

EUROPEAN COMMISSION – EUROSTAT UNIT C2

CONTRACT: 20102.2010.003-2010.520

CALL FOR TENDER: 2010/S 109-164439

NATIONAL ACCOUNTS METHODOLOGICAL AND PRACTICAL IMPROVEMENTS: NAMP c4 (LOT 10)

IMPROVED SPECIFIC IT TOOLS FOR THE COMPILATION OF NATIONAL ACCOUNTS

JECOTRIM USER MANUAL

Project Manager, Eurostat: Luis Biedma (luis.biedma@ec.europa.eu)

Project Manager, Hendyplan: François Libeau (<u>francois.libeau@hendyplan.com</u>)

UPDATED ON: 22TH MARCH 2013

TABLE OF CONTENTS

1.	IN	TRODUCTION	6
2.	CO	MMON FEATURES	6
2.1.	Wł	HAT IS JECOTRIM?	6
2.1	.1.	JECOTRIM BASICS	.7
2.1	.2.	INSTALLING JECOTRIM 1	14
2.2.	IM	PORTING DATA	22
2.3.	SES	SSION IN JECOTRIM	27
3.	JEC	COTRIM INTERACTIVE MODE	28
3.1.	TIN	ME SERIES DISAGGREGATION TECHNIQUES	28
3.1	.1.	CHOW AND LIN (1971)	28
3.1	.2.	FERNÁNDEZ (1981)	45
3.1	.3.	LITTERMAN (1983)	49
3.2.	BE	NCHMARKING TECHNIQUE – Modified Denton (1984)	52
3.3.	RE	CONCILIATION TECHNIQUE – The Two step procedure5	55
3.3	.1.	Principles of the algorithm	55
3.3	.2.	Usage from the interface	57
3.4.	MA	ATRIX BALANCING TECHNIQUE – RAS-PM (1964)	65
4.	BR	IDGE FROM ECOTRIM FOR WINDOWS	70

TABLE OF FIGURES

Figure 1. Interactive mode	9
Figure 2. Batch mode	10
Figure 3. The Providers Window	10
Figure 4. Workspace Window	11
Figure 5. Main tool bar	11
Figure 6. Methods performed by JEcotrim	12
Figure 7. Families of tools	12
Figure 8. Menu Plugins.	14
Figure 9. Plugins window.	15

Figure 10. Add Plugins window	5
Figure 11. Plugins window after choosing the modules16	5
Figure 12. Plugin installer window 1	7
Figure 13. Plugin installer window 2	9
Figure 14. Validation warning19	9
Figure 15. Plugin installer window 3)
Figure 16. Menu Statistical methods after installation.	1
Figure 17. A1_A series aggregated series)22	2
Figure 18. A1_Q series (related series)23	3
Figure 19. Providers window in JDemetra+23	3
Figure 20. First step in loading data process25	5
Figure 21. Second step in loading dataset25	5
Figure 22: Second to last step of loading dataset27	7
Figure 23. Final view of loaded dataset27	7
Figure 24. Chow-Lin method selection29	9
Figure 25. Overview of the main window for Chow-Lin technique29	9
Figure 26. Detailed view of the left-hand side of Chow-Lin's window)
Figure 27. Detailed view of the central window of Chow-Lin's)
Figure 28. Overview of the "Specifications" menu for Chow-Lin's)
Figure 29. Detailed view of the "Specifications" menu which contains its legend32	2
Figure 30. Loading aggregated series	2
Figure 31. Annual series to be disaggregated	3
Figure 32. Loading related series	3
Figure 33. Related series loaded	3
Figure 34. Specifications menu	4
Figure 35. Constant term included or not in the model	4
Figure 36. Selection of the type of the temporal aggregation	5
Figure 37. Decision about AR parameter (estimated)	5
Figure 38. Decision about AR parameter (fixed by user)37	7
Figure 39. Decision about the estimation method	7
Figure 40. Automatic scanning procedure38	3
Figure 41. Fixed scanning procedure (by user)	3
Figure 42. Output menu (Chow-Lin's)	9
Figure 43. Grid that provides the disaggregated estimated series. (Chow-Lin's)40)

Figure 44. Graphical view of the previous "Grid" (Chow-Lin's)	41
Figure 45. Estimated regression coefficients (Chow-Lin's).	42
Figure 46. Summary of statistics (Chow-Lin's).	43
Figure 47. Estimate AR parameter (Chow-Lin's).	44
Figure 48. Scanning procedure output (Chow-Lin's)	44
Figure 49. Fernández technique selection.	45
Figure 50. Overview of the main window for Fernández's	45
Figure 51. Options for Fernández technique.	46
Figure 52. Grid of the disaggregated series (Fernández's)	47
Figure 53. Estimated regression coefficients (Fernández's).	48
Figure 54. Summary of statistics (Fernández's).	48
Figure 55. Litterman method selection	49
Figure 56. Main window for Litterman method (overview)	49
Figure 57. Grid of the disaggregated series (Litterman's)	50
Figure 58. Estimated regression coefficients (Litterman's)	50
Figure 59. Summary of statistics (Litterman's).	51
Figure 60. Estimate value for the parameter of interest.	51
Figure 61. Output of the scanning procedure (Litterman's)	52
Figure 62. Modified Denton benchmarking technique selection.	53
Figure 63. Main window for Modified Denton technique (overview)	53
Figure 64. Allowed modifications in the Modified Denton technique	54
Figure 65. Benchmarked series	54
Figure 66. Graphical representation of the benchmarked series	55
Figure 67. Two-step procedure selection	57
Figure 68. Main window for Two-step method.	57
Figure 69. Inputs in a Two-step procedure.	59
Figure 70. The "Load matrix" button	59
Figure 71. Matrix loaded	60
Figure 72. Choice of the First step tolerance	61
Figure 73. Benchmarking estimation method selection	62
Figure 74. Type of temporal aggregation (Two-step method)	63
Figure 75. Grid of reconciliated series	63
Figure 76. Chart of the reconciliated series	64
Figure 77. Summary of descriptive information.	64

Figure 78. RAS-PM selection	65
Figure 79. Main view of the RAS-PM Workspace (overview)	66
Figure 80. Inputs in RAS-PM technique.	66
Figure 81. How to load matrices.	67
Figure 82. Loading matrix to be balanced	67
Figure 83. Loading row marginal totals	68
Figure 84. Loading column marginal totals	68
Figure 85. Available modifications in "Specifications" menu for RAS-PM	68
Figure 86. Message of convergence for RAS-PM	69
Figure 87. Balanced matrix by RAS-PM	69

Bibliography

Barcellan, R. and Buono D. (2002). ECOTRIM Interface (Version 1.01) User Manual Draft -Including Case Studies and Examples-.

Cholette, P. (1984). Adjusting sub-annual series to yearly benchmarks. *Surv. Methodol.*, 10, 35–49.

Chow G. and Lin A.L. (1971). Best linear unbiased Interpolation, Distribution and Extrapolation of Time Series by Related Series, *The Review of Economics and Statistics* 53 (4), pp. 372-375.

Denton, F.T. (1971). Adjustment of monthly or quarterly series to annual Totals: An Approach based on quadratic Minimization, *Journal of the American Statistical Association* 66 (333), pp. 99-102.

Di Fonzo, T. and Marini, M. (2011). Simultaneous and two-step reconciliation of systems of time series: methodological and practical issues. *Journal of the Royal Statistical Society, Appl. Statist* 60, Part 2, pp. 143-164.

Fernandez, R.B. (1981). A methodological Note on the Estimation of Time Series, *The Review of Economics and Statistics* 63(3), pp- 471-476.

Lahr, M.L. and De Mesnard, L. (2004). Biproportional Techniques in Input-Output Analysis: Table Updating and Structural Analysis. *Economic Systems Research 16* (2), pp. 115-134.

Litterman R.B. (1983). A Random Walk, Markov Model for the distribution of Time Series, *Journal of Business and Statistics*, 1,169-173.

Quenneville, B. and Rancourt, E. (2005). Simple methods to restore the additivity of a system of time series. *Workshop Frontiers in Benchmarking Techniques and Their Application to Official Statistics, Luxembourg, Apr.* 7th–8th.

1. *INTRODUCTION*

This manual is about using the software package called JEcotrim, to supply various tasks required by the Eurostat. The data for all of the examples used herein are available in a separate library of files.

The chapters are arranged in the following order: Chapter 1 introduces the general features of the software and shows the basics. Chapter 2 describes the functionalities on the main tool bar menu. Chapter 3 provides a brief yet detailed description of the different techniques covered in the package and gives the user the instructions how to reproduce those in the interactive mode. Chapter 4 is providing some recommendations for Ecotrim for Windows users.

Finally, the Annexes contain useful information on terminology and definitions. Please note that this user guide contains information about how to use the JEcotrim interface and summaries of the methods about the methodology. For more details about them, please refer to the bibliographical references.

This documentation is also focusing on the specificities of JEcotrim. The interactive interface is built on top of the JDemetra+ system, the functionalities of which are assumed to be known. Please refer to the general JDemetra+ documentation for details about them.

This guide covers the interactive mode, meaning the usage of the graphical User Interface. It allows the computation of one method at a time. For the computation of multiple steps at a time, please refer to the BATCH user guide as a separate document.

2. Common features

This chapter introduces some of the basic features of the JDemetra+ interface and of the JEcotrim module. It shows the process of installing the JEcotrim module, how to surf around windows and deployable menus and finally how to import data and workspaces.

2.1. WHAT IS JECOTRIM?

JEcotrim can be defined simply as an update of Ecotrim v.1.01 developed for Windows and written by 2SDA (Statistical Studies and Data Analysis, Luxembourg) on behalf of Directorate B Economic Statistics and Economic and Monetary Convergence of Eurostat, the Statistical Office of the European Union. This new software comprises a lot of remarkable improvements and corrects important errors present in the Ecotrim v.1.01.

JEcotrim is easy to use and reasonably powerful, containing procedures based on temporal disaggregation, benchmarking, reconciliation of low frequency series and matrix balancing via complex mathematical and statistical methods. As mentioned, JEcotrim takes the form of a user-friendly interface allowing the management of the program facilities.

2.1.1. JECOTRIM BASICS

There are several different ways to work in JEcotrim. The easiest and most intuitive way to use it is through its interactive mode. This mode should be familiar to most users that are accustomed to using Ecotrim v.1.01. It consists basically of open windows and dialog boxes. Thus, the user selects the series object of analysis, fills in the desired menus and corresponding specifications and clicks on the "Apply" button and the program generates the desired results together with a set of different statistics assessing the goodness and accuracy of the outputs.

Also, JEcotrim provides a set of complementary useful concepts as Ecotrim v.1.01, which depends upon the employed technique¹, such as reliability indicators, confidence intervals and growth rates.

Figure 1 shows the interface of the interactive mode in JEcotrim while

 $^{^{1}}$ Note that the aforementioned concepts are not available for mathematical methods but only for statistical ones.

Figure 2 shows the batch mode. In the former, we can find the "Providers Window" (Figure 3) and the "Workspace window" (Figure 4).

As for the other way, the batch mode, JEcotrim offers a way in which the user can load any xml file and execute it. A keyboard shortcut (Ctrl+B) is also valid to activate this batch mode.

Figure 1. Interactive mode

NbDemetra 1.1.0					
File Statistical methods View Tools Window Help					
📲 🆻 🥐 👫 Chart & grid	•				
Providers Window 10 Image: Constraint of the second sec					
Workspace Window % Workspace_1 Image: Seasonal adjustment Image: Seasonadjustment Image: Seasonal adju					

Figure 2. Batch mode.

🗔 Batch	
File:	
No set	
	Close

Figure 3. The Providers Window.

Figure 4. Workspace Window.

Workspace Window %			
🗋 Wa	rkspace_1		
🕂 … 🕅	Modelling		
🛨 ··· 🖻	Seasonal adjustme	ent	
🛨 💦	National Accounts	Tools	
÷ 🕡	Utilities		

Figure 5. Main tool bar.

NbDemetra 1.1.0					
File Statistical methods	View	Tools	Window	Help	
B. 6 / 2 .	Char	t & arid			-

The "Statistical methods" pull-down menu presents several groups of methods. Only the group "National Accounts Tools" belongs to the JEcotrim package. The others are either part of JDemetra+ or have been added as other plug-ins to JDemetra+.

The JEcotrim methods can be gathered into four different families, namely: temporal disaggregation techniques, benchmarking techniques, reconciliation techniques and matrix balancing techniques.

These families of methods appear in the Workspace window, under the branch 'National Accounts Tools'.

Figure 6. Methods performed by JEcotrim.

NbDemetra 1.1.0						
File Statistical methods View Tools Win	File Statistical methods) View Tools Window Help					
Modelling	•					
Modelling National Accounts Tools > Pro Seasonal Adjustment CODEC DSNs CODEC DSNS COD	Modified Denton Chow-Lin Fernández Litterman RAS-PM Two step reconciliation					

Figure 7. Families of tools

2.1.2. INSTALLING JECOTRIM

As a pre-requisite, JEcotrim needs JDemetra+ (a.k.a. NbDemetra or JDemetra or Demetra+) to be installed in the user's environment. The required version of JDemetra+ is 1.1.0.

If JDemetra+ is not installed (and working properly) or if it is not in the required version, please install the required version first. JDemetra+ can be found here: <u>http://www.cros-portal.eu/content/jdemetra</u>.

Once it is checked that JDemetra+ is installed in a suitable version, the installation of the JEcotrim module is done as follows.

In JDemetra+, select the 'Plugins' in the menu 'Tools'.

NbDemetra 1.1.0			
File Statistical methods View Too	ols) Window Help		
Providers Window 22 Providers	Container Spectral analysis > Differencing Plugins Options		
Workspace Window 18 Workspace 1 Seasonal adjustment Utilities			

Figure 8. Menu Plugins.

In the window 'Plugins' which is now displayed, switch to the tab 'Downloaded' and click the button 'Add Plugins...'.

Figure 9. Plugins window.

Plugins	X			
Updates Available Plugins Downloaded Installed (11) Settings				
Add Plugins	Search:			
Install Name				
Install				
	Close Help			

In the window 'Add Plugins' which is now displayed, browse to the directory where your JEcotrim plugins are saved, select them all then click the button 'Open'.

The plugins you have to select are the following files:

- EcotrimPMRas-1.1.0.nbm
- JEcotrimBatch-1.1.0.nbm
- ModifiedDenton-1.1.0.nbm
- TemporalDisaggregation-1.1.0.nbm
- TSAdjustToolBox-1.1.0.nbm

Figure 10. Add Plugins window.

Add Plugins			×
Look in:	🕕 JEcotrimPlu	ugins 👻 🦻 📰 🗸	
Recent Items	EcotrimPN JEcotrimB ModifiedD Temporall	//Ras-1.1.0.nbm atch-1.1.0.nbm Denton-1.1.0.nbm Disaggregation-1.1.0.nbm polBox-1.1.0.nbm	
Desktop			
My Documents			
Computer			
Network	File name:	Disaggregation-1.1.0.nbm" "TSAdjustToolBox-1.1.0.nbm"	20en
	Files of type:	Plugin distribution files (*.nbm)	Open select

The window 'Plugins' should now look as follows. In this window, click the button 'Install'.

Note: in the following windows, the order of display of the plugins in the list may differ from the pictures, depending on the way you selected the plugins in the previous window. This is not a problem, since this order is indifferent.

Figure 11. Plugins window after choosing the modules.

Plugins				
Updates Available Plugins Downloaded (5) Installed (11) Settings Add Plugins Search:				
Install Name	ModifiedDenton			
ModifiedDenton				
TemporalDisaggregation SAdjustToolBox	🙀 Community Contributed Plugin			
Image: Weight of the second secon	Version: 1.1.0 Date: 21/03/13 Source: ModifiedDenton-1.1.0.nbm Plugin Description			
Install 5 plugins selected	Close Help			

In the window 'Plugin Installer' which appears, click 'Next'.

Figure 12. Plugin installer window 1.

Plugin Installer	×
Welcome to the Plugin Installer The installer will download, verify and then install the selected plugins.	
The following plugins will be installed:	
EcotrimPMRas [1.1.0] ModifiedDenton [1.1.0] NbDemetra - JEcotrim - Batch [1.1.0] TemporalDisaggregation [1.1.0] TSAdjustToolBox [1.1.0]	
< Back Next Cancel] Help

In the next window, check 'I accept the terms in all of the license agreements.' then click the button 'Install'.

Figure 13. Plugin installer window 2.

Plugin Installer	×			
License Agreement Please read all of the following license agreements carefully.				
In order to continue with the installation, you need to agree with all of the license agreements associated with the particular plugins.				
Plugins: TemporalDisaggregation [1.1.0]	•			
<here comes="" license="" the=""></here>				
Unknown license agreement				
I accept the terms in all of the license agreements.				
< Back Install Cancel	Help			

In the window 'Validation Warning', click the button 'Continue'.

Figure 14. Validation warning.

💽 Validat	tion Warning
<u> </u>	The following plugins are not signed:
	TemporalDisaggregation EcotrimPMRas ModifiedDenton NbDemetra - JEcotrim - Batch TSAdjustToolBox Warning: Installing untrusted plugins is potentially insecure. Use unsigned or untrusted plugins at your own risk.
	Continue

After a while, the following window should appear, telling that the installation was successful.

Figure 15. Plugin installer window 3

Plugin Installer	x
Installation completed successfully Click Finish to quit the installer.	
The Plugin Installer has successfully installed the following plugins:	
EcotrimPMRas ModifiedDenton NbDemetra - JEcotrim - Batch TemporalDisaggregation TSAdjustToolBox	
Finish	Help

Click the button 'Finish' in this window and the button 'Close' in the window 'Plugins'.

The installation of JEcotrim module is done, as you can check in the menu 'Statistical methods'.

Figure 16. Menu Statistical methods after installation.

🖪 NbDemetra 1.1.0				
File Statistical methods) View Tools Window Help				
He [statistical methods] View Tools Window Help Modelling National Accounts Tools Pro Seasonal Adjustment B- ODBC DSNs B- Spreadsheets B- B- Txt files B- C Xml files Workspace 1 B- Seasonal adjustment	iliation			

There is now a new menu item 'National Accounts Tools' besides the other existing modules and this menu contains 6 methods, as seen in the above picture.

<u>Important</u>: Restart JDemetra+ before using JEcotrim module. It will not work properly unless you restart JDemetra+.

2.2. IMPORTING DATA

In this section we show how to access the data sets and of how to bring one of those into JEcotrim, because the structure of the dataset is important. It is noteworthy to say that the data input supplies the information needed for the series to be disaggregated, benchmarked, reconciliated or balanced.

First, we will present the following Excel file called "A1.xlsx" which contains in sheet "Annual" the low frequency series (A1_A), and in sheet "Quarterly" the high frequency series (A1_Q). Both series are represented in Figure 17 and Figure 18 respectively.

Figure 17. A1_A series aggregated series)

JECOTRIM User Manual

	S16	• (*	f_x	
	А	В	С	D
1	Date	A1_A		
2	01/01/1991	178,69		
3	01/01/1992	161,65		
4	01/01/1993	175,08		
5	01/01/1994	182,31		
6	01/01/1995	202,97		
7	01/01/1996	180,24		
8	01/01/1997	197,80		
9	01/01/1998	208,65		
10	01/01/1999	248,93		
11	01/01/2000	596,51		
12	01/01/2001	685,34		
13	01/01/2002	1955,3058		
14	01/01/2003	2747,5507		
15	01/01/2004	2916,9486		
16	01/01/2005	2914,8827		
17	01/01/2006	3410,6814		
18	01/01/2007	4054,7031		
19	01/01/2008	4443,5952		
20	01/01/2009	4189,4984		
21	01/01/2010	4238,0453		
22	01/01/2011	4624,3551		
23	01/01/2012	4274,7138		
24	01/01/2013	3218,0429		
25	01/01/2014	4334,1063		
R A	Annı	Jal / Quarter	y / 🔁 /	

	P14	- (0	f_x	
	А	В	С	
1	Date	A1_Q		
2	01/01/1991	95,73		
3	01/04/1991	27,15		
4	01/07/1991	15,25		
5	01/10/1991	75,32		
6	01/01/1992	94,19		
7	01/04/1992	25,31		
8	01/07/1992	14,66		
9	01/10/1992	74,87		
10	01/01/1993	101,11		
11	01/04/1993	28,19		
12	01/07/1993	15,06		
13	01/10/1993	74,48		
14	01/01/1994	102,85		
15	01/04/1994	29,06		
16	01/07/1994	16,47		
17	01/10/1994	80,68		
18	01/01/1995	117,68		
19	01/04/1995	33,44		
20	01/07/1995	17,44		
21	01/10/1995	86,42		
22	01/01/1996	118,29		
23	01/04/1996	32,40		
24	01/07/1996	18,54		
25	01/10/1996	95,49		
14 4	Annua Annua	Quarterly	/2/	

Figure 18. A1_Q series (related series).

Once the user has the series object of analysis as indicated in both figures, then process of data loading is indicated throughout Figure 19 to Figure 23. Note that the "Spreadsheets" provider is part of the JDemetra+ environment so the XLSX files must respect the rules described in the documentation of JDemetra+. Here is an overview of these rules, please refer to JDemetra+ documentation for a complete description:

- The time series can be presented in rows or in columns
- Dates within must be in the first column (A) if the time series are in columns or in the first row (1) is the times series are in rows

As the user will see throughout this manual, different types of input data are allowed:

- Aggregated series
- Preliminary series (related series)
- Contemporaneous constraints
- Other series

JEcotrim recognizes the frequency of the aggregated series (see Annex 1). Thus, the loading data process comprises the following steps:

First, find the "Providers Window" in the left-hand side of JDemetra+,

Figure 19. Providers window in JDemetra+.

Then right-click in "Spreadsheets" and left-click (hereafter click) Open

Figure 20. First step in loading data process.

NbDemetra 1.1.0	
File Statistical methods View Tools Window Help	
📲 🆻 🥐 🙀 Chart & grid 🗸	
Providers Window % Image: ODBC DSNs Image: ODEC DSNs Im	
Workspace Wir Configure Odbc data sources and drivers	
Image: Seasonal adjustment Image: Seasonal adjustment Image: Seasonal Accounts Tools Image: S	

Second, in the following box, click on the button that looks like a three dots inside a box, as shown in Figure 21. If you let the "Data format" option as it is by default (value "~"), JDemetra+ "Spreadsheets" provider will expect the dates to be in the date format of MS Excel. Please refer to JDemetra+ documentation to learn more about the "Data format" option.

Figure 21. Second step in loading dataset.

Find the data object of analysis in the hard drive disk and click OK. Once the series has been selected, it appears in the box as shown in Figure 22. Finally, click on the OK button to load the

end process of loading series, in the present case, A1. At this point, the JEcotrim should display the series (A1) as indicated in Figure 23.

Figure 22: Second to last step of loading dataset.

Open data source	×
Source	
Spreadsheet file	D:\jdemetratest\Samples\Official\Univari 🛄
Options	
Data format	~
Frequency	Undefined
Aggregation type	None
Spreadsheet file	
The path to the spreadsheet file.	
	Cancel

Figure 23. Final view of loaded dataset.

2.3. SESSION IN JECOTRIM

A typical session in JEcotrim involves:

- Next, the estimation stage of the available information depending upon the method selected and the specifications given by the user.
- A final stage in which the outputs are presented in the same Workspace.

Note: JEcotrim gives the option to the user to copy the results and export to any data processor.

Before leaving the program asks confirmation of saving the current Workspace. After that, the user leaves the program.

3. JECOTRIM INTERACTIVE MODE

In this chapter, the user is introduced in a first stage, to the handling of the univariate temporal disaggregation methods, namely, Chow-Lin, Fernández and Litterman; in a second stage, to the univariate benchmarking technique (Modified Denton); next, to a reconciliation method (the Two-step procedure) and finally, to a matrix balancing procedure (RAS-PM).

3.1. TIME SERIES DISAGGREGATION TECHNIQUES

Temporal disaggregation is a process used to disaggregate a given economic time series (usually known as total, aggregated or low-frequency data) to produce values for shorter sub periods (known as disaggregated or high-frequency data). This kind of problem is often faced by national statistical institutes, for example when producing Quarterly National Accounts series by means of indirect techniques.

In the last decades, these techniques have been widely investigated in the literature. Thus, two main different approaches can be distinguished: first, methods that do not make use of the information from related series but rely in time series models to derive a smooth path for the unobserved series; and second, methods that do use related series. The methodology for the first approach can be found in Stram and Wei (1986) and Wei and Stram (1990), whilst the second group of techniques is described in Chow and Lin (1971), Fernández (1981) and Litterman (1983), among others. This guide is focused on the latter group.

3.1.1. CHOW AND LIN (1971)

This temporal disaggregation technique, based on regression, works out a least-squares optimal solution on the basis of a linear regression model involving the quarterly aggregate series and the related quarterly series and having assumed an AR(1) error structure in that regression model. Thus, the user should proceed as follows: first, select Statistical methods>National Accounts Tools>Chow-Lin from the pull-down menu, as the user can see below

Figure 24. Chow-Lin method selection.

Stati	Statistical methods View Tools Window Help				
	Modelling	Þ]	
	National Accounts Tools	Þ		Modified Denton	
	Seasonal Adjustment	•[Chow-Lin	
ODBC DSNs				Fernández	
SDMX files				Litterman	
f Spreadsheets				Litternan	
÷	D:\jdemetratest\Samples\Of	ff		RAS-PM	
Т	SW			Two step reconciliation	
-				-	

Once the method is selected, the interface shows Figure 25 with three separate parts. In the left-hand side of the screen of the interface the user can observe a drop down menu where now it appears "Summary", "Input" and further, will find the "Output" menu as well. In the center, one can find the window which brings a complete description of the method and further, will show data, grids and charts, while in the right-hand side, the specifications menu can be found. We will explain this point further.

Figure 25. Overview of the main window for Chow-Lin technique.

ChowlinDoc-2 %		
Summary	Chow Lin temporal disaggregation technique	Report Specifications
i Input	Chow and Lin (1971) suggested a temporal disaggregation technique based on regression techniques using the least-squares optimal solution, on the basis of a linear regression model involving the low frequency aggregate series and the related high frequency series. In the regression, the error term structure is assumed to be an AR(1). Regarding input arguments, in matrix notation: - given the [N x 1] vector of low frequency observations for an aggregate - and given the [n x k] matrix of higher frequency observations on k related series, Chow-Lin estimates the unknown high frequency values contained in a [n x 1] vector. Strict disaggregation happens when n = agg_order *N and extrapolation happens when n > agg_order *N. The number of required extrapolations is n - agg_order *N.	High frequency With intercept Type of tempora Flow AR Parameter Flag on the AR p Flag on the AR p ✓ AR parameter v 0 Estimation method MinSSR Generaliz Automatic scanning ✓ Number of steps 101 Scanning interva -0.99 Scanning interva 0.99

Figure 26. Detailed view of the left-hand side of Chow-Lin's window.

Chow	linDoc-1 🕺
	Summary
ġ [1]	Input
	Temporally aggregated time series (N x 1)

Figure 27. Detailed view of the central window of Chow-Lin's.

Chow-Lin temporal disaggregation technique

Chow and Lin (1971) suggested a temporal disaggregation technique based on regression techniques using the leastsquares optimal solution,

on the basis of a linear regression model involving the low frequency aggregate series and the related high frequency series.

In the regression, the error term structure is assumed to be an AR(1).

Regarding input arguments, in matrix notation:

- given the [N x 1] vector of low frequency observations for an aggregate

- and given the $\left[n\;x\;k\right]$ matrix of higher frequency observations on k related series,

Chow-Lin estimates the unknown high frequency values contained in a [n x 1] vector.

Strict disaggregation happens when $n = agg_order * N$ and extrapolation happens when $n > agg_order * N$. The number of required extrapolations is $n - agg_order * N$.

In order to display the Specifications, as shown in the picture below, you have to click on the button 'Specifications' in the upper-right part of the window.

Figure 28. Overview of the "Specifications" menu for Chow-Lin's.

Re	port Specifications
🖃 General	
High frequency	With intercept
Type of tempora	Flow
AR Parameter	
Flag on the AR p	
AR parameter v	0
Estimation method	MinSSR Generaliz
Automatic scanning	
Number of steps	101
Scanning interva	-0.99
Scanning interva	0.99

Figure 29. Detailed view of the "Specifications" menu which contains its legend.

High frequency disturbance model
Choice of the assumption for the high frequency disturbance process. It can be with intercept (with) or without intercept (without). For Chow-Lin, the intercept is a constant. For Litterman and Fernández, the intercept is a drift.
Apply

After presenting the workspace for Chow-Lin method, we proceed to explain the data loading process²:

First, select Input>Temporal aggregated time series and drag the "Annual" series and drop in the main workspace window, where there is no data yet, as indicated in Figure 30.

Figure 30. Loading aggregated series

NbDemetra 1.1.0	states a longer a de las à la reali-	and an a state of the state of	
File Statistical methods ChowlinDoc-	-1 View Tools Window Help		
🖣 🆻 🥙 🚅 Chart & grid	•		
Providers Window 🕷 🔲 Cha	owlinDoc-1 🕺		
🖶 💿 SDMX files 🖍			Report Specifications
Spreadsheets D: \jdemetratest\\San D: \jdemetratest\\San Annual Annual Anual Quarterly Al_Q TSW TSW	Summary Input If [emporally aggregated time series (N x 1)] R Related time series (n x k)		General High frequency With intercept Type of tempora Flow AR Parameter Flag on the AR p ✓ AR parameter v 0 Estimation method MinSSR Generaliz Automatic scanning ✓
Workspace_1 Workspace_1 - Modelling - Seasonal adjustment - National Accounts Tools - U Utilities		No data	Scanning interva 0.99 Scanning interva 0.99

If the task has been done correctly, then the data should appear in the main workspace window as it can be seen next in Figure 31.

 $^{^{2}}$ As mentioned previously, the data loading can be done after the statistical method has been selected. In this guide we present the cases selecting the data after having chosen the method.

Figure 31. Annual series to be disaggregated.

NbDemetra 1.1.0	second a local a line of the last second			
File Statistical methods Chowlin	Doc-1 View Tools Window Help			
🖣 🆻 🥐 👫 Chart &	grid 🗨			
Providers Window 🕷 🖃	ChowlinDoc-1 88			
E SDMX files		_		Report Specifications
Spreadsheets	Summary		Annual - A	🖃 General
🖻 📄 D:\jdemetratest\San	i Input	1980	178.694	High frequency With intercept
Annual	Temporally aggregated time series (N x 1)	1981	161.651	Type of tempora Flow
A1_A -	Related time series (n x k)	1982	175.079	Elar on the AB p
Quarterly		1983	182.309	AR parameter v 0
		1984	202.968	Estimation method MinSSR Generaliz
		1985	180,243	Automatic scanning 🔽
Txt files 👻		1986	197,803	Number of steps 101
		1987	208,649	Scanning interva0.99
Workspace Window 🕺 📃		1988	248 932	Scanning interva 0.99
Workspace_1		1989	596 508	
🖶 🕅 Modelling		1909	685 338	
🗄 🖷 🖻 Seasonal adjustment		1990	1 055,336	
🗄 🖷 🕅 National Accounts Tools		1991	1,935.306	
titities		1992	2,/4/.551	

The same procedure has to be followed so as to load the related series (see Figure 32 and Figure 33).

Figure 32. Loading related series.

Figure 33. Related series loaded.

NbDemetra 1.1.0	second a local a fit has a local	-	· · ·	
File Statistical methods View Te	ools Window Help			
📲 🍤 🥐 👫 Chart 8	grid 🗸			
Providers Window 🕷 🖃	ChowlinDoc-1 %			
SDMX files				Report Specifications
🖶 💼 Spreadsheets	Summary	Move left	Move right Delete	General
🖨 📄 D:\jdemetratest\San	i Input	- novelete		High frequency With intercept
Annual	Temporally aggregated time series (N x 1)		Quarterly	Type of tempora Flow
. A1_A =	Related time series (n x k)	I-1980	95.73	AR Parameter
Quarterly	🗄 🛛 💿 Output	II-1980	27.149	AP parameter v 0
A1_Q		III-1980	15.246	Estimation method MinSSR Generaliz
TSW		IV-1980	75.32	= Automatic scanning 🔽
Txt files 🗸		I-1981	94.191	Number of steps 101
		II-1981	25.307	Scanning interva0.99
Workspace Window 8		III-1981	14.656	Scanning interva 0.99
Workspace 1		IV-1981	74.871	
		I-1982	101.112	
🗄 🐨 🗟 Seasonal adjustment		II-1982	28.188	
National Accounts Tools		III-1982	15.058	
🗄 🖷 😈 Utilities		IV-1982	74.483	
		I-1983	102.847	
		II-1983	29.061	

At this point, it is time to enter the "Specifications" menu. This menu is shown just below

Figure 34. Specifications menu.

[CL-FLOW-WITHOUT-FIXED]	×
🖃 General	
High frequency disturbance model	Without intercept
Type of temporal aggregation	Flow
AR Parameter	
Flag on the AR parameter	
AR parameter value	0.99
Estimation method	MinSSR Generalized Least Squares
Automatic scanning	\checkmark
Number of steps	101
Scanning interval lower bound	-0.99
Scanning interval upper bound	0.99
High frequency disturbance mode Choice of the assumption for the high f with intercept (with) or without interce a constant. For Litterman and Fernánd	el frequency disturbance process. It can be pt (without). For Chow-Lin, the intercept is lez, the intercept is a drift.
	OK Cancel

The interface gives the option to the user to:

- Choose whether or not to include an intercept term in the regression model.

Figure 35. Constant term included or not in the model.

ligh frequency disturbance model	WITHOUT
ype of temporal aggregation	WITH
🗄 AR Parameter	WITHOUT
Flag on the AR parameter	
AR parameter value	0.99
Estimation method	MinSSR Generalized Least Squares
Automatic scanning	1
Number of steps	101
Scanning interval lower bound	-0.99
Scanning interval upper bound	0.99
High frequency disturbance mode Choice of the assumption for the high f	el requency disturbance process. It can be with

Choose among four types of temporal aggregation: flow, index, first and last (see Annex 2).

Figure 36. Selection of the type of the temporal aggregation.

E General	Tarat - I to Looper - A
High frequency disturbance model	without intercept
ype of temporal aggregation	FLOW
AR Parameter	FLOW
Flag on the AR parameter	INDEX
AR parameter value	LAST
Estimation method	FIRST
Automatic scanning	
Number of steps	101
Scanning interval lower bound	-0.99
Scanning interval upper bound	0.99
Type of temporal aggregation Defines the type of aggregation	

 Leave the autoregressive parameter fixed at user's choice (-.999 till 0.999) or leave it to be estimated according to two different methods.

Figure 37. Decision about AR parameter (estimated).

High frequency disturbance model Type of temporal aggregation AR Parameter Flag on the AR parameter	Without intercept Flow
Fype of temporal aggregation ∃ AR Parameter flag on the AR parameter	Flow
-lag on the AR parameter	7
Contraction of the second s	
AR parameter value	0.99
Estimation method	MinSSR Generalized Least Squares
Automatic scanning	
lumber of steps	101
Scanning interval lower bound	-0.99
Scanning interval upper bound	0.99
Flag on the AR parameter estim: estimates the parameter; fixed: fixed p	parameter

High frequency disturbance model	Without intercept
Type of temporal aggregation	Flow
🖃 AR Parameter	
Flag on the AR parameter	
AR parameter value	0.99
Estimation method	MinSSR Generalized Least Squares
Automatic scanning	V
Number of steps	101
Scanning interval lower bound	-0.99
Scanning interval upper bound	0.99
AR parameter value	e in the range [-0, 999; 0, 999]

- Select the estimation method: min SSR GLS or maximum likelihood (ML).

Figure 39. Decision about the estimation method.

High frequency disturbance model	Without intercept
Type of temporal aggregation	Flow
AR Parameter	
lag on the AR parameter	
AR parameter value	0.99
Estimation method	GLS
Automatic scanning	GLS
Number of steps	ML
Scanning interval lower bound	-0.99
Scanning interval upper bound	0.99
Estimation method It can be MinSSR Generalized Least Squ	ares (GLS) or Maximum Likelihood method (ML)

 Decide about the scanning procedure, whether leave it with pre-defined settings (101 steps scanning in an interval ranging from -0.99 to 0.99) or enter user-defined number of steps and scanning interval bounds.

Figure 40. Automatic scanning procedure.

C [CL-FLOW-WITHOUT-FIXED]	×
General	
High frequency disturbance model	Without intercept
Type of temporal aggregation	Flow
AR Parameter	
Flag on the AR parameter	
AR parameter value	0.99
Estimation method	MinSSR Generalized Least Squares
Automatic scanning	
Number of steps	101
Scanning interval lower bound	-0.99
Scanning interval upper bound	0.99
Automatic scanning Automatic scanning (gridstep=101, phi 1	=-0.99, phi2=0.99) or User defined scanning
	OK Cancel

- Set the number of steps and the lower and upper bounds for the scanning procedure if it has been selected user-defined rather than automatic.

Figure 41. Fixed scanning procedure (by user).

🖂 General	
High frequency disturbance model	Without intercept
Type of temporal aggregation	Flow
🖃 AR Parameter	
Flag on the AR parameter	
AR parameter value	0.99
Estimation method	MinSSR Generalized Least Squares
Automatic scanning	
Number of steps	101
Scanning interval lower bound	-0.99
Scanning interval upper bound	0.99

After having made the corresponding modifications within the specifications and validating them by clicking 'OK' or 'Apply' (depending on the specifications window where you do the modifications), JEcotrim gives the results automatically in a straight-forward manner³:

Figure 42. Output menu (Chow-Lin's).

Then clicking in "High Frequency Series" and "Grid" provides:

- the disaggregated estimated time series (1st column A1_A[CL-FLOW-WITH-ESTIM])
- the lower and upper limits of the confidence interval (5th and 6th columns A1_A[CL-FLOW-WITH-ESTIM]_LOW and A1_A[CL-FLOW-WITH-ESTIM]_HIGH, respectively)
- the standard error of the estimates (4th column A1_A[CL-FLOW-WITH-ESTIM]_SE)
- the reliability indicators (7th column A1_A[CL-FLOW-WITH-ESTIM]_RI)
- the lag 1 growth rate (2nd column A1_A[CL-FLOW-WITH-ESTIM]_T1G)

³ Notice that if the user does not change the specifications, the program returns the results as if everything has been done following the guidelines proposed.

- the annual growth rate (3rd column A1_A[CL-FLOW-WITH-ESTIM]_TAG)
- the original related time series (8th column A1_Q)
- the lag 1 growth rate of the related time series (9th column A1_Q_T1G)
- the annual growth rate of the related time series (10th column A1_Q_TAG)

See Annex 3 for details about the confidence interval, the reliability indicator and the growth rates.

Figure 43. Grid that provides the disaggregated estimated series. (Chow-Lin's).

ChowlinDoc-1 8								
							Report	Specifications
Summary		A1_A[CL-F	A1_A[CL-F	A1_A[CL-F	A1_A[CL-F	A1_A[CL-F	A1_A[CL-F	A1_A[CL-F.
E. Input	I-1980	84.062			58.34	-32.619	200.743	69.4 🔺
Temporally aggregated time series (N x 1)	II-1980	22.773	-0.729		39.651	-56.528	102.075	174.1
Related time series (n x k)	III-1980	10.744	-0.528		42.244	-73.745	95.232	393.1
	IV-1980	61.115	4.688		52.882	-44.65	166.88	86.
	I-1981	76.624	0.254	-0.088	50.842	-25.061	178.308	66.3
	II-1981	17.076	-0.777	-0.25	39.606	-62.136	96.288	231.
	III-1981	7.925	-0.536	-0.262	40.136	-72.346	88.197	506.4
A1 A[CL-FLOW-WITH-ESTIM] T1G	IV-1981	60.026	6.574	-0.018	49.874	-39.723	159.775	83.0
A1_A[CL-FLOW-WITH-ESTIM]_TAG	I-1982	83.288	0.388	0.087	50.349	-17.41	183.986	60.4
A1_A[CL-FLOW-WITH-ESTIM]_SE	II-1982	21.049	-0.747	0.233	39.603	-58.158	100.255	188.1
A1_A[CL-FLOW-WITH-ESTIM]_LOW	III-1982	9.908	-0.529	0.25	39.996	-70.083	89.899	403.6
A1_A[CL-FLOW-WITH-ESTIM]_HIGH	IV-1982	60.834	5.14	0.013	49.708	-38,583	160.25	81.7
A1_A[CL-FLOW-WITH-ESTIM]_RI	I-1983	84.783	0.394	0.018	50.358	-15.933	185.498	59.3
\Lambda A1_Q	II-1983	21.191	-0.75	0.007	39.624	-58.056	100.439	186.9
\Lambda A1_Q_T1G	III-1983	10.432	-0.508	0.053	40.048	-69.664	90.528	383.
A1_Q_TAG	IV-1983	65.904	5.318	0.083	49.72	-33,535	165.343	75.4
🕀 🖸 Low Frequency Series	I-1984	98.237	0.491	0.159	50.649	-3.062	199.536	51.5
	II-1984	25.607	-0.739	0.208	39.699	-53.792	105.005	155.0
t± AR parameter	III-1984	10.83	-0.577	0.038	40.274	-69.719	91.378	371.8
	IV-1984	68.294	5.306	0.036	49.729	-31,163	167.752	72.8
	I-1985	93.082	0.363	-0.052	50.591	-8.099	194.263	54.3
	II-1985	16.942	-0.818	-0.338	39.758	-62.574	96.458	234.6
	III-1985	2.957	-0.825	-0.727	40.308	-77.658	83.572	1,362.9
	IV-1985	67.262	21.744	-0.015	49.804	-32.347	166.871	74.0
	I-1986	97.746	0.453	0.05	50.8	-3.854	199.345	51.9 🛫
		•						+

Likewise, the "Chart" offers a graphical representation of the disaggregated time series.

Figure 44. Graphical view of the previous "Grid" (Chow-Lin's).

In the "Diagnostics" option, the values of the estimated parameters of the regression model are accessible.

Figure 45. Estimated regression coefficients (Chow-Lin's).

Summary	Estimated I	regression	coefficients		
Temporally aggregated time series		coefficient	s.e.	t-stat	p-value
Related time series (n x k)	Intercept	60.52201	166.068596	0.36444	0.359505
- J Output	REG_1	0.859337	0.19588	4.387068	0.000117
🕂 🗟 High Frequency Series					
Grid Grid					
the Chart					
E C Chart					
E Low Frequency Series					
Chart C					
Grid Grid Grid Grid Grid					
Grid Grid Grid Grid Grid Grid Grid Grid					
Chart Construction Construction Construction Construction A1_A Diagnostics					
Chart Low Frequency Series Grid Grid Chart A1_A Diagnostics Estimated regression coefficien					
Chart Low Frequency Series Grid Grid Chart A1_A Diagnostics Estimated regression coefficien Regression diagnostics					

Also available is the summary of the statistics considered assessing the goodness and validity of the model (with its corresponding description to ease the work to the user).

Figure 46. Summary of statistics (Chow-Lin's).

Summary	Regression diagnosti	<u>CS</u>	
Temporally aggregated time series	Name	Value	Description
Related time series (n x k)	Number of valid cases	24	Number of observations of temporally aggregated time series
High Frequency Series	Degrees of Freedom	22	Number of observations (N) less the estimated coefficients (k)
e Grid ⊕ C Chart → Low Frequency Series	Coefficient of determination (Buse, 1973)	0.47	Is is a generalized R-squared statistic proposed by Buse (1973) in case of GLS estimation
Grid	Adjusted R-squared	0.44	Measure that imposes a small penalty in R-squared when a variable is added to the model
Chart	Standard Error of Regression	70.74	Measure of variability
🖨 🐻 Diagnostics	Sum of Squared Totals	206376.08	Measure of the total variation in dependent variable
Estimated regression coefficier	Sum of Squared Residuals	110076.94	Measure of the unexplained variation of the dependent variable
AR parameter	Sum of Squared Estimates	96299.15	Measure of the explained variation of the dependent variable
	Log-likelihood	-178.94	Log-likelihood function of the mode
	F-statistic	19.25	Calculates F-statistic only if there are more than 1 regressor
	Probability (F-statistic)	0.00	Displays the p-value corresponding to the reported F-statistic. Measures the significance of the F-statistic
	Akaike Information criterion	8.60	Measure of the explanatory capability of the model proposed by Akaike (1974)
	Schwarz Information criterion	8.70	Measure of the explanatory capability of the model following a Bayesian approach suggested by Schwarz (1978)
	Durbin-Watson statistic	2,27	Measure of the first-order autocorrelation

As can be deduced, all these results together with the "Output of the scanning procedure", which gives the estimated value for the first-order autoregressive parameter, are the most relevant output for the Chow-Lin technique.

Figure 47. Estimate AR parameter (Chow-Lin's).

s Summary	AR parameter		
Temporally aggregated time series Related time series (n x k)	Name Phi	Value 0.9504	Descriptio
Output			
Grid			
⊡ Chart			
Low Frequency Series			
Grid			
Chart Chart			
A1_A			
Diagnostics			
Estimated regression coefficier			
Regression diagnostics			
AR parameter			
Results of grid search			

Finally, the JEcotrim also returns the entire output from the scanning procedure.

Figure 48. Scanning procedure output (Chow-Lin's).

s Summary	Results of	of grid se	earch.	
Temporally aggregated time series	Step	Phi	SSR	LogLik
Related time series (n x k)	1	-0.99	1129739.371181	-171.477287
Output	2	-0.9702	1115959.238266	-171.301435
🖾 👘 High Frequency Series	3	-0.9504	1109104.26709	-171.204267
	4	-0.9306	1107028.925137	-171.167048
	5	-0.9108	1107871.13079	-171.170141
⊞ c Chart	6	-0.891	1110217.43865	-171.19823
E Low Frequency Series	7	-0.8712	1113068.829108	-171.240449
Grid	8	-0.8514	1115753.509105	-171.289522
🔄 👌 Chart	9	-0.8316	1117838.186014	-171.340787
- A1_A	10	-0.8118	1119055.286075	-171.391376
E Diagnostics	11	-0.792	1119248.958088	-171.439604
Estimated regression coefficier	12	-0.7722	1118337.130452	-171.48454
	13	-0.7524	1116285.709446	-171.525726
	14	-0.7326	1113091.449652	-171.562989
AR parameter	15	-0.7128	1108770.821697	-171.596326
Results of grid search	16	-0.693	1103352.922819	-171.625828
AR parameter	17	-0.6732	1096875.03871	-171.651645
	18	-0.6534	1089379.887223	-171.673952

The other methods are following the same pattern in terms of presentation, of way to interact with the method and availability of output.

3.1.2. FERNÁNDEZ (1981)

This method differs from the Chow-Lin's in the hypothesis related to the structure of the error in the regression model. In this case, the disturbance follows a random walk model. To use the Fernández merhod, select Statistical methods>National Accounts Tools>Fernández from the pull-down menu as can be seen in Figure 49.

Figure 49. Fernández technique selection.

Once the method is chosen, Figure 50 presents the same aspect as in Chow-Lin's: left-hand side for the "Summary", "Input", etc.; the middle, for a detailed description of the technique and the right-hand side brings the "Specifications" menu.

Figure 50. Overview of the main window for Fernández's.

NbDemetra 1.1.0		Non a posterior + + Non Section for	
File Statistical methods Fernande	ezDoc-1 View Tools Window	v Help	
👆 🆻 🥐 👫 Chart &	grid 🗸		
Providers Window 🕷 🔲	FernandezDoc-1 🛛		
ODBC DSNs			Report Specifications
SDMX files Spreadsheets D: ljdemetratest\San D: ljdemetratest\San D: ljdemetratest\San D: ljdemetratest\San Di ljdemetratest Di ljdemetratest\San Di ljdemetrat	Summary Input Temporally aggrega Related time series	Fernández temporal disaggregation technique. Fernández (1981) proposed a temporal disaggregation technique based on regression techniques using the least-squares optimal solution, on the basis of a linear regression model involving the low frequency aggregate series and the related high frequency series. In the regression, the error term structure is assumed to be a random walk model. Regarding input arguments, in matrix notation: - given the [N x 1] vector of low frequency observations for an aggregate - and given the [n x k] matrix of higher frequency values contained in a [n x 1] vector. Strict disaggregation happens when n = agg_order * N and extrapolation happens when n > agg_order * N. The number of required extrapolations is n - agg_order * N.	General High frequency With intercept Type of tempora Flow

Once the series have been loaded correctly, Fernández technique only permits the user to make the following modifications in the "Specifications" menu:

- whether a constant term is included or not in the high-frequency model, and
- the type of the temporal aggregation

Figure 51. Options for Fernández technique.

🗄 General	
ligh frequency disturbanc	Without intercept
ype of temporal aggregation	Flow
High frequency dicturbar	ace model
High frequency disturbar	ice model

After this set-up stage, the interface returns the output. In this case, the "Output" menu comprises the "Grid" (Figure 52) and the "Chart" for the estimated series. The latter is not presented in the manual in order to avoid excessive repetition.

Figure 52. Grid of the disaggregated series (Fernández's).

mmary		A1_A[FER	A1_A[FER	A1_A[FER	A1_A[FER	A1_A[FER	A1_A[FER	A1_A[FER	A1_Q
ut	I-1991	63.996	-31.862	159.855	47.929	74.894			9
Temporally aggregat	II-1991	29.788	-47.875	107.45	38.831	130.36	-0.535		2
Related time series (III-1991	25.354	-54.219	104.928	39.787	156.923	-0.149		1
ut Joh Fraguency Seri	IV-1991	59.556	-33.836	152.947	46.696	78.407	1.349		
Grid	I-1992	66.847	-31.327	165.021	49.087	73.432	0.122	0.045	9
Chart	II-1992	24.64	-53.245	102.525	38.942	158.045	-0.631	-0.173	
Low Frequency Serie	III-1992	17.48	-61.477	96.438	39,479	225.845	-0.291	-0.311	
Diagnostics	IV-1992	52.683	-44.439	149.806	<mark>4</mark> 8.561	92.176	2.014	-0.115	
	I-1993	69.535	-31.073	170.142	50.304	72.344	0.32	0.04	1
	II-1993	28.408	-49.396	106.211	38.902	136.941	-0.591	0.153	
	III-1993	21.358	-58.774	101.491	40.066	187.589	-0.248	0.222	
	IV-1993	55.778	-40.895	152.452	48.337	86.659	1.612	0.059	
	I-1994	71.66	-28.655	171.975	50.157	69.994	0.285	0.031	1
	II-1994	28.837	-49.099	106.772	38,968	135.132	-0.598	0.015	
	III-1994	21.908	-58.297	102.113	40,103	183.048	-0.24	0.026	
	IV-1994	59.905	-37.019	156.828	48.462	80.898	1.734	0.074	
	I-1995	82.597	-19.443	184.638	51.02	61.77	0.379	0.153	
	II-1995	34.072	-44.276	112.421	39.174	114.974	-0.587	0.182	
	III-1995	24.055	-57.443	105.553	40.749	169.4	-0.294	0.098	
	IV-1995	62.243	-34.703	159.189	48.473	77.877	1.588	0.039	
	I-1996	77.934	-23.755	179.623	50.844	65.24	0.252	-0.056	1
	TT-1006	26.01	-57 664	104 684	20 227	151 236	-0 666	-0 237	

Furthermore, the obtained estimates can be found in Diagnostics>Estimated regression coefficients.

Figure 53. Estimated regression coefficients (Fernández's).

FernandezDoc-1	22

S Summary	Estimated	regression (coefficien	<u>ts</u>	
Temporally aggregated time series (N x 1) Related time series (n x k)	Intercept REG_1	coefficient 5.269847 0.57912	s.e. 8.171352 0.323259	t-stat 0.644917 1.791505	p-value 0.262829 0.04349
High Frequency Series					
Grid					
Diagnostics Estimated regression coefficients					

Moreover, Figure 54 shows the summary of the statistics to assess the accuracy of the estimates.

Figure 54. Summary of statistics (Fernández's).

Summary	Regression diagnostics		
- 1 Input			
Temporally aggregated time series (N x 1)	Name	Value	Description
Related time series (n x k)	Number of valid cases	24	Number of observations of temporally aggregated time series
Output	Degrees of Freedom	22	Number of observations (N) less the estimated coefficients (k
High Frequency Series	Coefficient of determination (Buse, 1973)	0.21	Is is a generalized R-squared statistic proposed by Buse (1973) in case of GLS estimation
terric Grid terric Chart	Adjusted R-squared	0.17	Measure that imposes a small penalty in R-squared when a variable is added to the mode
🖨 📋 Low Frequency Series	Standard Error of Regression	70.19	Measure of variability
Grid	Sum of Squared Totals	137222.39	Measure of the total variation in dependent variable
He C Chart	Sum of Squared Residuals	108399.69	Measure of the unexplained variation of the dependent variabl
	Sum of Squared Estimates	29124.39	Measure of the explained variation of the dependent variabl
	Log-likelihood	-179.60	Log-likelihood function of the mode
	F-statistic	5.85	Calculates F-statistic only if there are more than 1 regresso
Regression diagnostics	Probability (F-statistic)	0.02	Displays the p-value corresponding to the reported F-statistic. Measures the significance of the F-statisti
	Akaike Information criterion	8.58	Measure of the explanatory capability of the model proposed by Akaike (1974
	Schwarz Information criterion	8.68	Measure of the explanatory capability of the model following a Bayesian approach suggested by Schwarz (1978
	Durbin-Watson statistic	2.15	Measure of the first-order autocorrelatio

Note that in this case, there is no parameter of interest since the model assumed for the error is a pure random walk model.

3.1.3. LITTERMAN (1983)

In this case, Litterman replaces the error structure that assumes Chow-Lin's by an ARIMA (0,1,1). The rest of the procedure remains unchanged. To use the Fernández merhod, select Statistical methods>National Accounts Tools>Fernández from the pull-down menu as can be seen in the figure below.

Figure 55. Litterman method selection.

Next, we present the front window for this technique. Notice that the structure is similar to that explained in Chow and Lin (1971): the "Summary"; "Input", etc on the left side; the middle for the description of the method and the right side goes for the "Specifications" menu.

Figure 56. Main window for Litterman method (overview).

TTD		
Input Temporally aggregat Related time series (Litterman temporal disaggregation technique Litterman (1983) proposed a temporal disaggregation technique based on regression techniques using the least-squares optimal solution, on the basis of a linear regression model involving the low frequency aggregate series and the related high frequency series. In the regression, the error term structure is assumed to be a random walk-Markov model.	High frequency With intercept Type of tempora Flow AR Parameter Flag on the AR p AR parameter v 0
	Regarding input arguments, in matrix notation: - given the $[N \times 1]$ vector of low frequency observations for an aggregate - and given the $[n \times k]$ matrix of higher frequency observations on k related series, Litterman estimates the unknown high frequency values contained in a $[n \times 1]$ vector. Strict disaggregation happens when n = agg_order * N and extrapolation happens when n > agg_order * N. The number of required extrapolations is n - agg_order * N.	Automatic scanning C MinSSK General Automatic scanning C Number of steps 101 Scanning interva0.99 Scanning interva 0.99

Once the series are loaded as explained before, this disaggregation method allows the user to modify all of the options the Chow-Lin method permitted (from Figure 35 to Figure 41). Then, after having made the proper modifications, the program yields:

Figure 57. Grid of the disaggregated series (Litterman's).

									Kep	a c Hobectucar
Summary		A1_A[LIT	A1_Q							
nput	I-1991	53,268	0.578	105.958	26.345	49.457			95.73	
Temporally aggregated time series (N x 1)	II-1991	34.363	4.507	64.219	14.928	43.442	-0.355		27.149	
Related time series (n x k)	III-1991	33.519	-5.232	72.271	19.376	57.805	-0.025		15.246	
High Frequency Series	IV-1991	57.544	20.411	94.677	18.567	32.265	0.717		75.32	
Grid	I-1992	61.586	16.949	106.222	22.318	36.239	0.07	0.156	94.191	
Grant G	II-1992	29.411	-1.436	60.259	15.424	52.441	-0.522	-0.144	25.307	
	III-1992	22.866	-9.824	55.557	16.345	71.482	-0.223	-0.318	14.656	
	IV-1992	47.788	4, 102	91.474	21.843	45.709	1.09	-0.17	74.871	
AR parameter	I-1993	60.544	8.664	112.424	25.94	42.845	0.267	-0.017	101.112	
	II-1993	32.677	2.447	62.908	15.115	46.256	-0,46	0.111	28.188	
	III-1993	28.606	-8.187	65.399	18.397	64.31	-0.125	0.251	15.058	
	IV-1993	53.252	11.419	95.084	20.916	39.278	0.862	0.114	74.483	
	I-1994	64.305	14.163	114.447	25.071	38.988	0.208	0.062	102.847	
	II-1994	33.494	2.767	64.22	15.363	45.869	-0.479	0.025	29.061	
	III-1994	28.55	-7.713	64.813	18.131	63.508	-0.148	-0.002	16.474	
	IV-1994	55.96	13.118	98.802	21.421	38.279	0.96	0.051	80.681	
	I-1995	72.556	18.24	126.873	27.158	37.431	0.297	0.128	117.68	
	II-1995	38.818	6.964	70.672	15.927	41.029	-0.465	0.159	33,444	

Also, the estimated regression coefficients within the "Diagnostics" branch:

Figure 58. Estimated regression coefficients (Litterman's).

Input	Estimated I	regression	coefficien	ts	
Temporally aggregated time series (N x 1)		coefficient	s.e.	t-stat	p-value
Related time series (n x k)	Intercept	16.557261	33.64337	0.49214	0.313748
o Output	REG_1	0.411437	0.336723	1.221886	0.117341
High Frequency Series	12				
Grid					
⊡					
Low Frequency Series					
Diagnostics					
Estimated regression coefficients					
Estimated regression coefficients Regression diagnostics					

In order to evaluate the goodness of the estimates, JEcotrim provides the summary of the different statistics as can be seen next.

Figure 59. Summary of statistics (Litterman's).

Summary	Regression diagnostics		
Temporally aggregated time series (N x 1)	Name	Value	Description
Related time series (n x k)	Number of valid cases	24	Number of observations of temporally aggregated time series
Output	Degrees of Freedom	22	Number of observations (N) less the estimated coefficients (k)
High Frequency Series	Coefficient of determination (Buse, 1973)	0.06	Is is a generalized R-squared statistic proposed by Buse (1973) in case of GLS estimation
E Chart	Adjusted R-squared	0.02	Measure that imposes a small penalty in R-squared when a variable is added to the model
🕀 🚺 Low Frequency Series	Standard Error of Regression	30.27	Measure of variability
🖨 🐻 Diagnostics	Sum of Squared Totals	21411.13	Measure of the total variation in dependent variable
Estimated regression coefficients	Sum of Squared Residuals	20164.35	Measure of the unexplained variation of the dependent variable
Regression diagnostics	Sum of Squared Estimates	1420.48	Measure of the explained variation of the dependent variable
	Log-likelihood	-187.30	Log-likelihood function of the model
	F-statistic	1.36	Calculates F-statistic only if there are more than 1 regressor
	Probability (F-statistic)	0,26	Displays the p-value corresponding to the reported F-statistic. Measures the significance of the F-statistic
	Akaike Information criterion	6.90	Measure of the explanatory capability of the model proposed by Akaike (1974)
	Schwarz Information criterion	7.00	Measure of the explanatory capability of the model following a Bayesian approach suggested by Schwarz (1978)
	Durbin-Watson statistic	1.79	Measure of the first-order autocorrelation

Also, the user can find the estimate value of the parameter of interest of the regression model:

Figure 60. Estimate value for the parameter of interest.

Input	AR parameter.		
Temporally aggregated time series (N x 1)	Name	Value	Descriptio
Related time series (n x k)	Phi	0.9702	
Output			
High Frequency Series			
Grid			
⊕ c Chart			
- T Low Frequency Series			
Diagnostics			
Estimated regression coefficients			
Regression diagnostics			
AR parameter			
Results of grid search			

And, last but not least, one can discover the complete output for the scanning procedure as in Chow-Lin's.

Figure 61. Output of the scanning procedure (Litterman's).

Summary	Results of	of grid se	earch	
Temporally aggregated time series (N x 1)	Step	Phi	SSR	LogLik
Related time series (n x k)	1	-0.99	374490.909528	-179.429312
Output	2	-0.9702	367149.800465	-179.429417
High Erequency Series	3	-0.9504	359953.379451	-179.4298
	4	-0.9306	352896.982555	-179.43058
	5	-0.9108	345975.01689	-179.4318
E Chart	6	-0.891	339181.276217	-179.43364
Low Frequency Series	7	-0.8712	332509.05752	-179.43599
Diagnostics	8	-0.8514	325951.304422	-179.43887
	9	-0.8316	319500.800194	-179.44225
Regression diagnostics	10	-0.8118	313150.37495	-179.44607
AR parameter	11	-0.792	306893.098002	-179.45026
Results of grid search	12	-0.7722	300722.439683	-179.45474
AB parameter	13	-0.7524	294632.395624	-179.45943
AR parameter	14	-0.7326	288617.571858	-179.46425
	15	-0.7128	282673.232716	-179.46913
	16	-0.693	276795.315964	-179.47401
	17	-0.6732	270980.421081	-179.47883
	18	-0.6534	265225.777159	-179.48355
	19	-0.6336	259529.196659	-179.48813
	20	-0.6138	253889.020602	-179.49254
	21	-0.594	248304.059752	-179.49678
	22	-0 5742	242773 535347	-179 50082

3.2. BENCHMARKING TECHNIQUE – Modified Denton (1984)

This section considers the proposal of Cholette (1984) to modify the solution originally proposed by Denton (1971). This version differs from the seminal work with respect to the treatment of the starting condition. So as not to enter into so much detail, we can say that this variation consists, ultimately, in a constrained minimization problem in which an aggregated series and a preliminary series are involved and that returns the corresponding estimates while the original movements of the preliminary series are preserved.

Regarding to these movements we can distinguish different options to be implemented in the previous technique: additive first differences (AFD), additive second differences (ASD), proportional first differences (PFD) and proportional second differences (PSD) (see Annex 4). As the user will see further, the JEcotrim interface collects all these movements.

In this guide, we will present only the results for PFD which, from our point of view, results to be the most adequate solution in many cases. Furthermore, the procedure for using other techniques is very similar.

Thus, to select this method in JEcotrim the user should go to Statistical methods>National Accounts Tools>ModifiedDenton as shown in Figure 62

Figure 62. Modified Denton benchmarking technique selection.

Statistical methods View	Tools Window Help
Benchmarking	RAS-PM
	Modified Denton
viders Window 🛚	Chow-Lin
	Fernández
	Litterman
A1_A	Two step reconciliation

The overview of the main window for this method is given by Figure 63⁴

Figure 63. Main window for Modified Denton technique (overview).

The first step is to load the series as previously described in this guide. Again, the series object of analysis is A1.xlsx. After that, the present method only allows the user to change the type of temporal aggregation (flow, index, first and last) and the benchmarking estimation method (AFD, ASD, PFD and PSD)⁵

⁴ Notice that the same structure as in the previous regression based methods is maintained.

⁵ See Annex 3.

Figure 64. Allowed modifications in the Modified Denton technique.

General	
Type of temporal aggre	egation Flow
Benchmarking estimatio	on m Proportional First Differences

After having made the corresponding variations, the interface yields the output. Here one can find the "Grid" and the "Chart" of the benchmarked series (1st column), its lag1 growth rate (2nd column), its annual growth rate (3rd column) and the original related series (4th column), as can be seen in Figure 65 and Figure 66.

Figure 65. Benchmarked series.

s Summary 1 Input T Temporally aggregated time series (N x 1)		A1_A[DEN	A1_A[DEN	A1_A[DEN	A1_Q
	I-1991	82.311			95.73
	II-1991	22.96	-0.721		27.149
Related time series (n x 1)	III-1991	12.618	-0.45		15.246
o Output	IV-1991	60.806	3.819		75.32
	I-1992	73.082	0.202	-0.112	94.191
E Chart	II-1992	19.463	-0.734	-0.152	25.307
Low Frequency Series	III-1992	11.268	-0.421	-0.107	14.656
	IV-1992	57.838	4.133	-0.049	74.871
	I-1993	80.455	0.391	0.101	101.112
	II-1993	22.618	-0.719	0.162	28,188
	III-1993	12.113	-0. <mark>4</mark> 64	0.075	15.058
	IV-1993	59.893	3.944	0.036	74.483
	I-1994	81.414	0.359	0.012	102.847
	II-1994	23.019	-0.717	0.018	29.061
	III-1994	13.119	-0.43	0.083	16.474
	IV-1994	64.757	3.936	0.081	80.681
	I-1995	96.401	0.489	0.184	117.68

Figure 66. Graphical representation of the benchmarked series.

3.3. RECONCILIATION TECHNIQUE – The Two step procedure

3.3.1. Principles of the algorithm

Theoretical origin

The implemented reconciliation technique is the 2-STEP procedure developed by Di Fonzo and Marini (2011). ⁶There are two variants of the algorithms:

- Di Fonzo and Marini (2011), abbreviated as ST in the interface options,

⁶ See bibliographical references

– Quenneville and Rancourt (2005), abbreviated as QR in the interface options.

JEcotrim includes both variants and the first one is the default.

<u>Motivation</u>

Why this method? The statistical domains often introduce two levels of constraints:

- the temporal one, where the high frequency (HF) data should be aligned on its corresponding low frequency (LF) data; for example, the sum of the quarters in the flow case, should be equal to the year;
- the contemporaneous one, where the declared aggregate should be equal to the sum⁷ of its components.

Implementation in JEcotrim

The 2-STEP procedure is proposing an algorithm in two steps where:

- first, a univariate method is applied to get the alignment of HF data on LF data; in this implementation, Modified Denton PFD is applied at once on all series involved in the process, i.e. on the aggregate and its components;
- second, the Stone algorithm is applied to solve simultaneously the temporal and contemporaneous constraints starting with aligned data along the temporal dimension.

According to the publication as mentioned before, the simultaneous resolution is insured by unit of period along the low frequency data: for example, if LF data is yearly, the system is iterating along the dataset by blocks of yearly data one after the other, on the full time range; if the HF data is quarterly, the input dataset to be reconciled is a rectangle of 4 lines, because of 4 quarters and m columns if the aggregation formula contains m series.

An additional mechanism has been introduced if a year of HF data is not complete: for example, a current year may have 3 quarters available out of 4 and statisticians would like to compute them anyway. The 2-Step procedure is able to deal with such a dataset. It is treating the last loop (because the incomplete year of data is of course the last one), i.e. the last fully available year by concatenating the extra incomplete dataset of the last year. For example, if year 2012 is complete and year 2013 has only 3 quarters available, the last loop will be a dataset of 7 lines for as columns as there are components. It will be called the incomplete-year mechanism.

As the series may enter in the 2-STEP procedure already aligned along the temporal constraint, a threshold has been implemented to decide automatically if it is the case (see the 'First step tolerance' in the interface parameters). If the aggregation of all HF data inside a unit of LF data is under the threshold, the system skips the Modified Denton PFD. Consequently, the user may solve the temporal constraint through a preliminary computation of all involved series in other univariate methods of the software, i.e. any regression-based method.

⁷ CAUTION: The sum of the components may be a weighed one.

3.3.2. Usage from the interface

The ST method is selected as follows

Figure 67. Two-step procedure selection.

Figure 68 contains the overview of the main window for the corresponding method⁸.

Figure 68. Main window for Two-step method.

After having selected the Two-step procedure, the user has to load the dataset⁹ as explained before. Once the dataset is loaded, then in order to activate the input series the user has to follow for each input series the action shown in Figure 69 (drag and drop). This action should be repeated at least three times for the 3 mandatory inputs (Temporally aggregated times series, Related time series and Contemporaneous high frequency constraints).

Note that this method introduced 2 specificities about the input in regard for all the methods described in the previous chapters:

⁸ Again, the present window follows the same structure as in previous methods.

⁹ In this case, the dataset employed is called 2StepY1 and 2StepY2.

- The presence of optional input data. These two optional inputs (Weights for contemporaneous aggregations and Coefficients of variation) are not required by JEcotrim to execute the Two-step procedure. When not specified by the user, these parameters take default values, as described below;
- These two optional parameters are not time series but tables and thus have to be loaded by a different procedure, not using the JDemetra+ providers. This procedure is described below.

Figure 69. Inputs in a Two-step procedure.

s	Summary
··· 1	Input
·	Temporally aggregated time series (N x m)
ļ	Related time series (n x m)
····	Contemporaneous high frequency constraints (n x k)
4	Weights for contemporaneous aggregations (k x m) - Optional
1	Coefficients of variation (m x 1) - Optional

The optional input named "Weights for contemporaneous aggregations" is a matrix that defines the contemporaneous linkages among the y's at the high-frequency. The default value is a k x m matrix full of ones, where k is the number of contemporaneous constraints and m the number of temporally aggregated time series in the system studied.

The optional input named "Coefficients of variation" has to contain the coefficients of variation for different variables reliability. By default, it is a column vector of m values all equal to 1 where m is the number of temporally aggregated time series in the system studied.

As you can see in the picture below, these 2 optional inputs present a button named "Load matrix" in the upper-right part of the window, meaning that they cannot be loaded through a classic drag-and-drop from the providers as before, because they are not composed of time series. Instead, the user has to click on the button "Load matrix".

Figure 70. The "Load matrix" button.

TwoStepDoc_1 %	
Twostepboc-1 28	
	Report Specifications
Summary	Load matrix
Input Temporally aggregated time series (N) Related time series (n x m) Contemporaneous high frequency con: Weights for contemporaneous aggrega Coefficients of variation (m x 1) - Optic Output	
4 [11]	

Clicking on this button launches a classic "Open" window, where you can browse your file system to locate the file containing the matrix you wish to load.

JEcotrim will look for the matrix in the first sheet of the workbook only and the table must begin in cell A1 of this sheet, without any headers.

The figure below shows what the window looks like after loading a matrix (here a row vector of 6 values, all equal to 1).

Figure 71. Matrix loaded.

TwoStepDoc-1 88	
	Report Specifications
s Summary	Load matrix
Input Temporally aggregated time series (N x m) Related time series (n x m) Contemporaneous high frequency constrai Weights for contemporaneous aggregatior Coefficients of variation (m x 1) - Optional Coefficients of variation (m x 1) - Optional	<u>J</u> 1.00 1.00 1.00 1.00 1.00 1.00
✓ III →	

For the Two-step reconciliation, the "Specifications" menu has three options to be changed by the user:

The value of the First step tolerance.
 The tolerance is used in the preliminary check of the data, to determine if the 1st step should be applied or not.

Figure 72. Choice of the First step tolerance.

General
First step tolerance 0.000001
Benchmarking es Sqrd-Prelim. ove
Temporal ag
Type of tempora Flow
First step tolerance
the HE data are in alignment with the
LF data

- The benchmarking method used for the reconciliation: ST (default) or QR.

Figure 73. Benchmarking estimation method selection.

General		
First step tolerance	0.000001	
Benchmarking es	ST	.
Temporal ag	ST	
Type of tempora	QR	
Panchmauking a	chimatian	
perichinarking e	sumation	
Objective function	to be	
minimized It can be	Di Fonzo and	Ξ
Marini (2011) ST re	conciliation	
technique (ST) or C	ueneville and	
Rancourt (2005) O	R reconciliation	-
Apply		

- The type of the temporal aggregation method used for the first and the second step: flow, index, first or last.

Figure 74. Type of temporal aggregation (Two-step method).

General	
First step tolerance	0.000001
Benchmarking es	Sqrd-Prelim. ove
Temporal ag	
Type of tempora	FLOW 🚽
	FLOW
	INDEX
	LAST
	FIRST
Type of tempora Defines the type of can be sum (flow), sample of the last (the first (first)	Il aggregation aggregation. It average (index), last) or sample of
Apply	

Once the user has made the corresponding choices, the JEcotrim interface yields the reconciliated series as shown in the "Grid" view just below

Figure 75. Grid of reconciliated series.

	S01[TWOS	S02[TWOS	S03[TWOS	S04[TWOS	S05[TWOS	S06[TWOS	S07[TWOS.
I-1995	40,369.87	393,364.414	90,773.27	316,383.767	285,045.818	360,419.235	167,820.0
II-1995	40,307.653	290,493.817	92,379.234	307,718.744	418,971.963	346,855.762	170,926.4
III-1995	41.010.376	436,815,898	89,609,457	298,772,83	352,770,371	299,423,291	168,969.73
IV-1995	41,395.091	296,168.962	89,972.129	340,668.851	418,234.939	347,121.803	173,954.1
I-1996	42,594.94	466,959.341	86,193.962	254,634.714	247,130.269	455,547.526	180,762.08
II-1996	43,205.459	425,784.148	92,507.064	373,526.031	310,442.763	331,557.167	174, 121. 19
III-1996	42,637.697	237,602.017	93,900.394	414,881.597	538,818.798	265,139.135	178,401.9
IV-1996	42,514.785	331,043.276	93,805.062	271,232.739	482,733.151	379,311.354	188,656.29
I-1997	42,479.748	75,584.754	90,679.37	430,753.274	678,334.263	314,066.696	179,126.12
II-1997	42,897.622	555,799.47	92,739.679	349,297.626	235,357.995	357,575.658	206,761.23
III-1997	43,144.769	-7,508.798	92,664.991	475,630.012	574,293.904	494,491.773	197,757.93
IV-1997	43,691.334	911,961.746	92,951.033	142,643.961	187,848.411	328,937.945	188,805.74
I-1998	42,706.656	212,347.681	94,475.091	284,837.38	478,738.346	588,213.555	209,078.8
II-1998	42,711.613	518,376.174	93,582.371	377,595.485	486,111.212	214,493.815	198,199.64
III-1998	42,829.011	411,400.876	95,385.095	440,858.272	301,176.512	445,385.974	213,605.90
IV-1998	41,549.301	444,731.651	94,451.124	375,828.944	498,970.312	301,339.138	199,667.21
I-1999	42,088.668	609,140.706	96,269.491	343,652.541	504,351.259	185,114.775	200,309.39
II-1999	41,654.589	220,954.554	98,500.191	467,405.131	319,954.295	644,621.299	221,156.83
III-1999	42,121.614	128,065.952	103,131.422	747,944.66	448,065.413	343,712.543	241,107.86
IV-1999	42,926.61	661, 152. 17	102,345.378	-9,592.35	619,962.315	454,935.866	226,737.10
I-2000	42,598.558	505,430.802	105,389.923	755,083.12	321,354.964	204,670.239	210,008.32
II-2000	43,731.6	733,586.025	107,882.062	338,864.047	230,256.668	483, 171. 422	231,901.04
	I-1995 II-1995 II-1995 II-1996 II-1996 II-1996 II-1997 II-1997 II-1997 II-1997 II-1998 II-1998 II-1998 II-1999 II-1999 II-1999 III-1999 III-1999 III-1999 III-1999 III-1999 II-2000 II-2000 II-2000	I-1995 40,369.87 II-1995 40,307.653 III-1995 41,010.376 IV-1995 41,395.091 I-1996 42,594.94 III-1996 42,594.94 III-1996 42,637.697 IV-1996 42,614.785 II-1997 42,697.622 III-1997 43,691.334 I-1998 42,706.656 III-1998 42,711.613 III-1998 42,698.0568 II-1999 42,688.668 II-1999 42,121.614 IV-1999 42,926.61 I-2000 42,598.558 II-2000 43,731.6	I-1995 40,369.87 393,364.414 II-1995 40,307.653 290,493.817 III-1995 41,010.376 436,815.898 IV-1995 41,010.376 436,815.898 IV-1995 41,395.091 296,168.962 I-1996 42,594.94 466,959.341 III-1996 42,637.697 237,602.017 IV-1996 42,637.697 237,602.017 IV-1996 42,637.697 237,602.017 IV-1996 42,637.697 237,602.017 IV-1997 42,479.748 75,584.754 II-1997 42,479.748 75,584.754 III-1997 43,691.334 911,961.746 I-1998 42,706.655 212,347.681 III-1998 42,711.613 518,376.174 III-1998 42,784.654 609,140.706 IV-1998 41,549.301 444,731.651 I-1999 42,088.668 609,140.706 III-1999 42,121.614 128,065.952 IV-1999 42,926.61 661,152.17 I-20000	I-1995 40,369.87 393,364.414 90,773.27 II-1995 40,307.653 290,493.817 92,379.234 III-1995 41,010.376 436,815.898 89,609.457 IV-1995 41,395.091 26,168.962 89,972.129 I-1996 42,554.94 466,959.341 86,193.962 III-1996 42,637.697 237,602.017 93,900.394 IV-1996 42,637.697 237,602.017 93,900.394 IV-1996 42,637.697 237,602.017 93,900.394 IV-1996 42,697.622 555,799.47 90,679.37 II-1997 42,497.748 75,584.754 90,679.37 III-1997 43,691.334 911,961.746 92,795.079 III-1997 43,691.334 911,961.746 92,951.033 I-1998 42,706.656 212,347.681 94,475.091 III-1997 43,691.334 911,961.746 92,581.033 I-1998 42,711.613 518,376.174 93,582.371 IIII-1998 42,628.014 444,731.651 94,451.124<	I-1995 40,369.87 393,364.414 90,773.27 316,383.767 II-1995 40,307.653 290,493.817 92,379.234 307,718.744 III-1995 41,010.376 436,815.898 89,609.457 298,772.23 307,718.744 III-1995 41,010.376 436,815.898 89,609.457 298,772.23 307,718.744 III-1996 42,594.94 466,959.341 86,193.962 254,634.714 III-1996 42,637.697 237,602.017 93,900.394 414,881.597 IV-1996 42,637.697 237,602.017 93,900.394 414,881.597 IV-1996 42,637.697 237,602.017 93,900.5062 271,232.739 I-1997 42,479.748 75,584.754 90,679.37 430,753.274 III-1997 42,691.334 911,961.746 92,951.033 142,643.961 III-1997 43,691.334 911,961.746 92,951.033 142,643.961 II-1998 42,711.613 518,376.174 93,582.371 377,595.485 III-1998 42,629.011 411,400.876	I-1995 40,369.87 393,364.414 90,773.27 316,383,767 225,045.818 III-1995 40,307.653 290,493.817 92,379.234 307,718.744 418,971.963 III-1995 41,010.376 436,815.898 89,609.457 298,772.83 352,770.371 IV-1995 41,395.091 296,168.962 89,972.129 340,688.851 418,234.399 II-1996 42,594.94 466,959.341 86,193.962 254,634.714 247,130.269 III-1996 42,637.697 237,602.017 93,900.394 414,881.597 538,818.798 IV-1996 42,637.697 237,602.017 93,900.394 414,881.597 538,818.798 IV-1996 42,614.785 331,043.276 93,805.662 271,232.739 482,733.151 II-1997 42,479.748 75,508.754 90,679.37 430,753.274 678,334.263 III-1997 42,497.748 75,508.794 92,9730.679 349,297.622 253,537.995 III-1997 43,691.334 911,961.746 92,951.033 142,643.961 187,848.411	I-1995 40,369.87 393,364.414 90,773.27 316,383.767 285,045.818 360,419.235 II-1995 40,0307.653 290,493.817 92,379.234 307,718.744 418,971.963 346,855.762 III-1995 41,010.376 436,815.898 89,609.457 298,772.83 352,770.371 299,423.291 IV-1995 41,395.091 296,168.962 89,972.129 340,668.851 418,234.939 347,121.803 I-1996 42,594.94 466,959.341 86,193.962 254,634.714 247,130.269 455,547.526 III-1996 42,637.697 237,602.017 93,900.394 414,881.597 538,818.798 265,139.135 IV-1996 42,714.785 311,043.276 93,805.062 271,232.739 482,733.151 379,311.334 IV-1997 42,497.748 75,584.754 90,679.37 430,753.2274 678,334.263 314,066.696 III-1997 42,497.748 75,584.754 90,679.37 307,755.658 311,961.749 92,951.033 142,643.961 187,848.411 328,937.945 <t< td=""></t<>

The "Chart" is also provided by the interface:

Figure 76. Chart of the reconciliated series.

Eventually, the "Output" drop down menu offers a summary of descriptive information (cf Annex 5):

Figure 77. Summary of descriptive information.

s Summary	Diagnostics		
 Input Temporally aggregated time series (N x m) Related time series (n x m) Contemporaneous high frequency constraints (n x k) Weights for contemporaneous aggregations (k x m) - Optional Output High Frequency Series Benchmarked series using PFD technique High-frequency estimate Chart Constraint Low Frequency Series Grid Constraint Constraint Compression Grid Constraint Constraint Constraint Constraint Constraint Constraint 	Name Number of variables Frequency conversion Number of LF periods Number of contemporaneous constraints Diension of the linear system Density of the system matrix (%) Number of constraints Method of reconciliation Precision level	Value 7 7 11 44 1 429 0.00 121 Sqrd-Prelim. over the diag. 0,10	Descriptio

3.4. MATRIX BALANCING TECHNIQUE – RAS-PM (1964)

Matrix balancing is an important problem that has attracted attention in many different fields: the need for adjusting the entries of a large matrix to satisfy prior consistency requirements occurs frequently in economics, urban planning, statistics, demography, and stochastic modeling and a large amount of both theoretical results and real-life-data applications of matrix balancing can be found in the specialized literature for all these fields.

Thus, procedures for matrix balancing can be separated into two broad classes: bi-proportional or scaling algorithms (like RAS) and non bi-proportional algorithms. In this guide we focus our intention on the former, which are identified by the way they balance matrices¹⁰.

The RAS algorithm is a bi-proportional matrix balancing procedure developed by Stone (1961) in an input-output context. Nevertheless, JEcotrim implements the Plus-Minus Proportionate Adjustment technique proposed by the Australian Bureau of Statistics in 1995¹¹. This new method consists of a procedure for prorating a sequence of positive and negative values in line with a given total, while the original RAS algorithm can only deal with positive entries. Thus, the RAS-PM requires the use of two factors, one for the positive entries and one for the negative entries.

To use the RAS-PM in JEcotrim, the user has to select from Statistical methods>National Accounts Tools>RAS-PM

Figure 78. RAS-PM selection.

Statistical methods View	Tools Window Help
Benchmarking	RAS-PM
viders Window 🕷	Modified Denton
Spreadsheets C:\Users\\sauvag	Fernández Litterman
Annual	Two step reconciliation

Figure 79 provides the overview of the main window of the Workspace. Again, the same structure as in previous cases is met.

¹⁰ They iteratively multiply rows and columns of the matrix under adjustment by positive constants to derive a series of candidate solution matrices until the matrix is finally balanced.

¹¹ The work is called "Demographic estimates and projections: Concepts, Sources and Methods".

Figure 79. Main view of the RAS-PM Workspace (overview).

		R	eport Sp
Summary Matrix to be balanced (n x m) Row marginal totals (n x 1) Column marginal totals (1 x m)	RAS - Biproportional matrix balancing technique of Stone (1961) including the plus-minus adjustment for positive-negative values The RAS-PM algorithm is a bi-proportional matrix balancing technique (first proposed by Stone 1961 in an input-output context)	 General Tolerance Max number of it 	0.0001 . 100
Fixed elements of the matrix (n x m) - Optional	which considers the plus-minus adjustment for positive-negative values to derive a series of candidate solution matrices until the matrix to be balanced is finally balanced. It is an iterative procedure seeking for a solution where the discrepancies between two iterations are small enough, under a convergence criteria.		

A word of caution is required in this case, because the user do not need load any dataset of time series as previously. Since this method works with matrices¹², the procedure to load them correctly is explained in the following lines (and also in the Two step procedure chapter).

Given the inputs in Figure 80

Figure 80. Inputs in RAS-PM technique.

First step is to select the first input "Matrix to be balanced" and then click on "Load matrix" button as indicated in Figure 81. This action should be repeated at least twice more¹³.

¹² The following Excel sheets are loaded: xmat.xlsx, colmarg.xlsx and rowmarg.xlsx.

¹³ The last input called "Fixed elements of the matrix" is set default as a matrix of ones.

Figure 81. How to load matrices.

If the matrix to be balanced satisfies the conditions required by the procedure¹⁴

Figure 82. Loading matrix to be balanced.

V								
to be balanced (n x m)	PMRAS M	lat - X.xlsx	<u>.</u>					
arginal totals (n x 1) marginal totals (1 x m)	40361.32	349350.31	90765.61	315535.47	356226.08	330176.11	168767.72	
Column marginal totals (1 x m)	40295.29	353715.29	91829.29	312121.26	364589.41	334768.05	169034.66	
elements of the matrix (n x m) - Optional	41024.94	354689.67	89901.94	315651.53	374640.12	341763.41	170499.61	
	41401.45	359087.83	90237.26	320235.94	379567.48	347112.53	173369.31	
	42553.33	362479.39	86285.97	323074.34	386493.89	348909.65	179995.99	
	43193.93	363110.06	92617.05	326971.90	393494.52	355632.79	177511.20	
	42697.93	367173.04	93962.02	330251.37	395890.09	360334.83	181377.03	
	42507.71	368626.31	93541.46	333977.48	403246.51	366677.93	183057.28	
	42521.83	373577.45	89424.41	339880.30	409866.35	368522.92	188358.40	
	42737.30	381071.69	92458.48	346737.05	415303.92	371953.19	191301.77	
	43101.62	387126.55	93012.42	351531.15	421746.76	375798.17	195147.68	
	43852.76	394061.51	94139.79	360176.40	428917.56	378797.81	197643.25	
	40040.07	204057.04	04034 11	20 40 77 40	424221 10		100575 04	

And the rest of the input terms are correctly loaded (Figure 82 and Figure 83), then the program will not return any error message and will execute.

¹⁴ See the Australian Bureau of Statistics' work for a depth view of the conditionals.

Figure 83. Loading row marginal totals.

RasDocument-1 🛛		
Summary		Load matrix
Matrix to be balanced (n x m)	PMRAS Mat - cols.xlsx	
Column marginal totals (1 x m) Column marginal totals (1 x m)	1654177.26 1667653.64	
F Fixed elements of the matrix (n x m) - Optional	1687371.95	

Figure 84. Loading column marginal totals.

Cumman and	
Innut	Load
Matrix to be balanced (n x m)	PMRAS Mat - rows.xlsx
Row marginal totals (n x 1)	
Column marginal totals (1 x m)	1983518.67 19068899.01 5044207.77 18757600.68 23411467.70 19965242.96 5713759.42

Notice that we let the "Fixed elements of the matrix" being set by default.

JEcotrim only lets the user modify the level of tolerance for the convergence criterion which default value is 1,00E-04 and also the maximum number of iterations (100 is the default value in the interface).

Figure 85. Available modifications in "Specifications" menu for RAS-PM.

	1
	0.0001
Tolerance Manage Franking	0.0001
Max number of iterations	100

Once the set-up is established, the program runs automatically. First thing the user will run into in the "Output" menu is the message that informs whether the procedure has converged and the number of iterations required to that convergence.

Figure 86. Message of convergence for RAS-PM.

Summary Input	Message		
 Matrix to be balanced (n x m)	Name	Value	Description
ow marginal totals (n x 1)	String	RAS procedure. Convergence achieved after 5 iterations.	
lumn marginal totals (1 x m)	2		
ixed elements of the matrix (n x m) - Optional			
put			
sage			
Balanced matrix			
XBAL			

After the convergence message, the program presents the balanced matrix by RAS-PM, having the property to satisfy the required marginal totals.

Figure 87. Balanced matrix by RAS-PM.

ummary	XBAL						
nput	42392.02	366910.72	95327.37	331387.70	374118.52	346766.56	97274.37
Matrix to be balanced (n x m)	42263.62	370976.80	96309.94	327344.61	382367.69	351098.69	97292.30
Row marginal totals (n x 1)	42966.00	371454.86	94150.70	330563.07	392334.06	357911.26	97992.01
Column marginal totals (1 x m)	43298.97	375528.74	94368.14	334889.46	396931.64	362998.70	99500.32
Fixed elements of the matrix (n x m) - Optional	44756.45	381228.93	90748.55	339776.96	406470.83	366950.77	103890.34
) Message Balanced matrix 	45229.45 44760.81 44506.66 44589.18 44814.10 45310.14	380204.62 384895.15 385943.84 391722.71 399571.78 406944.64	96976.62 98496.54 97935.22 93767.24 96946.44 97773.31	342356.42 346182.58 349658.35 356379.74 363561.01 369517.59	412004.56 414983.19 422175.11 429758.61 435450.09 443321.06	372368.73 377720.17 383897.12 386415.81 390003.68 395029.32	102003.40 104343.10 105180.34 108390.91 110082.15 112578.53
	45999.93	413337.46	98744.05	377785.20	449882.19	397320.07	113771.25
	44698.49	413813.44	98537.16	382069.71	455049.94	402019.27	114209.49
	44943.06	417451.97	98440.87	385929.94	460279.04	405968.91	118056.51
	44923.11	419776.53	99982.63	391401.68	467444.10	408436.47	118677.10

No.

4. Bridge from Ecotrim for Windows

This chapter gives indication to users of Ecotrim v.1.01 about what they can expect from JEcotrim and gives insight about how to go on in JEcotrim with the work they were doing in Ecotrim v.1.01.

This new program brings many improvements relative to the Ecotrim v.1.01. Compared to this last one, the JEcotrim package provides:

- User-friendly interface for loading data and output.
- Results for regression based techniques as for temporal disaggregation of time series have been stabilized when the GLS or ML method is employed for estimating. This is a remarkable point because in Ecotrim v.1.01 there seems to be a miscalculation of the ML method.
- The implemented univariate benchmarking method (Modified Denton) in JEcotrim returns quality and accurate output.
- A reconciliation procedure, namely Two-step reconciliation procedure (Di Fonzo and Marini 2011), has been implemented.
- Quality improvement of the results.
- A matrix balancing technique, namely the RAS-PM procedure, has been implemented.
- Neither Multivariate Denton nor Rossi techniques have been implemented since they seemed not to work in a proper way in Ecotrim v.1.01.

Regarding the theoretical methodology, there exist two popular approaches in the field of balancing/benchmarking time series: a Fully-Matrix Regression-Based (FMRB) approach using the least squares techniques, and a Recursive State-Space Regression Matrix (RSSRM) approach. The FMRB approach uses matrix calculation to provide exact results of parameters estimation while the RSSRM estimation results depend on the starting points of the iterative process. Such points are usually generated using diffuse distribution or similar techniques which may introduce a bias on the final results. However, the two approaches should provide identical results if the starting points are exact ones. Choosing one or the approach is a major factor that may affect the quality of the final results. Based on the large progress in the capabilities of computing technology, and anxious to produce exact results, the new generation of ECOTRIM uses the FMRB as the basic approach.

ECOTRIM offers the methods as in the table below.

• Univariate methods in ECOTRIM

The univariate methods option is selected in order to estimate high-frequency univariate series. Ecotrim proposes either adjustment or optimal techniques, in the least squares sense. This module caters for two categories of methods of disaggregation:

a. Mathematical methods, which do not use reference indicators.

Table 1: Methods in ECOTRIM

• Multivariate methods in ECOTRIM:

Multivariate temporal disaggregation of time series with multivariate methods ensures the respect of both temporal and contemporaneous aggregation constraints.

Ecotrim proposes both adjustment and optimal techniques, in the least squares sense. Adjustment techniques require preliminary series fulfilling the temporal constraint. The accounting constraint is then achieved with respect to both temporal and contemporaneous aggregation constraints (in this case too, Ecotrim proposes either adjustment or optimal techniques, in the least squares sense).

Multivariate Methods
White Noise
Random Walk
Rossi
Denton Additive First Differences
Denton Additive Second Differences
Denton Proportional First Differences
Denton Proportional Second Differences
From the kick-off meeting and under the recommendation of Prof. Tommaso Di Fonzo, Benchmarking and temporal disaggregation methods expert, the set of methods will be redistributed in JECOTRIM. The table below shows the update.

Table 2: Methods in JECOTRIM

Univariate Methods
Benchmarking methods:
Modified DENTON
Regression-based temporal disaggregation:
Chow Lin
Fernàndez
Litterman
Reconciliation of systems of time series
Two-Step procedure (Quenneville & Rancourt 2005 – Di Fonzo & Marini 2009)
Balancing method
RAS with Plus/Minus option (negative values)

Why this choice?

The field of balancing/benchmarking time series has a long history with very large literature. The problem is usually the reconciliation of economic data to satisfy a set of constraints; it concerns Univariate and multivariate methods. Some pioneer papers in the domain are the ones published by Stone and al. (1942), Denton (1971), Chow and Lin (1971), Chollette(1984), etc. The most recent works were accomplished by Quenneville and Fortier (2006), Di Fonzo and Marini (1990, 2005, 2009).

The different reconciliation techniques use two popular approaches: a Fully-Matrix Regression-Based approach based on the least squares techniques, and a Recursive State-Space Regression Matrix approach. The first approach uses matrix calculation to provide exact results of parameters estimation while the second one uses iterative methods in which the estimation results depend on the starting points of the algorithm. Such points are usually generated using diffuse distribution or similar techniques that may introduce a bias on the final results. However, the two approaches should provide identical results if the starting points are exact ones. Choosing one or the approach is a major factor that may affect the quality of the final results.

Professor Tommaso DI FONZO how advised to use the Least Square approach for the implementation of the new ECOTRIM software. The reasons are double: first, the large

~

progress in the capabilities of computing technology (sparse matrices, etc.) allow the manipulation of large system of data in very short time, and second, the least squares approach provides exact results

There is finally a lot of difference between the two libraries and a program of training will have to be prepared for a transition from the former set of methods to the new one.

Only the regression based methods are in common between ECOTRIM and JECOTRIM:

• DENTON in ECOTRIM was bugged and will not be comparable to the modified DENTON in JECOTRIM,

2-Step procedure and RAS with Plus/minus option are new. The 2-Step procedure is not comparable to the multivariate methods of ECOTRIM.

Annex 1: AGGREGATION ORDER

aggr	Description		
2	Annual to half-yearly or half-yearly to quarterly		
3	Quarterly to monthly		
4	Annual to quarterly		
6	Half-yearly to monthly		
12	Annual to monthly		

Annex 2: TYPE OF AGGREGATION

typeaggr	Description
flow	Sum
index	Average
last	Sample of the last
first	Sample of the first

Annex 3: SUMMARY TABLE OF STATISTICAL CONCEPTS

General

Number of valid cases	Number of observations of temporally aggregated time series	
Degrees of Freedom	Number of observations (N) less the estimated coefficients (k)	
Coefficient of determination (Buse, 1973)	It is a generalized R-squared statistic proposed by Buse (1973) in case of GLS estimation	
Adjusted R-squared	Measure that imposes a small penalty in R-squared when a variable is added to the model	
Standard Error of Regression	Measure of variability	
Sum of Squared Totals	Measure of the total variation in dependent variable	
Sum of Squared Residuals	Measure of the unexplained variation of the dependent variable	
Sum of Squared Estimates	Measure of the explained variation of the dependent variable	
Log-likelihood	Log-likelihood function of the model	
F-statistic	Calculates F-statistic only if there are more than 1 regressor	
Probability (F-statistic)	Displays the p-value corresponding to the reported F-statistic. Measures the significance of the F-statistic	
Akaike Information Criterion	Measure of the explanatory capability of the model proposed by Akaike (1974)	
Schwarz Information criterion	Measure of the explanatory capability of the model following a Bayesian approach suggested by Schwarz (1978)	
Durbin-Watson statistic	Measure of the first-order autocorrelation	

RELIABILITY INDICATORS

Calculated as follows:

$$\text{R.I} = \left(\frac{\hat{\sigma}_{\hat{y}}}{\hat{y}_t} \right) \times 100$$

where $\hat{\sigma}_{\hat{y}}$ denotes the estimated standard error for the estimated series and \hat{y}_t the estimated series. Notice that JE cotrim does not performs the percentage.

INTERVAL ESTIMATION

The lower limit value of the confidence interval is calculated as follows:

$$\hat{y}_t - t_{0,95}^{n-k} \cdot \hat{\sigma}_{\hat{y}}$$

being $t_{0,95}^{n-k}$ the value of the t-Student table, for the (n-k) degrees of freedom. Whilst the upper limit as

$$\hat{y}_t + t_{0,95}^{n-k} \cdot \hat{\sigma}_{\hat{y}}$$

GROWTH RATES

The growth rates performed by JEcotrim are two:

- The lag 1 growth rate: T1G= $\left(\frac{\hat{y}_t}{\hat{y}_{t-1}} - 1\right) \times 100$

The annual growth rate: TAG= $\left(\frac{\hat{y}_t}{\hat{y}_{t-s}} - 1\right) \times 100$ where s=4. Again, the JEcotrim interface does not perform the percentage.

Annex 4: BENCHMARKING ESTIMATION METHODS

bench	Description
AFD	Additive First Differences
ASD	Additive Second Differences
PFD	Proportional First Differences
PSD	Proportional Second Differences

Annex 5: SUMMARY TABLE OF DESCRIPTIVE STATISTICS

Number of variables	Number of variables
Frequency conversion	Frequency conversion
Number of LF periods	Number of LF periods
Number of HF periods	Number of HF periods
Number of contemporaneous constraints	Number of contemporaneous constraints
Dimension of the linear system	Dimension of the linear system
Density of the system matrix (%)	Density of the system matrix (%)
Number of constraints	Number of constraints
Method of reconciliation	Method of reconciliation
Precision level	Precision level
Absolute average discrepancy	Absolute average discrepancy