

Existing Meta Data Standards to be
adopted for open information processing

applications

Report for ISA2 Action 2018.02 -

Processing Open Source Data with

Exchangeable Components

2019, V0.5

EUR XXXXX XX

This is a project related publication by the ISA2 Action 2018.02 – Processing Open Source Data with Exchangeable Components. Unit i.03

of the Joint Research Centre (JRC) manages the action. The JRC is the European Commission’s science and knowledge service. It aims to

provide evidence-based scientific support to the European policymaking process. The document’s content does not imply a policy position

of the European Commission. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the

use that might be made of this publication.

Contact information

Address: JRC I.3, TP440, Via Enrico Fermi 2749, 21027 Ispra (VA), Italy

Email: bertrand.de-longueville@ec.europa.eu

ISA2 Home Page

https://ec.europa.eu/isa2/home_en

Action 2018.02 Home Page

https://ec.europa.eu/isa2/actions/processing-open-source-data-exchangeable-components_en

Action 2018.02 EC Joinup

https://joinup.ec.europa.eu/collection/isa-action-201802-processing-open-source-data-exchangeable-components

Contents

1 Introduction ... 2

2 Apache UIMA – Unstructured Information Management Architecture .. 3

3 GATE – General Architecture for Text Engineering ... 4

4 KNIME Analytics Platform .. 5

5 Other Toolkits and Frameworks ... 6

5.1 OpenNLP ... 6

5.2 NLTK ... 6

5.3 Stanford NLP and Stanford CoreNLP .. 6

5.4 DKPro .. 7

5.5 Mallet .. 7

5.6 NLP4J .. 7

5.7 LingPipe ... 8

5.8 spaCy .. 8

5.9 AllenNLP ... 8

5.10 NLP Architect .. 8

5.11 FLAIR ... 9

6 Essential elements from GATE and Apache UIMA to derive ISA2 standard for processing open source

information... 10

6.1 Annotation Models .. 10

6.1.1 GATE ... 10

6.1.2 UIMA ... 11

6.2 Component Model .. 12

6.2.1 GATE ... 12

6.2.2 UIMA ... 13

6.3 Adapting features of KNIME, GATE, UIMA and other toolkits .. 13

Bibliography ... 15

1 Introduction

In the recent two decades, one could observe an emergence of various integrated

frameworks and toolkits designed for assembling natural language text processing chains.

For the purpose of this report, we decided to select a subset of such frameworks in order to

examine the meta-data standards for processing open source information. We used the

following criteria in the selection process:

Coverage: The range of the processing components covered

Popularity: The number of users, initiatives and projects which use the framework for

research or operationally

Project Health: The frequency of how new upgrades and features are released.

Multilinguality: The range of languages and language-specific resources covered

Portability: How usable the software is in different environments.

Modularity and Workflow Management: How modular the software is and how the

software supports assembling dedicated text processing chains. Especially important is the

combination of core processing components with clearly defined I/O specifications.

In principle, two frameworks are specialised for natural language processing and stand out

vis-a-vis the criteria above, namely Apache UIMA (Unstructured Information Management

Architecture) and GATE (General Architecture for Text Engineering). We will briefly describe

both frameworks in the following chapters. Additionally, we will describe the KNIME

Analytics Platform. This platform provides a framework aimed more broadly at data

processing than only natural language processing.

2 Apache UIMA – Unstructured Information Management Architecture

Apache UIMA [1] is an implementation of the UIMA standard for content analytics,

developed originally by IBM, which provides a component software architecture for the

development, discovery, composition, and deployment of multi-modal analytics for the

analysis of unstructured data and integration thereof with search technologies.

UIMA has been frequently used to build text mining applications, e.g., where one ingests

plain text collections as input and identifies entities, such as persons, places, organizations;

or relations, such as works-for or located-at in those texts. UIMA enables applications to be

decomposed into clear-cut components and assembling processing chains, e.g., "language

identification", followed by ”language specific segmentation", followed by "sentence

splitting", and finally followed by "entity mention detection”. Each component implements

interfaces defined by the UIMA framework and provides self-describing metadata via XML

descriptor files. The framework facilitates the management of these components and the

data flow between them. Native components are written in Java or C++ and the data that

flows between components is designed to support efficient mapping between these

languages.

UIMA also provides capabilities to wrap components as network services and facilitates

scaling through replicating processing pipelines over a cluster of networked nodes. Apache

UIMA includes APIs and tools for creating analysis components, including Text Mining-

relevant ones, e.g., tokenizers, text summarizers, text categorizers, parsers, named-entity

detectors etc. Many Apache UIMA community-created components exist. Apache UIMA also

supports the development and integration of analysis components developed in different

programming languages (e.g. Perl, Python, and TCL). It is worth mentioning that Apache

UIMA supports the development of multi-modal analytics, which apart from text, includes

processing of audio and video material. Apache UIMA is highly regarded for its modularity,

scalability and support for developing components in different languages, including Java,

C++ and Python.

3 GATE – General Architecture for Text Engineering

GATE [2] is a general-purpose infrastructure for developing and deploying software

components for processing human language and provides a workbench for Natural

Language Processing (NLP) (in a similar fashion Eclipse is a workbench for software

developers).

It is circa 15 years old and evolved over time and has a large community of active users. It

is used for implementing all types of text processing applications. In GATE philosophy, the

elements of software systems that process natural language are broken into various types

of components, known as resources.

Components are reusable software chunks with well-defined interfaces and are a popular

architectural style to modularize a software system. GATE components are specialised

types of modules and come in three flavours:

a) Language Resources (LRs), which represent entities such as lexicons, corpora or

ontologies

b) Processing Resources (PRs), which represent entities that are primarily algorithmic,

such as parsers, generators or n-gram modellers

c) Visual Resources (VRs), which encompass components for visualisation and editing

being part of GUIs.

The strength of GATE comes due to the wide range of language processing components

that come bundled with the framework, in particular for developing information extraction

applications and covering resources for processing texts in many different languages. Yet,

the essential part of GATE is GATE Developer, a development environment that provides a

rich set of graphical interactive tools for the creation of processing pipelines for processing

human natural language and carrying out measurement and maintenance thereof. These

processing pipelines can be exported to other GATE sub-frameworks for distributed quality

control and parallelisation, etc.

Another GATE sub-framework, namely, GATE Embedded, is an object library optimised for

inclusion in diverse applications giving access to all the services used by GATE Developer.

4 KNIME Analytics Platform

The KNIME Analytics Platform is an open source software that allows creating data

workflows (data pipelines) [3]. Besides the KNIME Analytics Platform, which is available as

open source, there is a commercial server product, called KNIME Server which can be used

to deploy analytical applications for operational use.

The software contains a visual editor that allows the user to assemble processing steps

(called Nodes) into a data workflow. Currently, there are over 2000 different processing

nodes provided to the user to be used for assembling a data workflow. The workflow

concept follows the classical ETL (Extract Transform Load) approach where data from

different source is gathered, transformed into a unified form and then loaded into an

analytical tool for further processing and analysis. KNIME is especially popular in the life

science domain where data science is heavily used for research purposes.

According to the selection criteria we outlined in the introduction chapter of this report,

KNIME covers a very wide range of processing needs. The software is very popular, and the

user base of the software is growing. Members of our Action’s stakeholder group have

reported that users of public authorities are also using the software. The software scores

also strong in other criteria, such a Project Health, Portability, and Modularity and Workflow

Management. The processing of data in the field of natural language processing however is

not per-se a core domain of KNIME. The KNIME documentation lists a Text Processing

section [4] which contains a technical report [5] about the text processing capabilities. As

can be seen from the examples in the report, KNIME text processing is driven by life science

use cases where pharmaceutical companies process patent applications and others

documents mostly in the domain of Competitive Intelligence.

KNIME is a promising platform in the field of open source data processing. However, to

make it applicable for processing open source data with means of natural language

processing more capable processing nodes need to be added to the platform.

5 Other Toolkits and Frameworks

Apache UIMA and GATE are the frameworks of primary importance for our report. However,

there are other frameworks and toolkits worth mentioning in this context. The reason is that

components provided by these frameworks might be reused for natural language

processing or higher-level text mining task and potentially integrated in Apache UIMA or

GATE. In particular, we list some of these tools here since the respective performance of

some of their core modules in terms of accuracy and/or coverage might be superior vis-a-

vis the ones available in GATE/UIMA or elsewhere. Some of them provide a wide range of

core components with different implementations, whereas others are model-based, i.e.,

models underlying specific components are trained using some specific machine-learning

paradigm.

5.1 OpenNLP

The Apache OpenNLP library [3, pp. 237-269] supports the most common NLP tasks, such

as tokenization, sentence segmentation, part-of-speech tagging, named entity extraction,

chunking, parsing, language detection, coreference resolution and document categorization.

These tasks are usually required to build more advanced text processing services. This

library is based on machine learning techniques; in particular, it includes a large number of

pre-built maximum entropy and perceptron-based machine learning models for a variety of

tasks and languages, as well as the annotated text resources that those models are derived

from. OpenNLP provides also functionality to train new models and evaluate them. All

components and functionalities are accessible through APIs or can be run from the

command line.

5.2 NLTK

NLTK - the Natural Language Toolkit [4] is a collection of independent core modules with

clear-cut I/O specifications and data sets supporting research and development in the area

of Natural Language Processing. NLTK toolkit is written in Python and is open source. NLTK

supports classification, tokenization, stemming, tagging, parsing, and semantic reasoning

functionalities. Each core module defines relevant basic data types and processing tasks

that are used within the toolkit. For instance, the tokenizer module provides basic classes

for processing individual elements of text, such as words or sentences. The tree module

defines data structures for representing tree structures over text, such as syntax trees and

morphological trees. Furthermore, the probability module implements classes that encode

frequency distributions and probability distributions, including a variety of statistical

smoothing techniques. NLTK is primarily intended to support research and teaching in NLP

and closely related areas.

5.3 Stanford NLP and Stanford CoreNLP

Stanford NLP and Stanford CoreNLP [5] are libraries core text processing modules that

cover most common natural language analysis steps and which are written in Python and

Java. Stanford tools can segment a text into sentences and words, lemmatise the latter

ones, compute the respective part-of-speech and morphological features and syntactic

structure of entire sentences, etc. Noteworthy, Stanford NLP provides neural models

supporting over fifty languages (with interfaces to train models for new languages

available). Stanford NLP/CoreNLP uses a uniform interface for adding annotations for a

given text by each core component and annotations computed by third-party components

can also be easily integrated, which made the Stanford toolkits popular in the community in

the context of assembling NLP annotation pipelines.

5.4 DKPro

DKPro is a community of projects focussing on building re-usable Natural Language

Processing software. In particular, DKPro Core [6] addresses tasks that are commonly

referred to as linguistic pre-processing, e.g. part-of-speech tagging, lemmatisation, parsing,

etc. Within DKPro Core, a steadily growing set of third-party tools and some original tools

for such tasks have been wrapped into interoperable and interchangeable components for

the Apache UIMA framework so they can be used interchangeably in UIMA processing

pipelines.

Interestingly, many of the core modules from Stanford NLP, OpenNLP, GATE and LingPipe

were integrated. DKPro Core builds heavily on uimaFIT (a library of Apache UIMA), which

allows for rapid and easy development of NLP processing pipelines, for wrapping existing

tools and for creating original UIMA components. Other projects, e.g. DKPro WSDm, DKPro

Similarity, DKPro WSD focus on the development of tools for word sense disambiguation,

text similarity algorithms and text classification respectively.

5.5 Mallet

MALLET [7] is an open source Java library for statistical natural language processing, which

provides tools for carrying out higher-level natural language processing tasks, including:

— document classification,

— clustering,

— topic modelling,

— information extraction, etc.

It also provides routines for converting text to features and numerical representations, a

wide variety of machine learning algorithms, tools for sequence tagging for applications,

etc. MALLETs main strength lies in efficient implementation of the various tasks and

routines.

5.6 NLP4J

Natural Language Processing for JVM languages (NLP4J) [8] provides NLP components for

carrying out the following core linguistic analysis tasks:

— Tokenization

— Morphological analysis

— Part-of-speech tagging

— Named-entity recognition

— Syntactic parsing.

Some of the components are based on machine learning techniques and NLP4J provides

functionalities to train the respective models on data provided. by the user. NLP4J comes

equipped with models for processing English texts

5.7 LingPipe

LingPipe is a suite of Java libraries for the linguistic analysis of texts [9], with a particular

focus on information extraction, i.e., named-entity recognition, entity linking, relation

extraction, and other standard NLP tasks such as language detection, part-of-speech

tagging, syntactic parsing, text classification, clustering and sentiment analysis. Although it

is no longer under active development, it is listed here since many wrappers for LingPipe

component exist, and are still in use.

5.8 spaCy

SpaCy is an open-source library for carrying out various core NLP task written in Python

[10]. The pool of components provided encompasses:

— tokenization

— part-of-speech tagging

— syntactic parsing

— lemmatization

— sentence boundary detection

— named-entity recognition

— text similarity computation

— text classification

— pattern matching based on linguistic information

— others

While spaCy supports processing texts in up to 50 languages, it is not designed to allow

exchanging components with external frameworks. Furthermore, it is less configurable than

Stanford NLP, Open NLP and NLTK since it is more industry-oriented vis-a-vis the more

research-oriented toolkits like the ones mentioned before. Noteworthy, spaCy comes with

pre-trained statistical models and word vectors (word embeddings) for multiple languages.

5.9 AllenNLP

AllenNLP [11] is an Apache 2.0 NLP research library, built on PyTorch [12], for developing

deep learning models for a wide variety of higher-level text mining tasks. In particular,

AllenNLP include reference implementations of models for Semantic Role Labelling and

Question Answering.

5.10 NLP Architect

Analogously to the AllenNLP, NLP Architect [13] is an open-source Python library for

exploring deep learning topologies and techniques for natural language processing and

natural language understanding tasks. It builds on top of TensorFlow and comes with pre-

trained models for named-entity recognition, parsing, intent extraction and question

answering.

5.11 FLAIR

Flair [14] is another Python-based NLP toolkit that covers functionalities such as named

entity recognition, part-of-speech tagging, sense disambiguation and text classification. It

exploits PyTorch for the purpose of learning models for the various NLP tasks. It comes

with a library of word embeddings, also multilingual ones, i.e. one model covers many

languages.

6 Essential elements from GATE and Apache UIMA to derive ISA2 standard

for processing open source information

In this section, we describe the relevant elements of GATE and UIMA for the elaboration of

meta-data standards for processing open source information.

Both GATE and UIMA provide data and processing models, respective APIs, and a GUI-based

tool that facilitate assembling pipelines of arbitrary NLP components. Either framework

provides a certain level of genericity, i.e., means to easily plug-in new and external

components and exploit and merge their results with other components. Furthermore, there

is a fair amount of interoperability between the two frameworks through provision of

wrappers and interfaces enabling UIMA run GATE components and vice-versa.

Both GATE and UIMA facilitate assembling text document processing pipeline architectures.

UIMA is a more generic framework providing containers with standard I/O interfaces to plug

in "engines". The processing is not only limited to analysing texts but encompasses any

unstructured information, and where the focus is on performance, scalability (native

support for distributed processing via web services) and strong support to integrate

components written in different programming languages. UIMA is certainly the most

evolved and comprehensive architecture regarding the infrastructural capabilities. UIMA can

be seen as a generalisation of GATE. GATE, on the other hand, is considered a framework

for assembling specifically text processing engines that comes equipped with a large

reservoir of pre-cooked solutions and linguistic/processing resources, and is relatively easy

to configure due to its less generic character.

6.1 Annotation Models

6.1.1 GATE

GATE uses the notion of feature maps, which are used for annotation purposes. Features in

GATE are simply attribute-value pairs, where attributes are strings, and values are arbitrary

Java objects. Feature maps are used to associate data with individual annotations,

documents and document corpora.

Document annotation is considered in GATE as forming a directed acyclic graph. The nodes

of the graph are text offsets into the document (between characters) and the edges are

annotations of all sorts between nodes. Each annotation consists of five elements:

• annoId: an (int) identifier

• annoType: a type (represented as string), eg. token, sentence, etc.

• annoStart: start Node

• annoEnd: end Node

• annoFeatures: a feature map adding additional information

In GATE, the feature map above may include any features, with any values. A text in GATE

can be associated with annotations and metadata, i.e., a Document consists of:

• docContent: text of the document
• docFeatures: meta-data attributes (a feature map)
• docAnnotations: a non-empty set of annotations (set of annotation sets)

Analogously, a Corpus consist of:

• corpusDocs: a non-empty set of documents
• corpusFeatures: accompanying metadata (feature map), e.g., information on

who created the corpus, and/or what tool was used

Noteworthy, annotations are grouped into multiple annotation sets. This feature might be

used to associate each annotation set with a different meta-data, e.g., on who and/or what

tools were used to generate them.

6.1.2 UIMA

The first important fact is that UIMA can produces annotations for different types of

content, e.g., text, audio, video, etc. For annotations so-called “type hierarchies” are used,

i.e., own type classes and subclasses are defined. In contrast to GATE’s approach, feature

structures used for creating annotations are strictly typed and different types of documents

have different kinds of annotations specified using a concrete type class. Each type class

has a set of features and new classes can be derived using single class inheritance.

Features on the other hand have a type class, and cardinality (lower and upper bound).

Features come in two varieties, namely, “attributes”, whose type must be one of the

primitives classes, and “references”, whose type is a class. UIMA provides a base type

system from which other type systems can be derived and which is assumed to be common

across all UIMA-based applications. In particular, the base type system defines primitive

types like strings, integers, floats, etc.

The base type system in UIMA defines the notion of an Annotation, which in principle is:

• an object of certain type

• with regional references, e.g., offsets for textual data

• on a Subject of Analysis, so called “SOFA” (e.g., text)

Similar to GATE, the annotation is standoff on text documents using some positional

information, however, UIMA adds an additional layer of abstraction, namely, subjects of

analysis and regional references.

The annotations are represented with “Annotation” classes in UIMA, whereas each of the

annotations uses “SofaReference” pointers to refer to the content being annotated so

that references can be shared by annotations.

While in GATE, one "annotates" documents and document corpora, in UIMA a more generic

concept of a Common Analysis Structure (CAS) is used, namely, a sort of self-contained

bundle consisting of:

• an artifact representing any kind of unstructured data,

• related annotations and metadata (in UIMA annotations are part of the metadata)

• the type system used by the annotations

It is important to emphasize that artifacts may not necessarily be single documents, but

they could potentially be a set of multiple objects of different modalities. Annotations are

grouped into a set of views on their artifacts, which provide a particular interpretation on

the given artifact. The introduced CASs constitute I/O structures that UIMA components

consume and produce.

6.2 Component Model

This section provides some details on the component models used in GATE and UIMA.

6.2.1 GATE

GATE components are subdivided into three types:

• LanguageResources (LRs) which encompass entities such as lexicons, corpora

or ontologies,

• ProcessingResources (PRs) which encompass entities that are primarily

algorithmic, such as parsers, generators or ngram modellers, and

• VisualResources (VRs) which represent visualisation and editing components

that participate in GUIs.

A component (resource) in GATE may be implemented using a variety of programming

languages and/or databases, but they must be represented to the framework as a Java

class. The entire set of components integrated in GATE is referred to as CREOLE: a

Collection of REusable Objects for Language Engineering.

Component implementations are grouped together as ‘plugins’ and stored typically in a

single JAR file or in binary serialised form (linguistic resources) in the local file system. Once

a plugin is loaded into GATE, it looks for an XML configuration file in order to identify which

resources are declared and which classes need to run. Then it initializes the respective

resources, which are then added to the CREOLE register. This register is used by GATE to

return Instantiations of the registered resources on request of the user.

The GATE framework can be seen as a backplane into which users plug CREOLE

components, which are loaded on starting the system. In principle, the backplane carries out

the following four tasks:

• component discovery, (loading and reloading,

• management and visualisation of native data structures for common information

types,

• data storage

• process execution

The framework together with a set of components constitutes a deployment unit, which can

be embedded in other applications.

All GATE resources are Java Beans.

Processing resources can be combined into applications, which are called Controllers in

GATE. There are two “pipeline” control flows in GATE:

• simple pipelines that group a set of processing resources together in order and

execute them in turn, and

• corpus pipelines that are specifically applied to corpora, where each document is

processed by all processing resources in turn

Controllers provide ways to define conditions that need to be matched by documents in

order to be processed. Controllers may be equipped with methods that are called at the

start and end of the execution of all processing resources in the pipeline. Other parameters

of the controllers allow specifying a timeout parameter to determine the maximum amount

of time allowed for the processing of a document.

Language Resources can be stored in data stores, of which two types are available:

• Serial data stores based on Java’s serialisation system, and

6.2.2 Lucene data stores which utilise the annotation indexing and retrieval capabilities

of Lucene [15] UIMA

The atomic processing unit in UIMA is called “Annotator”. Annotators analyse artifacts and

create additional data (metadata) about that artifact (e.g., names found in a textual

document). They do not need to be aware about the details of their deployment and

interaction with other annotators, etc.

An Analysis Engine (AE) is a program that analyses artifacts (e.g. documents) and infers

information from them. They are constructed from annotators. An AE may contain just a

single annotator, which is referred to as a Primitive AE, or it may be a certain composition

of multiple annotators, which is referred to as an Aggregate AE. At the programming level,

there is no difference between primitive and aggregate AEs. Both implement the same

programming interface and can be used interchangeably.

6.3 Adapting features of KNIME, GATE, UIMA and other toolkits

Within the context of the ISA2 action on developing a good practice set of meta-data

standards for open source information processing applications we can conclude:

• A core requirement is that analysts can quickly test a processing pipeline against

open source data. For this requirement, the KNIME Analytics Platform represents an

excellent solution, since it provides a visual editor which allows rapid prototyping. In

addition, the modular approach allows to plug in additional functionality to process

specific data. The built-in modules for natural language processing seem to be

rather basic. Therefore, an upgrade with better language processing capabilities is

required.

• All clear-cut I/O interfaces defined for core linguistic processing tasks need to

correspond to core functionalities of interest to end-users. End-users are users who

design higher-level applications for processing open source information and are

interested in exploiting and analysing the data. To be more precise, it is out of scope

to define abstractions for core linguistic analysis such as tokenization, part-of-

speech tagging, and syntactic parsing. In contrast, end-users are interested in core

functionalities that are needed to design interoperable interfaces, such as dictionary

look-up, name recognition and event extraction.

• While GATE provides concepts and processing modules to work with text in order to

create NLP solutions it is, however, mostly restricted to this text-only domain.

Compared to KNIME it does provide less tools to extract text from binary formats or

from databases. GATE is at its core a workbench to deal with NLP problems. GATE’s

practical appeal for rapid OSINT prototyping that needs an end-to-end solution is

limited where input texts can exist in many different representations.

• The plugin-model of GATE to add functionality to the platform is compared to

KNIME more specific to NLP functions and therefore does not have the same wide

appeal to process data from different sources.

• UIMA provides a level of genericity that requires a substantial overhead to make

external processing resources compliant with it. The strict typisation mechanism

used by UIMA represents a clear benefit. However, the typisation should be strictly

limited to the particular domain of processing open source information and with

some types declared invariant.

• Going forward, it is needed to define a pragmatic abstract layer for natural

language processing which allows to produce product agnostic processing modules.

In addition, an adaptation layer to integrate these modules into KNIME would lead to

synergies between more capable text processing and the rapid prototyping and

visual editor capabilities offered by KNIME. The rapid prototyping characteristic of

KNIME is supported by a wide range of processing nodes which allow to extract and

transform source documents to texts and also provide powerful analytical functions

to make sense of the processed data.

Bibliography

[1] R. &. G. I. Eckart de Castilho, “A broad-coverage collection of portable NLP

components for building shareable analysis pipelines,” in Proceedings of the

Workshop on Open Infrastructures and Analysis Frameworks for HLT, 2014.

[2] H. Cunningham, V. Tablan, A. Roberts and K. Bontcheva, “Getting More out of

Biomedical Documents with GATE's Full Lifecycle Open Source Text Analytics,” PLoS

computational biology, vol. 9, no. 2, p. e1002854, 2013/02/01.

[3] K. AG, “KNIME,” [Online]. Available: https://knime.com.

[4] K. AG, “KNIME Text Processing,” [Online]. Available: https://www.knime.com/knime-

text-processing.

[5] K. Thiel and M. Berthold, “The KNIME Text Processing Feature - An Introduction,”

2012. [Online]. Available:

https://www.knime.com/sites/default/files/knime_text_processing_introduction_tech

nical_report_120515.pdf.

[6] T. Kwartler, Text Mining in Practice with R, John Wiley & Sons Ltd, 2017.

[7] E. Loper and S. Bird, “NLTK: The Natural Language Toolkit,” in ETMTNLP '02

Proceedings of the ACL-02 Workshop on Effective tools and methodologies for

teaching natural language processing and computational linguistics, Philadelphia

(PA), 2002.

[8] C. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard and D. McClosky, “The

Stanford CoreNLP Natural Language Processing Toolkit,” Proceedings of 52Nd Annual

Meeting of the Association for Computational Linguistics: System Demonstrations,

vol. 01, no. 01, 2014.

[9] I. G. Richard Eckart de Castilho, “A broad-coverage collection of portable NLP

components for building shareable analysis pipelines,” in Proceedings of the

Workshop on Open Infrastructures and Analysis Frameworks for HLT, Dublin, Ireland,

2014.

[1

0]

A. K. McCallum, “MALLET: A Machine Learning for Language Toolkit,” 2002. [Online].

Available: http://mallet.cs.umass.edu.

[1

1]

“NLP4J,” [Online]. Available: https://emorynlp.github.io/nlp4j/.

[1

2]

“LingPipe,” [Online]. Available: http://alias-i.com/lingpipe-3.9.3/.

[1

3]

“spaCy,” [Online]. Available: https://github.com/explosion/spaCy.

[1

4]

M. G. J. N. M. T. O. D. P. L. N. P. M. S. M. Z. L. Gardner, “AllenNLP: A Deep Semantic

Natural Language Processing Platform,” 2017. [Online]. Available:

https://www.semanticscholar.org/paper/A-Deep-Semantic-Natural-Language-

Processing-Gardner-Grus/a5502187140cdd98d76ae711973dbcdaf1fef46d.

[1

5]

“PyTorch,” [Online]. Available: https://pytorch.org/. [Accessed 23 08 2019].

[1

6]

“NLP Architect,” Intel, [Online]. Available: https://www.intel.ai/introducing-nlp-

architect-by-intel-ai-lab.

[1

7]

“flair,” [Online]. Available: https://github.com/zalandoresearch/flair.

[1

8]

A. Foundation, “Apache Lucene,” [Online]. Available: https://lucene.apache.org/.

X
X
-N

A
-X

X
X
X
X
-E

N
-N

