hour of consumption time series Q¢ and the t
thermal time constant, which defines the number of hours that
the synthetic building reacts over a certain change in outdoor
temperature. Last but not least, all the temperature differentials
and air leakage terms are multiplied by a dummy variable which
coerces weather dependence terms to O if a certain usage pattern
has no weather dependence (ds;).

4.2.3. Impact of holiday seasonality

After the first tests of the implementation, the authors de-
tected that the influence of holidays tends to generate signifi-
cant change points in electricity consumption for certain regions,
sectors and periods of the year. In most cases, the holidays pe-
riods occurred in correspondence of national holidays, Fridays or
Mondays between national holidays and weekends, winter and
summer weekends, and the summer vacations. However, it was
difficult to find a feature that linearly correlates the holidays
component of the electricity consumption with the different local
festivities of every region along the year. As a first attempt, some
of the features that could be used are the number of tourists, sec-
ond homes occupancy, or hotel bookings at the postal code level
and daily frequency. However, this information was impossible
to find at the desired aggregation levels. Therefore, another strat-
egy is considered in the final implementation. The data-driven
characterisation model is fitted using only those days that are
not suitable to be holidays. Then, the whole period is predicted
using the trained model and the residuals between the actual
and predicted data during the holidays period are considered as
the holiday’s component. In addition, this holidays dependence
component is estimated only when a difference of at least 20% is
detected between the RMSE of the holidays/non-holidays period.

4.2.4. Impact of COVID-19 lockdown periods

The Covid-19 Spanish lockdown, during the period from March
15th to June 21st 2020, significantly affected the energy con-
sumption either in residential, industrial or public sectors.
Changes in business activities, user behaviour and building oc-
cupancy caused this situation. For the presented case study, the
time period analysed depends on the availability of electricity
consumption data for each postcode. In general, the evaluated
period comprised mid-2018 to mid-2020. Thus, the data used
to validate the characterisation methodology was fully affected
by this lockdown period. A set of terms have been introduced
into the regression model to quantify the decrease or increase
in consumption due to the lockdown. They basically add an
interaction of the lockdown period to the baseload terms and
a set of re-adjusted weather dependence coefficients during the
period. Another consideration made during this period is that
holidays effect on energy consumption must be fixed to zero, as
people should have stayed at home for those periods, except in
particular cases.

4.2.5. Training of the model

The electricity time series considered during the training
phase changes slightly depending on the economic sector con-
sidered. It clearly depends on the most representative area factor
for each economic sector, as the characterisation outcomes are
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further compared among different regions. The built area normal-
isation becomes a key factor in assessing the energy performance
of buildings. The ratios considered for each location and existing
tariffs are the following:

e Residential sector:
QE
[(W/m?]

o Industrial/Agriculture | Offices/Retail sector:
0 Total consumption®*”"

number of contracts**” xaverage building area
(W/m?]

residential

Total consumption
number of contracts™*", average dwelling area

sector

The model’s training is recursively performed every three
months over a one-year window, as is shown in Fig. 5. This
procedure provides information on how the reference building
is evolving in time. So, the characterisation coefficients become,
in some sense, time-variant. To decrease the computational time,
the original hourly frequency of the input time series is resampled
to 4 h.

Regarding the estimation of the unknown terms, most of
them are inferred through the maximum likelihood technique
implemented in the penalised function of the R package Pe-
nalised (Goeman et al., 2018), where the whole regression for-
mula is estimated. However, several coefficients cannot be solved
using this methodology, as they are variables that transform
the model inputs themselves. Examples are the thermal time
constant of the reference building, the number of harmonics of
the Fourier series, or the balance temperatures, among others.
The optimisation of these coefficients is made using a Genetic
Algorithm (GA) that iterates and evolves chromosomes (in this
case are the binary representation of the parameter values to
optimise), minimising a cost function, which in this case is the
Root Mean Square Error (RMSE) of the predicted consumption
versus the metered consumption data. As a required initial input
for the GA, a range of feasible values for each parameter to
estimate is defined. In the case of Té’“”hh, the heating balance
temperature range goes from 10 to 22 °C, in steps of 0.5. For
T;a"ch, the cooling balance temperature ranges between 18 to
30 °C, in steps of 0.5. The building thermal inertia parameter
(r) ranges between 1 to 48 h in steps of 1. Finally, the boolean
activators for the weather dependence in each daily seasonality
(ds) can be 0 or 1. In each training period, the initial parameters
considered for the GA optimisation are the ones obtained in the
last period, that is the reason to increase the number of maximum
iteration permitted in the case of the first training period (50
vs. 20), when no initial values are available. The population
considered in the GA is 300 for each iteration and the elitism in
set to a 5%.

Known terms and time series: Q¢, s, p?, p*, dh, wh, T°, W* and
tsampling-

Unknown terms for each usage pattern: wp, ds(*), wp.d.n.sin,
@p.d,n,cos» Pb,w,n,sin and Wp, w,n,cos+

Unknown fixed terms: 7(*), Ny and N,,.

+
c,lp’

P » + ot

U:lll(lflown terms for each day part: v, @y, Oy, O}, OF, Wy,
al, al,c

Ty, () and Ty (%)

dh
(*) Estimated using a genetic algorithm optimiser
5. Case study results

Rather than summarise in detail the results over the whole
province of Lleida (Spain), which might be investigated in future
studies, consumers in the residential sector of postal code 25006
are selected to show the intermediate and final results obtained



G. Mor, J. Cipriano, G. Martirano et al.

A

Training periods

Energy Reports 7 (2021) 5667-5684

Spanish Covid-19
First lockdown

2018 2019

Y

2020

Fig. 5. Model training periods to characterise the evolution in time of the dependencies.
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Fig. 6. Predicted 4-hourly aggregated energy signature versus actual data.

Table 2

Mean Average Percentage Error (MAPE) over distinct periods and tariffs.
Period-MAPE [%] 20A 20DHA 21A 2.1DHA 3.0A Al
June 2018-May 2019 4,52 7,05 5,78 8,28 7,03 5,33
Sept. 2018-Aug. 2019 4,31 7,65 5,90 9,30 6,89 5,02
Dec. 2018-Nov. 2019 4,18 6,25 5,56 8,36 5,92 4,73
Mar. 2019-Feb. 2020 437 595 635 979 652 534
June 2019-May 2020 4,15 5,32 5,57 8,69 7,35 4,77

during the validation procedure. This helps to focus on each of
the results obtained concerning the models’ accuracy and the
estimated KPIs linked to the energy performance of buildings and
usage patterns of their occupants.

5.1. Characterisation of a postal code

The postal code analysed is related to the Zona Alta neigh-
bourhood in the city of Lleida. It is known as one of the most
well-being districts in Lleida, at least compared to those near
the city centre. Some of its socio-economic characteristics are
household incomes of 36,498€ per year, incomes quantile 80-20
ratio of 3.23 (one of the highest of the province, which means
there are large differences between low and high salaries), an
average population age of 47.42 years, with 26.95% of people
older than 65 and 13.59% under 18.

5.1.1. Estimated model

The accuracy of the models for each of the tariffs and eval-
uation periods are detailed in Tables 2 and 3. For both of the
selected metrics, the average accuracy (MAPE: 5,04%, CVRMSE:
6,51%) is very high considering the characterisation purposes of
this methodology. Even dealing with 4h-frequency predictions,

5676

Table 3
Coefficient of Variation of the Root Mean Squared Error (CVRMSE) over distinct
periods and tariffs.

Period-CVRMSE [%] 2.0A 2.0DHA 21A 21DHA 3.0A Al

June 2018-May 2019 575 853 734 9,99 894 645
Sept. 2018-Aug. 2019 5,68 9,08 7,56 10,68 855 6,55
Dec. 2018-Nov. 2019 565 8,06 7,40 10,27 784 6,27
Mar. 2019-Feb. 2020 595 773 8,25 12,40 8,61 7,03
June 2019-May 2020 556 7,06 7,06 11,03 858 6,27

the accuracy level reaches the state-of-the-art forecasting tech-
niques at the city-scale level and daily aggregation. Fig. 6 shows
the energy signature between the 4h-resampled real observations
and the predictions of the models. It has been proved that the
predictions capture the main trend of the original data, and even
the variance is extremely similar.

The weather-related coefficients are depicted in Fig. 7. Dark
blue lines correspond to the characterisation coefficients between
June 2019 to May 2020 and the yellow ones from July 2018
to June 2019. In the Y-axis, the different weather dependence
coefficients in heating and cooling modes are depicted. U,q,, heat-
ing values are the w;f model coefficients depending dh, (hour
of the day), U;p heating values are the w,t,p model coefficients
depending the dh, I%ir heating values are the a):h model coef-
ficients depending the dh,, T? heating values are the heating
balance temperature depending on the dh,, t is the thermal time
constant of the building, Uy, cooling values are the w? model
coefficients depending on dh;, Ujp cooling values are the ‘U:,zp
model coefficients depending on the dh,, I%" cooling values are
the w;. model coefficients depending on the dh;, and Th! cooling
values are the cooling balance temperature depending on the dh;.
It can be seen that the coefficients across different tariffs vary
largely and tend to be higher the more electricity is consumed by
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Fig. 7. Weather-dependent characterisation parameters of the model.

the tariff customers. This is a normal effect, as customers with 2.1
and 3.0 tariffs tend to have more domestic appliances or electrical
driven HVAC equipment in their households. One of the most
interesting insights is that space heating and cooling dependen-
cies tend to differ widely along day time, responding with more
emphasis to weather conditions during sunlight hours. More-
over, the estimated balance temperature helps to understand the
most common HVAC operation schedule during a typical day,
or, in other words, how people or energy managers tend to set
the thermostats. Additionally, differences in the thermal time
constant show variations in building’s envelope characteristics
between tariffs. At first glance, it seems that the 2.1 A tariff is
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more related to higher thermal inertia buildings, which could also
be related to better-insulated buildings. Regarding the baseload
characterisation, each usage pattern’s daily and weekly profile
and tariffs are obtained using the model parameters.

In summary, using the developed regression model, the de-
composition of the three main components of buildings electricity
loads (baseload, space heating and cooling) is made for the whole
period of data within each of the evaluation periods (from June
2018 to May 2019, and from June 2019 to May 2020). In the web
application, the results of this disaggregation are much better
represented using interactive plots. However, to show the results
in a paper format, Fig. 8 represents the daily disaggregation and
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the total consumption. To compare the yearly evolution between
different periods, the X-axis represents the months from January
to December.

From Fig. 8, it can be noted that, in all the cases, the sig-
nificance of the baseload consumption is much higher than the
weather dependence components. Also, the high variance in the
baseload component in tariff 3.0 A corresponds to the weekdays—
weekends variation. Another detail that can be seen in this plot is
the impact of the Covid-19 lockdown in Spain during the months
from March to May of the last evaluation period, especially in
the case of tariff 3.0 A, where allegedly some business build-
ings/dwellings are integrated into the residential sector subset of
the Datadis database. The evolution of the heating and cooling
components through the year seems to fulfil the expected be-
haviour during a natural year, considering the total consumption
series and the climate data of the case study area. However, it
is noted that the reference building of tariff 2.1DHA has a major
impact in terms of heating dependency. So, it can be interpreted
that customers with this tariff have more electricity resourced
heating systems compared to the customers with other tariffs.

5.1.2. Summarised KPIs

Once the characterisation model is technically fitted, a set of
KPIs is defined to compare different areas, even when certain con-
ditions differ widely from the type of users, weather conditions,
or building characteristics. To do so, simple units and plots were
chosen to represent the model results.

The results of the clustering and classification of the usage
patterns are illustrated in Fig. 9. In the right pane, the different
usage patterns in multiple colours are depicted, and in grey, the
interval of daily load curves at confidence 95% is shown. In the
left pane, the daily classification is represented, and it can be
observed that some patterns have continuity in time. Hence, they
tend to evolve over time, depending on certain conditions that
interact with energy consumption. These conditions are related to
the weather, part of the year, holiday seasons and other unknown
variables.

The heat map shown in 10uses the most updated characteri-
sation model (Trained with data from July 2019 to June 2020) to
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show the average kWh/year contribution of each electricity com-
ponent by tariff through a natural year (X-axis, each step is one
month) and the different parts of the day (Y-axis, each step are
four hours). It can be seen that in the case of baseload, it seems
that, during the Covid-19 confinement, it has been incremented
by about 20% during the daytime period from 12 h to 16 h. This
can be related to more people in their homes interacting with
electricity-driven cooking systems during lunchtime. In contrast,
3.0 A customers decrease their consumption drastically during
those months. Regarding the heating and cooling components, it
can be observed that the different intraday dependencies along
different tariffs and months of the year (see Fig. 10). Maybe, again,
the 3.0 A customers clearly behaved significantly different in
terms of cooling dependency compared to customers with other
tariffs. Besides increasing the understandability of the distribu-
tion between components and their evolution in time, Fig. 11
represents the relative disaggregation, on a natural year basis,
between the baseload, the heating and the cooling components,
and the impact of holidays and Covid-19 lockdown on the total
consumption.

For instance, concerning tariff 2.0 A and the first period July
2018 to Jun 2019: the baseload component represents approx-
imately 86% of the total annual consumption, the heating com-
ponent the 11%, the cooling component represents 2%, and the
holidays do not contribute at all. In this case, the Covid-19 lock-
down had a shallow impact during the lockdown period (March
15th to June 21st 2020). Another conclusion is that the evolution
of the different components in time is rather similar. However,
large differences can be detected between different tariffs, and
this corresponds to the different users/building typologies that
characterise each tariff.

Besides the relative disaggregation, the web application also
provides the point of view of the absolute consumption contribu-
tion in kWh per natural year. Using this representation, a decrease
in total consumption for tariffs 3.0 A and 2.0DHA is detected, es-
pecially the former, which is much more affected by the Covid-19
lockdown (approx. -20%, according to the relative segmentation
results). Then, in general, for the rest of the tariffs, the same
amount of total consumption during the whole evaluation period
is observed.
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5.2. Results at a province level

The characterisation results over the whole province will be
described in further research publications. However, to show the
web dashboard created for this purpose, a set of examples are
described in the following paragraphs. This validation has been
launched on a single server equipped with a 12-core 3.6 GHz CPU
and 32 GB RAM. The execution of the model training algorithm
and the calculation of all the KPIs related to all the historical
periods available and all combinations of economic sector, postal
codes, and tariffs available within the province of Lleida, took 18h.
Once the aggregated consumption dataset of the whole month
is gathered, the analysis can be reassessed, considering the new
data, in less than 2.5 h. It means that the batch calculation on
the same conditions for all the Spanish provinces would take
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less than six days. This computational cost is totally affordable
considering the low cost of this type of server and a monthly basis
update of the characterisation.

Fig. 12 depicts the home section of the dashboard, whose
purpose is to give a clear and simple visualisation of all the
estimated consumption KPIs, cadastre information and socio-
economic indicators on a map. The visualisation can be filtered
by tariffs, economic sectors, periods, percentiles ranges. An inter-
esting feature is a tiny histogram representing the distribution
of values of the variable depicted on the map, especially when
outliers can generate useless colouring legends.

The characterisation tab, shown in Fig. 13, represents the
complete assessment of the electricity consumption of a specific
postal code and economic sector selected over the map. Several
of the plots shown in this tab are interactive versions of the
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summarised KPIs explained in the subsection above, such as in-
formation about the model accuracy, the usage patterns detected
and the disaggregation results in several time aggregations. The
user can go deeper into the most common electricity uses over a
certain geographical area.

In Fig. 14, the benchmarking tab is depicted, where the ob-
jective is to exploit the usage of the characterisation models to
compare in detail two postal codes. This comparison is made
by the estimated electricity components, normalising the results
of the second postal code to the weather conditions and build-
ing/dwelling sizes of the first one. This normalisation procedure
means that the divergence in electricity consumption should be
caused by the difference in the energy performance of buildings,
alternative usage patterns in electric devices, or by a different
HVAC systems operation in cooling and heating electricity con-
sumption components. In parallel, intraday differences along a
natural year between the baseload consumption, and the im-
pact of holidays and the Covid-19 lockdown period, are also
represented.

Finally, Fig. 15 shows the tab that allows cross-correlating
all the KPIs to understand tendencies and relations between
them, providing a wider interpretation of the territory and under-
standing if the variation of a certain cadastre or socio-economic
indicator has a significant correlation to another estimated energy
consumption KPI. For instance, it could be inferred if there is
a relation between holidays periods contribution to the energy
consumption and average percentage of single households, or the
average annual incomes per person.

6. Conclusions

A methodology to characterise actual electricity consumption
of large geographical areas has been developed, implemented
and validated. It has been proven that the segmentation of the
aggregated electricity time series provides multiple interesting
possibilities to estimate KPIs related to energy performance build-
ings and occupants usage trends. Moreover, it has been developed
an open-source platform able to extract information from pub-
licly available data sources. This platform is split into two main
parts: a back-end and a front-end. The former gathers, transforms
and stores the data into databases. These data are accessible
to data analysis tools designed to model the buildings’ electric-
ity consumption only using high-frequency time series data of
actual consumption and weather data as the main inputs. The
latter visualises the KPIs and the obtained outcomes through a
purpose-built web application. This research demonstrated that
implementing this type of data-driven methodologies is feasible
for large regions in Spain. Still, other European countries can also
apply it as long as similar open data sources are available. The
list of possible applications that could use the methodology and
the web platform is pretty extensive, targeting different types of
beneficiaries:

1. Public authorities interested in improving the understand-
ing of the energy consumption flows within their territory,
producing better planning and optimal integration of re-
newable energies, prioritising the ECM implementation at
the local level, or assessing ECM impacts over districts or
regions.

. Private companies aiming at improving their marketing
strategies based on the existing links between the territory
and the electricity consumption use trends.

Finally, as mentioned in the introduction, an attempt has been
made to include energy resources such as gas, biomass and oil
in the analysis. Then, the interpretation of the characterisation
could be understood as the performance of the buildings and
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Fig. 13. Web application - “Characterisation” tab.

their occupants against the total energy consumption produced in
the buildings, regardless of the rate of implantation of the differ-
ent energy resources in the building equipment (heating boilers,
chillers, cooking equipment, domestic hot water). Nonetheless,
the actual availability of big datasets containing high-frequency
gas, biomass or oil consumption is extremely low, especially
for the residential sector. This point is very significant in Spain,
where the validation was conducted, and only electricity con-
sumption data is really available for a considerable number of
customers. In the mid and long term, this fact should evolve pos-
itively to implement global energy data-driven characterisation
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techniques due to the pronounced tendency to electrify all-kind
of building systems and the strong implementation of advanced
meters for gas consumption.

To sum up, practical applications that could use the out-
comes presented in this characterisation, have to assume that
the methodology was only tested with electricity consumption.
The inclusion of other final energy fuel types should slightly vary
the data-driven modelling approach presented in this paper and
would require another validation procedure with actual data.
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