

Commission européenne, B-1049 Bruxelles / Europese Commissie, B-1049 Brussel - Belgium. Telephone: (32-2) 299 11 11.

Commission européenne, L-2920 Luxembourg. Telephone: (352) 43 01-1.

EUROPEAN COMMISSION
DIRECTORATE-GENERAL
INFORMATICS
Information systems Directorate

European Commission

e-TrustEx

Software Architecture Document

Date: 09/10/2019

Version: 2.4

Authors: Sandro D'OrazioSandro D'Orazio,

Sandro D'Orazio , Cristian Chiriac

Revised by: Maarten Daniels

Approved by: Chrysanthi Giortsou, Tanya Chetcuti

Public:

Reference Number:

e-TrustEx Software Architecture Document
Document Version 2.4 dated 09/10/2019 Page i

TABLE OF CONTENTS

1. INTRODUCTION .. 4

1.1. Purpose .. 4

1.2. Scope ... 4

1.3. References ... 4

1.4. Definitions ... 5

1.5. Document Content Overview ... 6

2. ARCHITECTURAL REPRESENTATION ... 6

3. ARCHITECTURAL GOALS AND CONSTRAINTS ... 6

4. SECURITY .. 7

4.1.1. Introduction .. 7

4.1.2. Confidentiality .. 7

4.1.3. Authentication ... 8

4.1.4. Authorisation .. 8

4.1.5. Integrity .. 8

4.1.6. Validity ... 8

4.1.7. Auditing .. 8

4.1.8. Non Repudiation ... 8

4.1.9. Storage Security .. 9

4.1.10. Availability ... 9

5. USE-CASE VIEW... 10

5.1. Selection Rationale .. 10

6. LOGICAL VIEW ... 12

6.1. Overview.. 12

6.2. Architecturally Significant Design Packages ... 12

6.2.1. Sender and Receiver systems .. 12

6.2.2. e-TrustEx core web layer .. 12

6.2.3. e-TrustEx Integration .. 12

6.2.4. e-TrustEx types ... 13

6.2.5. e-TrustEx Domain... 13

6.2.6. e-TrustEx Services .. 13

6.2.7. e-TrustEx Storage (file system and database) ... 13

6.2.8. e-TrustEx Admin (a.k.a. CIPAdmin) .. 13

6.2.9. eProcurement Web.. 13

6.2.10. eProcurement Integration .. 13

6.3. Use-Case Realizations ... 13

6.3.1. Common message processing components ... 14

e-TrustEx Software Architecture Document
Document Version 2.4 dated 09/10/2019 Page ii

6.3.2. Synchronous services .. 16

6.3.3. Store document wrapper ... 17

6.3.4. Asynchronous services .. 18

7. DEPLOYMENT VIEW .. 20

8. IMPLEMENTATION VIEW .. 21

8.1. Overview.. 21

9. DATA VIEW ... 23

9.1. Data Model .. 23

9.2. State Machines ... 24

9.2.1. Introduction .. 24

9.2.2. Generic State Machines .. 25

9.2.3. The document bundle state machine ... 25

10. SIZE AND PERFORMANCE ... 26

10.1. Size .. 26

10.2. Performance ... 26

11. QUALITY .. 26

11.1. Extensibility ... 26

11.2. Reliability .. 27

11.3. Portability .. 27

e-TrustEx Software Architecture Document
Document Version 2.4 dated 09/10/2019 Page iii

Document History

Version Date Comment Modified Pages

2.4 09/10/2019 Corrected the ICD link [REF1]

2.3 07/02/2019 Updated the supported maximum file size from

100MB to 500MB

6, 26

2.2 21/09/2017 Review and update corresponding to 2.0 release Where needed

2.1 03/11/2014 Corrections following review

2.03 14/10/2014 EIP Diagram updates

Removed JAX-WS references from text

Other minor corrections

2.02 24/09/2014 Diagram updates

Other minor corrections/ improvements

2.01 04/12/2013 Version 2.01 (final) All

2.00 15/11/2013 Submission of version 2.00 for review All

e-TrustEx Software Architecture Document – Page 4 / 28
Document Version 2.4 dated 09/10/2019

1. INTRODUCTION

1.1. Purpose

This document provides a comprehensive architectural overview of the system, using a

number of different architectural views to depict different aspects of the system. It is

intended to capture and convey the significant architectural decisions that have been made on

the system.

1.2. Scope

The architecture described in this document concerns the system e-TrustEx developed and

used by the European Commission as part of the ISA programme.

1.3. References

Document Contents outline

[REF1] e-TrustEx Interface Control Document Interface control document for front-offices and

external systems. This document is available

inside the European Commission network as

well as in the release documentation for the

open version of the application.

[REF2] Java EE Java Enterprise Edition is Oracle's Java platform

for enterprise application development. It

contains APIs for ORM, SOAP and RESTful

web services, distributed components, JMS and

much more.

[REF3] Enterprise Integration Patterns Patterns and best practices for Enterprise

Integration by Gregor Hohpe

[REF4] Spring Framework An open-source framework for Java enterprise

application development, featuring Dependency

Injection, Aspect-Oriented Programming,

support for web application development,

JDBC, JPA, JMS, SOAP and RESTful web

services and much more.

[REF5] Spring Integration Extension of the Spring programming model to

support the well-known Enterprise Integration

Patterns

[REF6] Spring Web Services Spring Web Services is a product of the Spring

community focused on creating document-

driven Web services

[REF7] Schematron Rule-based validation language for making

assertions about the presence or absence of

patterns in XML trees

[REF8] WildFly Application Server Java EE certified open source application server

[REF9] EJB Enterprise Java Beans

[REF10] SOAP Simple Object Access Protocol

https://webgate.ec.europa.eu/CITnet/confluence/display/ETRUSTEX/Interface+Control+Document
https://joinup.ec.europa.eu/solution/open-e-trustex
http://www.oracle.com/technetwork/java/javaee/overview/index.html
http://www.eaipatterns.com/
http://projects.spring.io/spring-framework/
http://www.springsource.org/spring-integration
http://static.springsource.org/spring-ws/sites/1.5/
http://www.schematron.com/
http://wildfly.org/
http://java.sun.com/products/ejb/
http://www.w3.org/TR/soap/

e-TrustEx Software Architecture Document – Page 5 / 28
Document Version 2.4 dated 09/10/2019

[REF11] WS-Security Standard set of SOAP [SOAP11, SOAP12]

extensions that can be used when building

secure Web services to implement message

content integrity and confidentiality

[REF12] WS-Policy The Web Services Policy Framework (WS-

Policy) provides a general purpose model and

corresponding syntax to describe the policies of

a Web Service

[REF13] WS-SecurityPolicy WS-Policy defines a framework for allowing

web services to express their constraints and

requirements. These are security related policies

[REF14] X.509 Public-Key Infrastructure (X.509)

[REF15] MTOM Message Transmission Optimization Mechanism

is used for the efficient transmission of binary

data to and from SOAP web services by

compressing the data and sending it in a

separate MIME part.

[REF16] HTTP Chunking A mechanism by which data is broken up into a

number of chunks when sent over an HTTP

connection.

1.4. Definitions

Document Contents outline

[REF17] Document A Document in the scope of the e-TrustEx

platform is a piece of information structured

using XML

[REF18] Transaction A Transaction in the scope of the e-TrustEx

platform represents an operation on a document.

The submission of a document bundle through

the system is an e-TrustEx transaction

[REF19] Profile A document exchange profile aggregates a set of

transactions.

[REF20] Party A Party is an entity exchanging documents

through the platform.

[REF21] Bundle Set of multiple document wrappers exchanged

by the Parties playing a role in a data exchange

scenario.

[REF22] Document wrapper A Document Wrapper is an entity composed of

a binary file and its metadata, which can be

exchanged through the platform

[REF23] Interchange Agreement (or ICA) An Interchange Agreement represents a

Contract between two or more Parties on the use

of e-TrustEx for the electronic exchange of

information in the context of one Profile.

[REF24] CIA (or C.I.A.) Confidentiality, Integrity and Availability

http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.w3.org/Submission/WS-Policy/
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.html
http://datatracker.ietf.org/wg/pkix/charter/
http://www.w3.org/TR/soap12-mtom/
http://en.wikipedia.org/wiki/Chunked_transfer_encoding

e-TrustEx Software Architecture Document – Page 6 / 28
Document Version 2.4 dated 09/10/2019

[REF25] Business Domain A Business Domain represents the specific

context of a business.

1.5. Document Content Overview

After summarizing the architectural representation, goals and constraints, this document

describes the system using several architectural views (Use Case, logical, process,

deployment, implementation and data) and then concludes with size, performance and quality

considerations.

2. ARCHITECTURAL REPRESENTATION

The next two sections of the document describe architectural goals and constraints.

A Use Case diagram describes architecturally relevant Use Cases. A short explanation of

their impact on the architecture accompanies the diagram. The following views will also be

provided:

 A logical view provides a basis for understanding the structure and organization of

the design of the system through its components and their interactions.

 An implementation view describes the software layers and the main software

components by using a component diagram.

 A deployment view provides a description of the hardware components and the

relation between them. This view gives a technical description of protocols and

hardware nodes used.

 A data view provides information about data persistency. A class diagram models

main system data.

UML diagrams are systematically used to represent the different views of the system.

3. ARCHITECTURAL GOALS AND CONSTRAINTS

The following non-functional requirements have been identified:

Non-functional requirement Description

Support of large files The application shall allow the transfer of large files (up

to 500 MB each) of any type.

Support of groups of files The application shall allow the transfer of groups of

linked files.

Interoperability The application shall allow the connection of

heterogeneous systems.

Confidentiality The system allows ensuring that transferred documents

are not viewed by anybody else than the sender and the

final recipient.

Integrity The system allows guaranteeing integrity of the

transferred files.

File storage A dedicated file system shall be used to store binaries,

but it needs to be set up by the technical support team.

e-TrustEx Software Architecture Document – Page 7 / 28
Document Version 2.4 dated 09/10/2019

4. SECURITY

4.1.1. Introduction

The e-TrustEx platform supports requirements for authentication, integrity and validity of

documents during transmission and storage. Besides those, it also includes measures for

authorization, confidentiality, auditing and non-repudiation.

The security requirements supported by e-TrustEx are described as follows:

 Confidentiality is needed to prevent third parties from eavesdropping on

information that is being transmitted.

 Authentication ensures that the parties involved in communication are really who

they say they are.

 Authorization ensures that users only have access to the resources they are allowed

to.

 Integrity guarantees that a message is not modified during its transmission.

 Validity certifies a stored message does not lose its legal attributes.

 Auditing controls enable relevant parties like authorized bodies to inspect

transactions afterwards.

 Non-repudiation measures prevent users from denying actions they have

undertaken.

 Storage security concerns measures taken to secure data stored in the database and

file storage

 Availability

To provide an answer to these requirements the platform provides the means to link

Confidentiality, Integrity and Availability (C.I.A.) levels to a document interchange

agreement between parties. The Retrieve Interchange agreement service allows the sender to

retrieve the C.I.A. information before sending a document.

The following chapters of the document describe how the platform implements the security

requirements.

4.1.2. Confidentiality

The connection to the platform web services can be done using HTTPS. HTTPS needs to be

configured in the Wildfly AS ([REF8]), otherwise simple HTTP is used. HTTPS is a secure

version of the HTTP protocol and is being used to protect data transactions. It uses one way

Secure Socket Layer (SSL) and digital certificates ([REF14]) to encrypt a data transfer

session over an otherwise insecure HTTP connection. Implementers of the platform should

only allow connection to the open, e-Trustex services though https connection to guarantee

confidentiality of message exchange especially in cases where message level confidentiality

is not used.

The use of HTTPS guarantees transport level confidentiality however there might be a need

to ensure it also at message level. The platform provides support for end-to-end encryption

and acts as public key repository (used to encrypt the message). It also provides the sender

the information about the Confidentiality level of the message exchange through the Retrieve

Interchange Agreement service.

e-TrustEx Software Architecture Document – Page 8 / 28
Document Version 2.4 dated 09/10/2019

4.1.3. Authentication

By default, the system requires basic authentication over the HTTPS connection. The fact

that HTTPS is used to set up the initial secure connection makes it difficult for someone to

steal the passwords by listening on the communication as it is encrypted.

If stronger authentication is required, implementers can decide to impose the usage of two-

way SSL connections to access the platform web-services. In that case, the client will have to

provide a certificate trusted by the server to establish the SSL connection and thus

authenticate to the server using this certificate. This configuration is external to the platform

as it depends on the implementer's IT infrastructure, and thus out of the scope of this

document.

4.1.4. Authorisation

The platform comes with a complete authorisation implementation based on the concept of

interchange agreements.

A Document exchange profile is a set of transactions that define operations (e.g.

submission, retrieval, etc.) on specific documents. An Interchange Agreement models the

contract between parties in the context of a specific document exchange profile.

Every time a party tries to access the system, e-TrustEx checks if there is an interchange

agreement authorising the caller to do so.

4.1.5. Integrity

The platform guarantees the integrity of message exchange though the use of digital

signatures ([REF11],[REF12],[REF13]). The messages returned by the platform are signed

and parties can be required to sign their calls to the platform web-services. The use of XML

digital signatures is an optional feature that is configurable in the system. The use of XML

signature is not mandatory as it adds complexity to the solution and, depending on the

business case, HTTPS encryption might be good enough to ensure the required level of

integrity.

This integrity is only valid for the transport and the platform's signatures are purely technical

and have no "business" value. The platform does not provide out of the box support for end

to end signature. However, if such business signatures are required, the platform will provide

the information to sender parties through the Retrieve Interchange Agreement service.

4.1.6. Validity

The platform supports different types of message validation, the standard XSD validation and

the Schematron ([REF7]) validation, a rule-based validation language for making assertions

about the presence or absence of patterns in XML trees. This guarantees the business validity

of the messages stored in the system. Some more complex checks can be implemented in Java

(e.g. if parent reference exists).

4.1.7. Auditing

The platform logs all the service calls and stores the transactions in the system's database.

Auditors can get temporary access to the platform database and log files in case of control.

4.1.8. Non Repudiation

When a party submits a message, e-TrustEx generates a signed acknowledgement containing

information about the submitted message. This signed acknowledgement can be used as a

proof of submission ensuring the non-repudiation of (submission of) messages sent through

the platform. The party submitting the message is responsible for storing the

acknowledgement generated by e-TrustEx.

e-TrustEx Software Architecture Document – Page 9 / 28
Document Version 2.4 dated 09/10/2019

4.1.9. Storage Security

The databases that contain business data, logging information and audit trails is hosted in a

secure environment where only authorized users have access. Audit trails are kept to ensure

that the data is not tampered with. Additionally, it is assumed that regular backups of the

databases are generated and securely archived.

The large attachments files are encrypted before being stored on the file system. In addition

to the file encryption, proper segregation of duties policies shall be applied to ensure that

people having access to the encryption key cannot access the file system and vice versa.

For the Open Source version of the platform, storage security is the responsibility of the

implementer.

4.1.10. Availability

The e-Trustex platform uses JMS queues for time-consuming operations. Thread pools can

be configured in order to limit the total number of concurrent users to ensure good service

availability.

SECURITY DISCLAIMER

On top of the security e-TrustEx (including CIPAdmin) provides, the user shall add an extra

security layer at application server level. DIGIT shall not be held responsible for any security

breach that might occur due to User not respecting this recommendation.

e-TrustEx Software Architecture Document – Page 10 / 28
Document Version 2.4 dated 09/10/2019

5. USE-CASE VIEW

This section provides a representation of the architecturally significant use cases.

5.1. Selection Rationale

The architecturally significant use cases have been selected based on the following criteria:

– Use cases affecting multiple components of the system, thereby providing a cross-

cutting view of the system architecture;

– Use cases representing critical parts of the architecture, thereby addressing the

technical risks of the project at an earlier stage.

The following use cases have been selected:

 Use cases addressing the synchronous services offered by the platform

 Use cases addressing the submission of (potentially large) binary files (UC Store

Document Wrapper)

 Use cases addressing the asynchronous services offered by the platform

The following Use Cases diagram displays the e-TrustEx use cases:

e-TrustEx Software Architecture Document – Page 11 / 28
Document Version 2.4 dated 09/10/2019

The diagram below displays the main use cases implemented in the e-Trustex Admin module.

e-TrustEx Software Architecture Document – Page 12 / 28
Document Version 2.4 dated 09/10/2019

6. LOGICAL VIEW

6.1. Overview

This chapter describes the main application modules, how these modules interact and

implement system use cases.

6.2. Architecturally Significant Design Packages

The following diagram provides a high-level view of the main packages composing the

system. The Database persistence and file system persistence are logical packages

representing the physical data storages used by the platform. The other packages represent

different application layers and give an overview of the organisation of the platform's code as

each of them translates into a separate maven project.

6.2.1. Sender and Receiver systems

Sender systems can submit documents using the platform web-services or by pushing them

into JMS queues.

Receiver systems can either retrieve their messages polling the platform read services or

receive them via the e-TrustEx store and forward mechanisms. E-TrustEx can forward

messages via JMS or by using a "call-back" web service implemented by the receiver system.

6.2.2. e-TrustEx core web layer

This module is a Java J2EE web application offering web services interfaces to the clients of

the platform. It offers a generic SOAP endpoint using the Spring WS framework and specific

web services features dealing with the large attachments (MTOM - [REF15] - and Http

Chunking - [REF16]).

6.2.3. e-TrustEx Integration

This is the core of the message-processing platform. This module is a lightweight ESB based

on the Spring Integration framework ([REF5]). It provides common message processing

building blocks for checking authorisation, storing and validating the incoming documents

and finally routing them to the receiver's system.

e-TrustEx Software Architecture Document – Page 13 / 28
Document Version 2.4 dated 09/10/2019

6.2.4. e-TrustEx types

This package contains all the java classes generated from the different WSDLs and XSDs

used by the system. The integration layer described in previous section is using this JAXB

annotated objects to parse incoming requests and to build responses.

6.2.5. e-TrustEx Domain

This is the platform's domain layer; it contains EJB3 ([REF9]) entities implementing the

domain objects. This layer is further described in section 9.1 Data Model of this document.

6.2.6. e-TrustEx Services

This is the platform's services layer that provides access to the database, the file system, the

integration layer and the CIPAdmin component. Services are POJOs that are configured in

the dependent components using the Spring Framework Dependency Injection mechanism

([REF4]).

6.2.7. e-TrustEx Storage (file system and database)

The platform uses a database to store its configuration and the exchanged messages. The file

storage is used to store the binary files submitted to the platform.

6.2.8. e-TrustEx Admin (a.k.a. CIPAdmin)

The administration web console of the platform facilitates the configuration of the system.

This is a standard java J2EE web application using Spring Model View Controller pattern

implementation and JQuery for the presentation layer. It uses Spring Security for

authentication and authorization.

6.2.9. eProcurement Web

This Java EE ([REF2]) web application module exposes SOAP web service endpoints for

eProcurement. The web services implementation is Spring WS ([REF6]).

6.2.10. eProcurement Integration

This module processes messages coming via the web services in the eProcurement Web

component. The processing chain is implemented with Spring Integration ([REF5]).

6.3. Use-Case Realizations

The following use cases have been chosen to describe how software packages behave:

 A sender system stores a document wrapper (binary file)

 A Party calls a Synchronous service

 A Party calls an Asynchronous service

There are two kinds of services implemented in the platform:

 the asynchronous services that are used by a party to send a document (e.g. submit

bundle service),

 the synchronous services that are used to handle large binaries or to query and

retrieve documents like store document wrapper or retrieve request

As any use case of the e-TrustEx Integration module derives from the generic synchronous

and asynchronous use cases, they will be detailed in this chapter of the document. Storing of

e-TrustEx Software Architecture Document – Page 14 / 28
Document Version 2.4 dated 09/10/2019

a large binary by the system is also relevant for this chapter as, even if it is also a

synchronous service, it slightly deviates from the generic one.

As mentioned in the previous chapter, e-TrustEx uses the Spring Integration framework

([REF5]). This framework is an implementation of Gregor Hohpe Enterprise Integration

Patterns (EIP - [REF3]). The following chapters will use EIP notation diagrams to describe

the message processing flows.

Here are the basic concepts for messaging systems as defined on the EIP website that will

come in handy to understand how the platform works:

"Channels — Messaging applications transmit data through a Message Channel, a virtual

pipe that connects a sender to a receiver. A newly installed messaging system doesn’t contain

any channels; you must determine how your applications need to communicate and then

create the channels to facilitate it.

Messages — A Message is an atomic packet of data that can be transmitted on a channel.

Thus to transmit data, an application must break the data into one or more packets, wrap

each packet as a message, and then send the message on a channel. Likewise, a receiver

application receives a message and must extract the data from the message to process it. The

message system will try repeatedly to deliver the message (e.g., transmit it from the sender to

the receiver) until it succeeds.

Multi-step delivery — In the simplest case, the message system delivers a message directly

from the sender’s computer to the receiver’s computer. However, actions often need to be

performed on the message after it is sent by its original sender but before it is received by its

final receiver. For example, the message may have to be validated or transformed because

the receiver expects a different message format than the sender. A Pipes and Filters

architecture describes how multiple processing steps can be chained together using

channels.

Routing — In a large enterprise with numerous applications and channels to connect them, a

message may have to go through several channels to reach its final destination. The route a

message must follow may be so complex that the original sender does not know what channel

will get the message to the final receiver. Instead, the original sender sends the message to a

Message Router, an application component and filter in the pipes-and-filters architecture,

which will determine how to navigate the channel topology and direct the message to the

final receiver, or at least to the next router.

Transformation — Various applications may not agree on the format for the same

conceptual data; the sender formats the message one way, yet the receiver expects it to be

formatted another way. To reconcile this, the message must go through an intermediate filter,

a Message Translator, that converts the message from one format to another.

Endpoints — An application does not have some built-in capability to interface with a

messaging system. Rather, it must contain a layer of code that knows both how the

application works and how the messaging system works, bridging the two so that they work

together. This bridge code is a set of coordinated Message Endpoints that enable the

application to send and receive messages."

The format of the Messages exchanged through the e-TrustEx platform is XML.

See the document UCR Message Routing feature for more details about message routing in e-

TrustEx.

6.3.1. Common message processing components

Some "message processing" steps are common to all types of messages processed by the

platform. In order to avoid code duplication these common behaviours have been

http://www.eaipatterns.com/MessagingComponentsIntro.html
https://joinup.ec.europa.eu/svn/openetrustex/trunk/003%20Architecture/003%20Use%20Case%20Realizations/UCR_Message_Routing_feature.doc

e-TrustEx Software Architecture Document – Page 15 / 28
Document Version 2.4 dated 09/10/2019

implemented using reusable components. These components need to access the platform

service layer and are implemented as EIP Service Activators.

The Authorisation service activator is responsible for assessing if a party is allowed to call a

specific service. In order to do that it uses the credentials provided to the system through

HTTP(S) basic authentication and retrieves the Party linked to these credentials (see Section

9.1), the CallerParty. The system then tries to extract the SenderParty from the incoming

message. If this required piece of information is missing, or the specified Sender Party is not

known by the system, the platform will return an unauthorised access error to the caller.

The e-TrustEx platform offers support for third parties, meaning that one party can delegate

to another one the right to perform transactions on the system. This is why the service

activator checks if the CallerParty and the SenderParty are the same and, if they are different

and no delegation exists between them, the platform will return an unauthorised access error

to the caller.

If a ReceiverParty is specified in the incoming message, the system will query its database to

determine if there is an interchange agreement involving the two parties pointing to a profile

containing the transaction related to the occurring service call. If no Interchange Agreement

is found the platform will return an unauthorised access error to the caller. Specifying a

ReceiverParty is mandatory for all asynchronous services.

The XSD Validation Service Activator is a configurable component that applies XSD

validation on the incoming XML message. The XSD is linked to a document or a transaction

in the system metadata. The platform allows the user to either provide an URL pointing to the

XSD or to store it directly in the system database. The XSD validation failure will either

trigger a SOAP fault if executed synchronously or lead to the generation of an Application

Response error message if executed asynchronously.

An Application response is an XML document generated by the system to notify the caller

asynchronously of errors that occurred during the message processing or, more generally

speaking, to notify changes in the message state (e.g. a message moving to ERROR state).

This type of document is also used by parties willing to modify the state of a message via the

Submit Application Response service. Readers can find more information on the topic in the

data view chapter of this document (Section 9.1).

The Schematron Service Activator:

"Schematron is a rule-based validation language for making assertions about the presence

or absence of patterns in XML trees. It is a structural schema language expressed in XML

using a small number of elements and XPath. In a typical implementation, the Schematron

schema XML is processed into normal XSLT code for deployment anywhere that XSLT can be

used"

This service activator applies the schematron XSLT transformation to the incoming XML

document and handles possible errors in the same way the XSD Validation service activator

does. The XSL templates are stored in the system's database and linked to the transactions or

documents defined in the platform.

Schematron ([REF7]) is used to implement business validation rules on incoming XML

messages that are not supported by standard XSD validation.

The Business Service Activator is responsible for calling the java object implementing the

specific business logic for the service. This must be configured in the Spring application

context and must implement specific platform java interfaces. The Business service activator

retrieves the business service using either a naming convention or using metadata that can be

stored in the platform's database.

e-TrustEx Software Architecture Document – Page 16 / 28
Document Version 2.4 dated 09/10/2019

6.3.2. Synchronous services

This is the EIP representation of the message flow for synchronous services:

The platform offers two entry points to provide synchronous services. They are both SOAP

([REF10]) based but use different web service implementations.

The Spring WS entry point uses Spring WS framework ([REF6]) to provide a generic SOAP

endpoint for synchronous services. It routes incoming messages to the appropriate channel

based on the message content (content based routing). Incoming messages are routed to the

Synchronous SOAP channel where they are transformed into e-TrustEx platform messages, a

specialisation of the Generic Spring integration Message by the Message Transformer

component.

This entry point directly deals with the XML avoiding binding it to java objects. The

Message Transformer runs a set of configurable XQueries on the incoming XML to extract

relevant information like the message ID, the sender and receiver party IDs and performs

some basic integrity checks. The extracted information is set in the header of the e-TrustEx

platform message.

Some routing metadata is added to the header by the Header enricher component. This

metadata is used by the platform to determine to which channel the response must be

submitted.

The incoming message, after the initial transformation into a platform message, is routed to

the e-TrustEx common processing message handling chain where it is validated and

processed by the business service linked with the service being called.

e-TrustEx Software Architecture Document – Page 17 / 28
Document Version 2.4 dated 09/10/2019

6.3.3. Store document wrapper

This service slightly deviates from the other synchronous services offered by the platform

because the Document wrappers, containing potentially large binary files, are processed in

two steps. In the first step, the system streams the binary attachment to the file system and

removes it from the incoming XML message to avoid high memory consumption. In the

second step, it sends the rest of the XML message to the common synchronous message

handling chain. Here is the EIP representation of the Store Document Wrapper message flow:

The Store Document Wrapper web service interface supports MTOM ([REF15]) to optimize

the size of the transferred encoded binary size and HTTP chunking ([REF16]) to allow the

streaming of the binary file to the disk.

e-TrustEx Software Architecture Document – Page 18 / 28
Document Version 2.4 dated 09/10/2019

6.3.4. Asynchronous services

The following diagram represents the message flow for the asynchronous services provided

by the system.

The platform provides asynchronous services via SOAP ([REF10]) or JMS interfaces. The

SOAP entry point for asynchronous services uses the same components as the one for

synchronous services.

The JMS entry point is composed of one JMS queue and other message processing

components. The message adapter retrieves a message from the JMS queue and sends it to

the JMS submit channel where it is transformed into a platform internal message and

enriched. The security configuration of the JMS resources is application server dependent

and will not be detailed in this document.

Asynchronous submission of messages to the platform is a two-step process. The first step is

the pre-processing of the message. During this step the platforms performs the authorisation

verification and some basic integrity checks on the incoming message. This pre-processing is

done synchronously for SOAP calls and asynchronously for messages submitted via JMS. It

is also possible to configure the platform to perform the XSD and Schematron validation of

the message in the pre-processing chain if the message is coming from the SOAP entry point.

At the end of this synchronous processing, the message is stored in the system's database and

routed to the ‘outbound processing for the Ack’ message handling chain and the

asynchronous processing channel via the system's internal integration queue.

e-TrustEx Software Architecture Document – Page 19 / 28
Document Version 2.4 dated 09/10/2019

The second step of the processing is the Asynchronous processing of the message by the

platform. In order to avoid sending big XML messages in the internal JMS queue, the pre-

processing chain just sends the internal id of the message that needs to be processed. The first

step of the Asynchronous processing is thus the retrieval of the message. The message is then

validated against the configured XSD and schematron files (optional).

The system supports parent child relationships between messages. It is possible to configure

in the platform's metadata an XQuery to retrieve the parent id of a specific document. The

message transformer extracts this ID from the message and places it in the header of the e-

TrustEx message, ensuring its availability through the message processing. The Parent id

Service Activator is responsible for linking the two messages in the system's database. The

system allows configuring its behaviour in case the parent document cannot be found. The

system can be configured to wait for the parent a given time period, to simply ignore the

absence of the parent or to generate an error in case of missing parent.

The Data Extractor is responsible for extracting data from the message by using XPath

expressions and saving the results to the database.

The message is then processed by the business service as described previously in this

document and dispatched to the ReceiverParty messaging endpoint by the Message

dispatcher. Currently the platform supports message dispatching to JMS queue or to a web

service endpoint. In the case of the web-service call message dispatching, the ReceiverParty

system must implement the exact same interface as the platform (submit bundle for instance).

Message dispatching is also configurable in the system's database.

Finally, the ‘outbound processing for the Ack’ message handling chain builds and, optionally,

signs an XML acknowledgement message that it returns to the caller.

e-TrustEx Software Architecture Document – Page 20 / 28
Document Version 2.4 dated 09/10/2019

7. DEPLOYMENT VIEW

The following is a description of the hardware nodes running the Execution Environment for

the system.

The following diagram, a UML deployment diagram, provides a view of hardware

components involved in this project.

 deployment Deployment Model - open etrustex

�

Components::

e-TrustEx

Components::

CIPAdmin

Nodes::Bina ries

File Sys tem

(SAN)

WildFly Application Serv er

Mysql Database

Nodes::Exte rnal

Systems

Components::

e-Procurement

SOAP Over h ttps | JMS

«Deployed in»

Jdbc

SOAP Over h ttps | JMS

<<Deployed in>> <<Deployed in>>

It is important to note that not all physical nodes are represented on this diagram. Indeed,

Database Servers and Application Servers could be duplicated for scalability and availability

reasons. Furthermore, security mechanisms like firewalls are not shown.

These are the identified hardware nodes.

 External System node is a system that can connect to e-TrustEx services that are

HTTP SOAP web services. External System can also submit message via JMS. As

we are considering large binary files, HTTP chunking ([REF16]) and MTOM

([REF15]) are supported;

 Wildfly application server 10.1.0.Final is responsible of the document management

and so the document routing, validation and persistence;

 MySql 5.5.x is responsible for the messages persistence and system configuration.

 The binary file system potentially shared is responsible of the storage of the large

binary file.

The platform has also been tested on the Oracle Weblogic application server 12c and the

Oracle 11g database.

e-TrustEx Software Architecture Document – Page 21 / 28
Document Version 2.4 dated 09/10/2019

8. IMPLEMENTATION VIEW

8.1. Overview

The following diagram describes the software layers of the system and their components

coupled with an explanation of each element.

External systems access the platform through the web layer if they are using the web service

interfaces or through the integration layer if they are using JMS. The web layer is also

responsible of the authentication check. Web service endpoints are implemented using the

Spring WS framework ([REF6]). This layer also holds the CIPAdmin component, a web

application using Spring Security, Spring MVC and JQuery.

The integration layer uses the Spring Integration framework ([REF5]) and is responsible for

the authorisation, the message validation and, more generally speaking, for the whole

message processing. The components included in this layer are detailed in the chapter 6.2.3

of this document.

The types layer contains all the java objects generated from the XSDs and WSDLs used by

the platform. These are JAX-B generated objects.

The services layer offers access to the domain objects of the platform as well as to the

platform's data layer. These services are Plain Old Java Objects relying on the Spring

framework ([REF4]) for dependency injection and for transaction management.

The Domain layer holds all the platform entities. The persistence of these entities is

implemented using the Java Persistence API version 2.0.

Finally, the data persistence relies on a database and a file system to persist the data. The file

system is used to store the large binaries and the database to persist the incoming messages

and the system configuration.

All these layers run on a J2EE application server. The platform has been tested on WildFly

10.1.0.Final and Weblogic 12c.

e-TrustEx Software Architecture Document – Page 22 / 28
Document Version 2.4 dated 09/10/2019

e-TrustEx Software Architecture Document – Page 23 / 28
Document Version 2.4 dated 09/10/2019

9. DATA VIEW

9.1. Data Model

The following diagram shows a high-level abstraction of the data entities that must be

implemented by the system:

The Document represents a certain type of data exchanged by parties. A Document is

identified by its type code and may have multiple versions. It has a state (e.g. received), and

may also have an associated state machine, which determines the valid state transitions based

on the actions that participating parties trigger on them.

A Transaction represents a service offered by the platform, an operation on a particular

document. A Transaction is defined by sender and receiver roles, and a Document which is

the subject of the transaction. A Transaction may have multiple versions. The submission of

a document wrapper is an example of transaction.

A Profile groups a set of transactions that can be used in the context of a business domain.

A BusinessDomain represents the specific context of a business. The parties are configured

to act in the context of an existing business domain, being able to execute specific operations,

which are configured at the level of the profile associated to the business domain.

A Party represents a user of the system, identified by its name. A party may have associated

credential information and always acts in the context of an existing business domain. It can

also represent another system needing to exchange documents through the platform.

PartyIdentifier holds additional identity information about parties, such as an identifier and

its scheme (e.g. Global Location Number, VAT Number).

e-TrustEx Software Architecture Document – Page 24 / 28
Document Version 2.4 dated 09/10/2019

The credentials specify credentials data, such as username and password. They are used by a

party to connect to the platform. It also holds information determining whether a party must

sign the messages it sends to the system or not.

Certificate: Stores certificate ([REF14]) data for encryption purposes.

The Role Entity defines roles available in the system. E.g. Customer, Supplier,

BundleExchanger.

PartyRole: One Party can fulfil different roles depending on which types of messages are

being exchanged. Message exchange transactions are based on a specified sender and

receiver role. One Party can have more than one role, and these roles can be used

independently.

PartyAgreement: Based on an agreement between parties, a party can have one or more

delegates, who are allowed to act on behalf of the delegating party generically or on specific

transactions. This relationship between parties is specified in the PartyAgreement.

The InterchangeAgreement specifies an interchange agreement between parties. An

interchange agreement has participating parties, and each of them is playing a certain role.

An interchange agreement may have a start date from which it is valid. The interchange

agreement models the document exchange contract between parties. Parties agree on a set of

business transactions, represented by a profile, that reflects the business they are doing

together.

CIALevel specifies a Confidentiality, Integrity and Availability levels tuple. A CIALevel can

be associated to an Interchange Agreement, Profile or Transaction.

A Message is an element of conversation between parties. It represents the information sent

from a sender party to a receiver party. A message has a status code, and associated

transaction.

A MessageBinary either contains the raw XML message that is stored by the system, either

is a placeholder which refers to a file in the file store.

StateMachine defines state machines for Documents, according to the SCXML specification.

A StateMachine defines valid states and transitions for a Document.

9.2. State Machines

9.2.1. Introduction

Each object of the system (including the Bundles) will have its own state machine. A state

machine is always initiated by a Sender. It starts with a specific message (e.g. "The Sender

sends a Bundle").

Only a message will be capable of passing an object from a state to the next one. A state

machine will never represent the workflow of the object in the receiver back-office. While

the object is in the receiver's application, the state of the object remains the same in e-

TrustEx, until the back-office notifies (via an Application Response) that the workflow is

complete.

The following sections illustrate the state machines which have to be supported by e-TrustEx.

Note: Once a state machine instance is started, each state transition is performed by the

transmission of a message. Each message is subject to logging and monitoring.

e-TrustEx Software Architecture Document – Page 25 / 28
Document Version 2.4 dated 09/10/2019

9.2.2. Generic State Machines

Most of the incoming objects will have the following state machine:

 stm Use Case Model

Init ial

�

Submitted

Rece iv ed Error

Approv ed Reje cted

Document

Processing not OKProcessing OK

Application ResponseApplication Response

9.2.3. The document bundle state machine

The document bundle has a specific state machine.

 stm Bundle State Machine

Init ial

�

Submitted

Error

Rece iv ed

Re ad

Document

Processing not

OK
Processing OK

[Applicatio n Response]

e-TrustEx Software Architecture Document – Page 26 / 28
Document Version 2.4 dated 09/10/2019

10. SIZE AND PERFORMANCE

10.1. Size

Size restrictions, not on the application or its components themselves, but on the data that is

being processed by e-TrustEx, have an impact on the architecture and configuration of the

system.

To support the exchange of large binary files, MTOM ([REF15]) may be used to avoid Base

64 encoding that leads to up to 30 % of size overhead.

To be able to control the incoming streams, HTTP chunking ([REF16]) is used. The binary

stream is read chunk by chunk, and, if the file size exceeds a given limit, the transmission is

automatically ended.

That way of working also avoids loading the entire file into memory. The binary file chunks

are stored in the e-TrustEx file system and kept during a given period (retention policy).

The implementers must determine the file system size, the database size and the maximum

size of document wrapper according to their needs. By default, the maximum size for large

binaries is 500 MB.

Extra restrictions can be implemented via the SLA (Service Level Agreement) policies.

These restrictions concern the maximum size of a document wrapper, the maximum number

of wrappers in a bundle and the maximum volume of data that can be sent by a party in a

given period (day, week or month).

10.2. Performance

An important architectural decision that benefits the performance of e-TrustEx includes the

decoupling of the solution into a synchronous and an asynchronous mode of communication.

The synchronous mode of communication is used by services in which the business response

is immediate and which requires limited processing. The asynchronous mode however is

aimed at services whose processing involves a series of long-running business actions which

often require workflow steps performed by the back-office. In this mode, an incoming

message will be stored in a queue where it waits to be read for further processing. If required,

the number of asynchronous processing threads can be modified both in the number of total

threads running and in the number of threads for a specific service (e.g. Submit Bundle). This

type of configuration is specific to each Java EE server.

11. QUALITY

The architecture of e-TrustEx contributes to quality aspects of extensibility, reliability and

portability in the following ways.

11.1. Extensibility

As indicated in “6.2 Architecturally Significant Design Packages”, External System node is a

system that can connect to e-TrustEx services that are HTTP SOAP web services. External

System can also submit message via JMS. As we are considering large binary files, HTTP

chunking ([REF16]) and MTOM ([REF15]) are supported.

As shown in "8 Implementation View", e-TrustEx is designed in a layered fashion and

consists of multiple interconnected modules. This modular design facilitates upgrades by

replacing existing modules and extensions by adding additional modules.

e-TrustEx Software Architecture Document – Page 27 / 28
Document Version 2.4 dated 09/10/2019

11.2. Reliability

The reliability of e-TrustEx is enhanced through the decoupling of each architectural layer by

JMS queues. A store and forward mechanism and automatic retry policy ensures that parts of

the system can continue functioning without losing data when an issue occurs in a specific

component.

11.3. Portability

The application can be deployed on WildFly Application Server ([REF8]) and can connect to

MySQL database.

As well as being extensible, e-TrustEx is carefully designed in such a way that it is

independent of the specific external system that it is serving. The use of generic HTTP SOAP

web services leaves the different layers unaffected when an additional external system needs

to be supported by e-TrustEx.

The usage of JPA to access the database makes it easy for implementers to change the

relational database used to store the platform data.

