

Date: 30/05/2018

Guidelines for the Use of Code Lists

Guidelines for the Use of Code Lists

30/05/2018 Page 1 of 25

Document Metadata

Property Value

Date 2018-05-30

Status Accepted

Version 1.00

Authors

Makx Dekkers – AMI Consult
Daniel Brule – PwC EU Services
Alexandru Droscariu – PwC EU Services
Ioana Novacean – PwC EU Services

Reviewed by Nikolaos Loutas – PwC EU Services

Approved by Susanne Wigard – European Commission, ISA² Programme

This study was prepared for the ISA Programme by:

PwC EU Services

Disclaimer:

The views expressed in this report are purely those of the authors and may not, in
any circumstances, be interpreted as stating an official position of the European
Commission.

The European Commission does not guarantee the accuracy of the information
included in this study, nor does it accept any responsibility for any use thereof.

Reference herein to any specific products, specifications, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favouring by the
European Commission.

All care has been taken by the author to ensure that s/he has obtained, where
necessary, permission to use any parts of manuscripts including illustrations,
maps, and graphs, on which intellectual property rights already exist from the
titular holder(s) of such rights or from her/his or their legal representative.

Guidelines for the Use of Code Lists

30/05/2018 Page 2 of 25

Table of Contents

1 INTRODUCTION ... 3
1.1 CONTEXT ... 3
1.2 SCOPE AND OBJECTIVES ... 4
1.3 TARGET AUDIENCE ... 4
1.4 STRUCTURE .. 5

2 IDENTIFYING THE NEED FOR A CODE LIST AND SELECTING THE RIGHT ONE 6

3 MANAGEMENT OF THE CODE LIST LIFECYCLE .. 8
3.1 DESIGN .. 8
3.2 MANAGE CHANGES .. 11
3.3 RELEASE .. 12
3.4 RETIRE ... 14
3.5 USE AND EXTEND ... 15
3.6 CREATE MAPPINGS ... 19
3.7 MANAGE CODE LIST QUALITY ... 20
3.8 COMMUNICATION ... 20

4 CODE LIST GOVERNANCE .. 22
4.1 CONTEXT AND THE NEED FOR GOVERNANCE .. 22
4.2 GOVERNANCE TASKS AND STRUCTURE .. 22
4.3 SKILLS AND EXPERTISE REQUIRED FOR THE GOVERNANCE AND MANAGEMENT OF CODE LISTS 24

5 SUMMARY .. 25

 List of Figures

FIGURE 1: EXCERPT OF ACTIVITYTYPECODE CEN BII CODE LIST .. 4
FIGURE 2: SCENARIOS FOR CODE LIST CONSUMERS ... 7
FIGURE 3: EXAMPLE OF MULTILINGUAL LABELLING IN XML .. 9
FIGURE 4: EXAMPLE OF MULTILINGUAL LABELLING IN RDF .. 9
FIGURE 5: EXAMPLE OF CONCEPT RELATIONSHIPS .. 10
FIGURE 6: EXAMPLE OF VERSIONING IN XML .. 12
FIGURE 7: EXAMPLE OF DEPRECATION IN XML .. 15
FIGURE 8: EXAMPLE OF DEPRECATION IN RDF .. 15
FIGURE 9: EXAMPLE INITIAL LIST ... 17
FIGURE 10: EXAMPLE PATTERN FOR NEW VALUES .. 17
FIGURE 11: EXAMPLE COMBINATION OF INITIAL LIST AND EXTENSION PATTERN .. 17
FIGURE 12: EXAMPLE OF XML INSTANCES AFTER EXTENSION ... 17
FIGURE 13: EXAMPLE OF EXTENSION FIELD IN THE SCHEMA FOR ACCOMMODATING NEW VALUES 18
FIGURE 14: EXAMPLE OF ADDITIONAL ATTRIBUTE .. 18
FIGURE 15: EXAMPLE XML INSTANCES .. 18
FIGURE 16: EXAMPLE OF DOCUMENTATION-BASED EXTENSION .. 19
FIGURE 17: TASKS RELATED TO CODE LIST GOVERNANCE ... 23
FIGURE 18: EXAMPLES OF CODE LIST GOVERNANCE TASKS ... 23
FIGURE 19: 10 TIPS FOR CODE LIST MANAGEMENT AND GOVERNANCE ... 25

Guidelines for the Use of Code Lists

30/05/2018 Page 3 of 25

1 INTRODUCTION

This document is part of TASK-06 “Tools and Methodologies” of ISA² Action 2016.07
“Promoting semantic interoperability among EU Member States”, commonly known
as SEMIC1. This task aims to provide updates to the tools and methodologies
developed by the SEMIC action. The current report’s purpose is to provide practical
guidance to less experienced organisations on code lists.

1.1 Context
The SEMIC action has previously delivered extensive work in and around the
development, maintenance, management, and governance of data specifications.
Typically, the aforementioned work has focused on data models. In order to better
support public administrations in their interoperability and information governance
and management efforts, this document aims to act as a guide to developing or
managing and consuming reusable code lists.

This deliverable builds upon the work previously carried out by the SEMIC action and
included in “Methodology and Tools for Metadata Governance and Management for
EU Institutions”2.

Code lists are lists of values in a predefined set that can be used in metadata and
that help metadata creators in selecting from a set of descriptors, thereby enhancing
consistency and helping to avoid errors.

Code lists can be implemented using several technologies, in particular XML and RDF.
In the case of RDF, code lists are usually called ‘controlled vocabularies’. For brevity,
the term ‘code list’ is used throughout this document, irrespective of the expression
in XML or RDF. Wherever necessary, the specific approaches related to
implementation in XML and RDF will be explained.

For business and government messages, the use of code lists is an essential part of
document alignment and data harmonisation. Many documents used in information
exchanges require information about location, currency, dates, measurements, etc.
The way this information is represented commonly differs in more or less subtle ways
between countries and languages, despite being the same. IT systems therefore
could either misunderstand this information, or not process it at all. The solution to
this ambiguity is to have the information coded, creating an unambiguous way of
representing it. Code lists minimise errors and reduce ambiguity, providing an
essential contribution to interoperability.

Code lists have various uses. For instance, the MDR Data Theme vocabulary3 used in
the DCAT Application Profile for data portals in Europe (DCAT-AP)4, as a common set
of values for data themes, helps datasets published in different places to be classified
according to a unified classification scheme. Entities such as the European Data Portal
benefit from these interoperability tools, as they aggregate metadata from various

1 SEMIC: https://joinup.ec.europa.eu/collection/semantic-interoperability-community-semic
2 https://joinup.ec.europa.eu/sites/default/files/custom-

page/attachment/methodology_and_tools_for_metadata_governance_and_management_for_eu_institu
tions.pdf

3 http://publications.europa.eu/mdr/authority/data-theme/
4 https://joinup.ec.europa.eu/solution/dcat-application-profile-data-portals-europe

https://ec.europa.eu/isa2/home_en
https://joinup.ec.europa.eu/collection/semantic-interoperability-community-semic
https://joinup.ec.europa.eu/sites/default/files/custom-page/attachment/methodology_and_tools_for_metadata_governance_and_management_for_eu_institutions.pdf
https://joinup.ec.europa.eu/sites/default/files/custom-page/attachment/methodology_and_tools_for_metadata_governance_and_management_for_eu_institutions.pdf
https://joinup.ec.europa.eu/collection/semantic-interoperability-community-semic
https://joinup.ec.europa.eu/sites/default/files/custom-page/attachment/methodology_and_tools_for_metadata_governance_and_management_for_eu_institutions.pdf
https://joinup.ec.europa.eu/sites/default/files/custom-page/attachment/methodology_and_tools_for_metadata_governance_and_management_for_eu_institutions.pdf
https://joinup.ec.europa.eu/sites/default/files/custom-page/attachment/methodology_and_tools_for_metadata_governance_and_management_for_eu_institutions.pdf
http://publications.europa.eu/mdr/authority/data-theme/
https://joinup.ec.europa.eu/solution/dcat-application-profile-data-portals-europe

Guidelines for the Use of Code Lists

30/05/2018 Page 4 of 25

catalogues5. Other examples in the context of the European Commission include: the
work of the Publications Office on the Metadata Registry Name Authority Lists6 (MDR
NAL) and EuroVoc7, and the work on the Asset Description Metadata Schema (ADMS)
Controlled Vocabularies8. The European Committee for Standardisation (CEN)
publishes Business Interoperability Interfaces (BII) code lists such as the
ActivityTypeCode list, which contains a range of codes and the activities they
represent, as illustrated in Figure 1.

Figure 1: Excerpt of ActivityTypeCode CEN BII code list

1.2 Scope and objectives
This report aims to analyse all relevant aspects concerning the management and
governance of a code list, following its life cycle through development, maintenance,
distribution, publication, and reuse, as well as quality and communication.

1.3 Target audience
The report considers the perspectives of the publishers of code lists on one hand, and
the consumers of code lists on the other hand. The publishers of code lists can be the
consumers of their own work. For the purposes of this document, the audience is
assumed to consist, for the most part, of public administration representatives and
IT professionals developing information systems for public administration.

Publishers are the parties that develop, maintain, distribute and publish expressions
of code lists. The publisher role is strictly limited to all activities that have to do with
how the code lists are managed and does not include the assignment of the
vocabulary terms to instance data – which is the role of the consumers.

Consumers of code lists are parties that publish data that needs to be classified
using a constrained set of values, and therefore need to find and apply a code list for
the description of their data. In this context, the use of a code list requires integration
within IT systems that already exist or that are being developed.

5 https://joinup.ec.europa.eu/release/dcat-ap-how-use-mdr-data-themes-vocabulary
6 MDR NAL: http://publications.europa.eu/mdr/authority/file-type/
7 EuroVoc: http://eurovoc.europa.eu/drupal/
8 ADMS: https://joinup.ec.europa.eu/svn/adms/ADMS_v1.00/ADMS_SKOS_v1.00.html

http://publications.europa.eu/mdr/authority/file-type/
http://eurovoc.europa.eu/drupal/
https://joinup.ec.europa.eu/svn/adms/ADMS_v1.00/ADMS_SKOS_v1.00.html
https://joinup.ec.europa.eu/release/dcat-ap-how-use-mdr-data-themes-vocabulary
http://publications.europa.eu/mdr/authority/file-type/
http://eurovoc.europa.eu/drupal/
https://joinup.ec.europa.eu/svn/adms/ADMS_v1.00/ADMS_SKOS_v1.00.html

Guidelines for the Use of Code Lists

30/05/2018 Page 5 of 25

1.4 Structure
The structure of this report follows the lifecycle of a code list, and making clear, at
each stage, which role is impacted by the activities to be undertaken at that point.

The remainder of this report is structured as follows:

• Section 2 presents the starting point for an organisation’s decision to create or
reuse a code list, and provides a summary of the selection criteria that could
help an organisation select an appropriate code list;

• Section 3 covers various aspects of the management of code lists from a
lifecycle perspective, as well as aspects of quality management and
communication;

• Section 4 describes practice for the governance of code lists and considers the
skills required for the management of code lists;

• Section 5 summarises the main points of the report.

Guidelines for the Use of Code Lists

30/05/2018 Page 6 of 25

2 IDENTIFYING THE NEED FOR A CODE LIST AND SELECTING THE
RIGHT ONE

The decision to create and manage a code list is triggered by an organisation’s need
for a set of values to be used in documents, IT systems or content management
systems in order to constrain input or to classify and organise content. When an
organisation or a group of organisations identifies this need, they will start looking
for existing code lists that fulfil this need. Searching for a code list could be as basic
as using a few keywords in a search engine such as Google, but potential consumers
could find it easier to use specialised sources, such as Joinup9 or the Metadata
Registry10 or other internal sources of reusable code lists.

Once the need for a code list has been determined, a potential consumer might look
for a suitable code list available for reuse, before going through the process of
creating a new code list or requesting another organisation to do so. We propose a
set of criteria to be used by the potential consumer to select the most appropriate
code list in terms of trust, quality and reusability. These criteria are:

• Fitness-for-purpose: Is a given code list suitable for the potential consumer
in a particular context? For instance, if a country code list contains the name
of a country not recognised by the state in which the code list is going to be
used or if the national language is not supported, then the code list cannot be
used as such.

• Clarity and consistency: Is the code list understandable for both machines,
and humans, in multiple languages? Are there clear definitions for the codes?
Is there overlapping or contradictory information in the code list?

• Governance and maintenance: Is the code list being actively maintained?
Does the code list come with quality metadata which provide information
provenance, quality, reuse conditions etc. Is there a clear governance
structure in place to cater for the maintenance, e.g. for change and release
management? Are other organisations using it? Is there user support
provided?

• The trustworthiness of the publisher. Is the publisher a well-established
public or private organisation?

• Availability under an appropriate licence: Does the licensing structure allow
the potential consumer to make use of the code list? Are there any restrictions
to use?

If a suitable code list exists, and there are no licensing or other restrictions, the
organisation in need can use it and becomes, therefore, a consumer of that code list.
If no such code list exists, the organisation can either find a partner willing and able
to create and maintain a code list for them, or do this themselves. If another
organisation creates and manages this code list, the organisation with the need
becomes a consumer of this code list. If the organisation with the need decides to
create its own code list, the organisation will then be both the publisher and consumer
of the code list. Figure 2 presents these scenarios in a more visual way.

9 Joinup: https://joinup.ec.europa.eu/
10 MDR: http://publications.europa.eu/mdr/index.html

https://joinup.ec.europa.eu/
http://publications.europa.eu/mdr/index.html
http://publications.europa.eu/mdr/index.html
https://joinup.ec.europa.eu/
http://publications.europa.eu/mdr/index.html

Guidelines for the Use of Code Lists

30/05/2018 Page 7 of 25

Figure 2: Scenarios for code list consumers

Guidelines for the Use of Code Lists

30/05/2018 Page 8 of 25

3 MANAGEMENT OF THE CODE LIST LIFECYCLE

3.1 Design
An organisation assumes the role of publisher when it agrees to create and maintain
a code list, either for themselves or for another organisation. When the consumer of
the code list is another organisation, the consumer and the publisher need to align
on what the consumer expects from the code list.

During the design phase, the elaboration of the code list needs to take into account
certain aspects, based on design rules such as:

• Having a clearly defined scope, i.e. it should be clear to which characteristic
the code list applies. For example, the CEN BII code list DocumentTypeCode11
contains codes and values strictly related to different types of documents, and
nothing else.

• Using terms that are understandable by both the consumers – who will apply
the code list in the description of their resources – and the users – who will
use the terms in the code list, e.g. as facets in a search application. For
instance, the consumers and users of the Legal Proceeding code list12 should
be able to understand the concepts defined by the codes, as they relate to
legal procedures such as “Appeals”.

• Having stable concepts that do not overlap: this is often done by creating
separate concepts that differentiate between vaguely related concepts, such
as the inclusion of different types of invoice in the aforementioned
DocumentTypeCode code list, to avoid overlap.

A more complete list of design principles is provided in the ANSI/NISO standard
Z39.1913.

Multilingualism

As part of the design process, the publisher has to determine whether the code list
will be used in a multilingual environment. If that is the case, several options may be
used: multilingual documentation, multilingual labels in the metadata of the terms,
in particular in RDF expressions, or language-independent terms, such as numbers
or mnemonics. In XML this is mainly achieved by using xsd:token14, for instance as
in the UN/CEFACT Currency code list15, or xsd:id16 restricting values to numbers or
mnemonics while keeping labels as attributes.

11 CEN BII Code Lists:

https://overheid.vlaanderen.be/sites/default/files/documenten/overheidsopdrachten/e-
procurement/CWA16558-Annex-G-BII-CodeLists-V2_0_4.pdf

12 Legal Proceeding code list:
http://publications.europa.eu/mdr/resource/authority/procjur/html/procjur-eng.html

13 ANSI/NISO Z39.19-2005 (R2010) Guidelines for the Construction, Format, and Management of
Monolingual Controlled Vocabularies. http://www.niso.org/publications/ansiniso-z3919-2005-r2010-
guidelines-construction-format-and-management-monolingual

14 W3C. XML Schema Part 2: Datatypes Second Edition. Section 3.3.2 token.
https://www.w3.org/TR/xmlschema-2/#token

15 UN/CEFACT Currency Code List: https://docs.oasis-open.org/ubl/os-UBL-
2.0/xsd/common/CodeList_CurrencyCode_ISO_7_04.xsd

16 W3C. XML Schema Part 2: Datatypes Second Edition. Section 3.3.8 ID
https://www.w3.org/TR/xmlschema-2/#ID

https://overheid.vlaanderen.be/sites/default/files/documenten/overheidsopdrachten/e-procurement/CWA16558-Annex-G-BII-CodeLists-V2_0_4.pdf
http://publications.europa.eu/mdr/resource/authority/procjur/html/procjur-eng.html
http://www.niso.org/publications/ansiniso-z3919-2005-r2010-guidelines-construction-format-and-management-monolingual
http://www.niso.org/publications/ansiniso-z3919-2005-r2010-guidelines-construction-format-and-management-monolingual
https://www.w3.org/TR/xmlschema-2/#token
https://docs.oasis-open.org/ubl/os-UBL-2.0/xsd/common/CodeList_CurrencyCode_ISO_7_04.xsd
https://www.w3.org/TR/xmlschema-2/#ID
https://overheid.vlaanderen.be/sites/default/files/documenten/overheidsopdrachten/e-procurement/CWA16558-Annex-G-BII-CodeLists-V2_0_4.pdf
https://overheid.vlaanderen.be/sites/default/files/documenten/overheidsopdrachten/e-procurement/CWA16558-Annex-G-BII-CodeLists-V2_0_4.pdf
http://publications.europa.eu/mdr/resource/authority/procjur/html/procjur-eng.html
http://www.niso.org/publications/ansiniso-z3919-2005-r2010-guidelines-construction-format-and-management-monolingual
http://www.niso.org/publications/ansiniso-z3919-2005-r2010-guidelines-construction-format-and-management-monolingual
https://www.w3.org/TR/xmlschema-2/#token
https://docs.oasis-open.org/ubl/os-UBL-2.0/xsd/common/CodeList_CurrencyCode_ISO_7_04.xsd
https://docs.oasis-open.org/ubl/os-UBL-2.0/xsd/common/CodeList_CurrencyCode_ISO_7_04.xsd
https://www.w3.org/TR/xmlschema-2/#ID

Guidelines for the Use of Code Lists

30/05/2018 Page 9 of 25

Figure 3 presents a snippet of an XML file illustrating how the multilingualism issue
is addressed in the MDR NAL code list17, which involves creating local XML elements
for each required language. Using the same example, but in its RDF expression, one
can observe the use of skos:prefLabel18 properties being used to add language labels
in Figure 4.

Figure 3: Example of multilingual labelling in XML

Figure 4: Example of multilingual labelling in RDF

Licensing

The publisher will also have to decide under which licence the code list is made
available for use. Generally, it is important to specify the licence regime of any code
list, because otherwise interested parties may assume that the code list is not
available for re-use. The default legal view on code lists that are not clearly licensed
is that the potential consumer needs to contact the publisher on a case-by-case

17 MDR NAL Code List : http://publications.europa.eu/mdr/resource/authority/data-theme/xml/data-

theme.xml
18 W3C. Simple Knowledge Organization System (SKOS). https://www.w3.org/2004/02/skos/

http://publications.europa.eu/mdr/resource/authority/data-theme/xml/data-theme.xml
http://publications.europa.eu/mdr/resource/authority/data-theme/xml/data-theme.xml
http://publications.europa.eu/mdr/resource/authority/data-theme/xml/data-theme.xml
https://www.w3.org/2004/02/skos/

Guidelines for the Use of Code Lists

30/05/2018 Page 10 of 25

basis19. It is a good practice to publish code lists under as open a licence as possible,
as interested parties can then build upon it to create added value. A suitable open
licence could be the ISA Open Metadata Licence v1.120.

Relationships

Another aspect to be taken into account is that of relationships between the terms of
a code list. While some concepts do not lend themselves easily to the expression of
relationships (such as country names in a list of countries), others are perfectly suited
for such expressions. For instance, in EuroVoc21, the concept “single-family housing”
is the preferred term to “house”. From the “single-family housing” entry, one can
learn about related concepts, either hierarchically or by equivalence. In the example
in Figure 5, we see hierarchical relationships (the term is part of microthesaurus 2846
construction and town planning), while “housing” is a broader term for it.

Figure 5: Example of concept relationships

Technologies

As part of the design and development effort, the publisher needs to express the
conceptual design in particular syntaxes: in a Linked Data paradigm in RDF, e.g. as
SKOS concepts in a SKOS concept scheme, and as XSD enumerations22, or OASIS
Genericode23 (a technique used recently by UBL24, for example) for XML
environments. Additionally, a code list can be published as a dataset or as a file, but
could also work as a service, in a similar way as linked data. The release should
always be accompanied by thorough documentation.

The two expression approaches also have consequences for the access that
consumers have to the vocabulary: in a Linked Data environment, vocabulary terms
can be used by reference, i.e. as URIs to individual concepts, while in an XML

19 Data and metadata licensing: https://joinup.ec.europa.eu/sites/default/files/document/2015-

05/d2.1.2_training_module_2.5_data_and_metadata_licensing_v1.00_en.pdf
20 ISA Open Metadata Licence v1.1. https://joinup.ec.europa.eu/licence/isa-open-metadata-licence-v11
21 EuroVoc: http://eurovoc.europa.eu/drupal/
22 W3C. XML Schema Part 2: Datatypes Second Edition. Section 4.3.5 enumeration.

https://www.w3.org/TR/xmlschema-2/#rf-enumeration
23 OASIS Genericode: http://docs.oasis-open.org/codelist/cs-genericode-1.0/doc/oasis-code-list-

representation-genericode.html
24 Code lists in XML business documents: https://www.ibm.com/developerworks/library/x-ind-

ublcodel/x-ind-ublcodel-pdf.pdf

http://eurovoc.europa.eu/drupal/
http://eurovoc.europa.eu/drupal/?q=request&view=npt&termuri=http://eurovoc.europa.eu/215425&language=en
https://www.w3.org/TR/xmlschema-2/#rf-enumeration
http://docs.oasis-open.org/codelist/cs-genericode-1.0/doc/oasis-code-list-representation-genericode.html
http://docs.oasis-open.org/codelist/cs-genericode-1.0/doc/oasis-code-list-representation-genericode.html
https://joinup.ec.europa.eu/sites/default/files/document/2015-05/d2.1.2_training_module_2.5_data_and_metadata_licensing_v1.00_en.pdf
https://joinup.ec.europa.eu/sites/default/files/document/2015-05/d2.1.2_training_module_2.5_data_and_metadata_licensing_v1.00_en.pdf
https://joinup.ec.europa.eu/licence/isa-open-metadata-licence-v11
http://eurovoc.europa.eu/drupal/
https://www.w3.org/TR/xmlschema-2/#rf-enumeration
http://docs.oasis-open.org/codelist/cs-genericode-1.0/doc/oasis-code-list-representation-genericode.html
http://docs.oasis-open.org/codelist/cs-genericode-1.0/doc/oasis-code-list-representation-genericode.html
https://www.ibm.com/developerworks/library/x-ind-ublcodel/x-ind-ublcodel-pdf.pdf
https://www.ibm.com/developerworks/library/x-ind-ublcodel/x-ind-ublcodel-pdf.pdf

Guidelines for the Use of Code Lists

30/05/2018 Page 11 of 25

environment, it is not possible to simply use the URI. However, in XML, one can use
the codes without importing the full code list. Furthermore, codes can be used in XML
independently of the format they are published in. However, if there is an intention
to perform schema validation, the code list does need to be imported into the schema
(if the code list is expressed as XML schema).

Furthermore, while URIs are a key priority in a Linked Data environment, they carry
less weight on the XML side. In XML, identifiers end up not as part of the content
itself, but part of the metadata25.

3.2 Manage changes
It is a good practice to provide a strong commitment to sustain a code list by using
a transparent change management process. One example is the Publications’ Office
strong commitment to maintain the Named Authority Lists. Commitment to
maintenance also means commitment to the continuous improvement of the code
list. In order to measurably improve a code list, certain aspects can serve as
performance indicators: number of change requests, number of releases, the time
elapsed between the receipt of a change request and the closing of the change
management process for said request, the effort required needed to execute the
change management operation, etc.26

An explicit change management policy27 needs to state how change requests are
captured, how these requests are assessed, who decides which action to take and
who implements the changes. This is exemplified in the change management policy
of some data specifications, for instance that of DCAT-AP28. The person or
organisation requesting the change should also be informed on any decision following
the change request.

Both the publisher and the consumer are responsible for backwards compatibility.
The consumer must use the code list in such a way that adaptations to codes do not
violate the conformance to definitions, relationships in the code list or anything else.
Changing the meaning of a term in a list makes any subsequent version incompatible
with previous versions29.

Additionally, there should be some form of agreement between publishers and
consumers on whether the publisher should proactively inform the consumers of any
new version of the code list, or whether consumers should check for updates following
some pre-defined release schedule. In that spirit, pre-defined and fixed release cycles
contribute to making new versions predictable and increasing the chances that
consumers are aware of the updates in a timely manner. This issue is particularly
important, as for some code lists (e.g. country codes) there could be legal
implications or liabilities of different sorts in the case of supplying the wrong version
or not recognising codes in the most current version.

25 XML attributes: https://www.w3schools.com/xml/xml_attributes.asp
26 Report on implementation of a Metadata Management pilot for DG COMP

https://joinup.ec.europa.eu/sites/default/files/document/2015-
09/report_on_implementation_of_a_metadata_management_pilot_for_dg_comp.pdf

27 See “Process and Methodology for Developing Core Vocabularies” for an example of a change
management process

https://joinup.ec.europa.eu/document/process-and-methodology-developing-core-vocabularies
28 Change management policy of DCAT-AP: https://joinup.ec.europa.eu/document/change-and-release-

management-policy-dcat-ap
29 Vocabulary Management Note: https://www.w3.org/wiki/VocabManagementNote

https://joinup.ec.europa.eu/document/change-and-release-management-policy-dcat-ap
https://www.w3schools.com/xml/xml_attributes.asp
https://joinup.ec.europa.eu/sites/default/files/document/2015-09/report_on_implementation_of_a_metadata_management_pilot_for_dg_comp.pdf
https://joinup.ec.europa.eu/sites/default/files/document/2015-09/report_on_implementation_of_a_metadata_management_pilot_for_dg_comp.pdf
https://joinup.ec.europa.eu/document/process-and-methodology-developing-core-vocabularies
https://joinup.ec.europa.eu/document/change-and-release-management-policy-dcat-ap
https://joinup.ec.europa.eu/document/change-and-release-management-policy-dcat-ap
https://www.w3.org/wiki/VocabManagementNote

Guidelines for the Use of Code Lists

30/05/2018 Page 12 of 25

3.3 Release
The publisher has to choose which distributions will be made available, a decision
that depends on the potential consumer-base of the code list. As mentioned in section
3.1, code lists can be distributed in different forms, as a file, as a dataset, or as a
service. In order to facilitate dissemination, the code list should be hosted on a stable
platform, such as an official website that establishes the publisher as the authoritative
source, and have a persistent identifier.

Publication of a new release should come with some form of statement of
authenticity. This could be as easy as having an official website with the distribution
stating that this is the only valid source, as mentioned above. This practice enables
the establishment of the authority of the owner of the code list.

When a new version of a code list is released, stakeholders should also receive
associated documentation. For each release, a versioning system with numbers is
strongly recommended to allow users to easily determine whether they use the latest
version of the code list. It also contributes to a well-designed and well-maintained
code list.

Versioning in XML

When implementing changes to XML schemas, the version number of the schema
should increase, and any updates should be reflected in a change log. The version
number can be implemented at several levels in an XML code list:

• In the file name;
• In the namespace;
• Through the schema version attribute (<xsd:schema… version=”1.0”>);
• Changing the name or location of the schema;
• Adding a schema-version attribute to the root element30.

Figure 6: Example of versioning in XML

Figure 6 shows an example of versioning being done in the schema version attribute,
using both a number and a date for the versioning.

Versioning in RDF

In contrast to XML code lists, where there are different versions of the schemas
themselves, for RDF, we simply see different versions of the codes. However, this
only occurs as a way to keep track of minor changes, which do not change a code’s
definition and semantics. For significant changes in the semantics of a code, a new
one needs to be created. For example, in Dublin Core, we see that when the concept
“license” suffered a relatively minor change (deleting an additional comment), this is
reflected in the creation of a new code:

30 Versioning in XML: http://www.xfront.com/Versioning.pdf

http://www.xfront.com/Versioning.pdf

Guidelines for the Use of Code Lists

30/05/2018 Page 13 of 25

http://dublincore.org/usage/terms/history/#license-002, which replaces
http://dublincore.org/usage/terms/history/#license-001.

Formats

Code lists can be published in many different formats, including spreadsheets or text
documents. Commonly used formats are of course XML and RDF, but also CSV and
HTML. CSV and HTML are particularly user-friendly formats, as they allow the
consumer to open the code list in a simple spreadsheet software (for CSV) or any
Web browser (for HTML).
A commonly encountered format in this domain is also SKOS (Simple Knowledge
Organisation System), a W3C standard specifically designed for representation of
structured controlled vocabularies such as code lists31. SKOS provides a standard
way to represent knowledge organisation systems using RDF. As such, the RDF
distribution of a code list would be modelled in SKOS. Using unique URIs as identifiers
for concepts, SKOS enables the expression of a relationship between a concept and
another SKOS-based concept using the URI of this second concept32. One of the main
advantages of SKOS is that it allows publishers to store additional metadata. For even
more granular metadata, SKOS-XL is an extension to SKOS designed for assigning
metadata to a label33. SKOS-XL therefore facilitates versioning and multilingualism,
for which it is used by organisations such as the Publications Office of the EU34.

Publishing tools and platforms

Code list publishers have a variety of tools at their disposal, both Open Source and
commercial products. There are tools on the market that cover the full lifecycle of a
code list, from design and release to change management and retirement. For
instance, Unilexicon35 is an Open Source solution that can be used to create code
lists. It has a very straightforward registration process and features an easy-to-use
visual editor. A solution that might be used simply to publish a code list is Skosmos36.
For publishers that are looking for collaborative tools, VocBench37 might be the most
appropriate option.

Licensing

Section 3.1 contains the basic information regarding the licensing approach a code
list publisher might take. It is also good to know that some code list publishing tools
include the possibility to provide licensing information about the data in a code list.
This can encourage the broad dissemination and reuse of a given code list.

31 SKOS Reference: https://www.w3.org/TR/2009/REC-skos-reference-20090818/
32 Improve your taxonomy management using the W3C SKOS standard:

https://www.ibm.com/developerworks/library/x-skostaxonomy/index.html
33 SKOS-XL Reference: https://www.w3.org/TR/skos-reference/skos-xl.html
34 EU Publications: https://publications.europa.eu/en/home
35 Unilexicon. Taxonomy editor and tagging suite. https://unilexicon.com/
36 Skosmos. Open source web-based SKOS browser and publishing tool. http://skosmos.org/
37 VocBench, a web-based, multilingual, collaborative development platform for managing OWL

ontologies, SKOS (XL) thesauri and generic RDF datasets. http://vocbench.uniroma2.it/

http://dublincore.org/usage/terms/history/#license-002
http://dublincore.org/usage/terms/history/#license-001
https://publications.europa.eu/en/home
https://publications.europa.eu/en/home
https://unilexicon.com/
http://skosmos.org/
http://vocbench.uniroma2.it/
https://www.w3.org/TR/2009/REC-skos-reference-20090818/
https://www.ibm.com/developerworks/library/x-skostaxonomy/index.html
https://www.w3.org/TR/skos-reference/skos-xl.html
https://publications.europa.eu/en/home
https://unilexicon.com/
http://skosmos.org/
http://vocbench.uniroma2.it/

Guidelines for the Use of Code Lists

30/05/2018 Page 14 of 25

Getting new versions to consumers

Code list publishers need some way to communicate to consumers about new
versions of a code list. When the publisher and the consumer are not in the same
organisation or group of organisations, a generic solution is necessary to facilitate
the timely transmission of updates of the code list to consumers. New versions should
generally come with updates in documentation and in the change log of the code list.

Maintaining communication to consumers may include pushing the new versions to
them and allowing them to access both the new version and the updates in
documentation. This can be done either via a mailing list or online community, such
as Joinup or open source software development platforms like GitHub38 or
Sourceforge39.

3.4 Retire
There are situations where elements of a code list or even complete code lists need
to be retired. This may be the result of changes in the real world, such as
reorganisation of regions in a country in which a region ceases to exist, for example
when it is merged into a large region. Another reason may be that a particular code
or code list is no longer used for descriptions of the resources.

Retirement should be handled with extreme care in order not to invalidate existing
data, and should only be done if it can be established that the codes or the code list
are not used anywhere, or that all consumers of the codes or list can reclassify the
existing data before the retirement date of the code or list. This means a code will
almost never be removed, just marked as retired, in order to ensure that data does
not become invalid. Another possibility, used in more complex cases, would be to
assign temporal attributes to a term that would indicate from when and until when a
term is valid. Depending on the features of the tool being used to manage a code list,
the publisher could even indicate what becomes of a retired code, where it is
reintegrated or which new codes it is split into.

For instance, the MDR NAL country code list includes “Czechoslovakia” as a term,
although this country does not currently exist. The term’s metadata includes the fact
that it was only in use for a given period of time, and it is listed as a predecessor of
“Slovakia”. However, as the term may still need to be used (for instance, as a
person’s country of birth), it cannot be retired.

Retired codes should never be reused with a different meaning. An example where
this rule was not respected was the re-assignment of country code “cs” from
Czechoslovakia to Serbia and Montenegro in ISO 316640.

38 GitHub. https://github.com/
39 Sourceforge. https://sourceforge.net/
40 International Organization for Standardization (ISO). Country Codes - ISO 3166.

https://www.iso.org/iso-3166-country-codes.html. See also: https://en.wikipedia.org/wiki/ISO_3166-
2:CS

https://github.com/
https://sourceforge.net/
http://publications.europa.eu/mdr/resource/authority/country/html/countries-eng.html#CSK
https://github.com/
https://sourceforge.net/
https://www.iso.org/iso-3166-country-codes.html
https://en.wikipedia.org/wiki/ISO_3166-2:CS
https://en.wikipedia.org/wiki/ISO_3166-2:CS

Guidelines for the Use of Code Lists

30/05/2018 Page 15 of 25

Retiring elements in XML

In XML, there is no formal way to retire elements. One possibility is to add it as
xsd:documentation41, in order to inform consumers. Another way would be to use a
status attribute. The second way is illustrated by Figure 7.

Figure 7: Example of deprecation in XML

Retiring elements in RDF

In RDF, elements can be retired by adding a status property on a term, in a manner
equivalent to how this is done in XML. Figure 8 shows an example of a deprecated
element.

Figure 8: Example of deprecation in RDF

3.5 Use and extend
Integration is the process of combining data from different sources and providing a
reconciled view on it. The consumer team in charge of IT systems maintenance
captures and manages the requirements for integration of code lists in existing IT
systems. This team can use an existing code list as it is or opt to extend it if
necessary.

• In XML, the integration is done using the xsd:import42 tag and relying on a
copy of the code list. It is also theoretically possible to use a remote schema
location with the <import> tag. However, this can only work when the
consumer can reach this location, which assumes a network connection and
may not work even then if the connection is through a proxy). Using remote
schema locations may be done using XML catalogues43.

• Using a copy of the code list file is also possible in RDF, but this is not
recommended practice unless it is done through caching. In any case,
reference to an individual code should use the URI of that code.

If consumers identify that some concepts are missing from a code list, they may want
to create a change request asking for the addition of those concepts. They can also
create change requests to report errors, to provide translations, and more. This is
easier than starting from scratch, but extensions should be documented as separate

41 W3Schools. XML Schema documentation Element.

https://www.w3schools.com/xml/el_documentation.asp
42 W3Schools. XML Schema import Element. https://www.w3schools.com/xml/el_import.asp
43 XML catalogues are documents describing a mapping between external entity references and locally

cached equivalents.

<record deprecated="true">
id = “DTH0006”
IMMC.proposal.date = “2015-10-09”

 IMMC.approval.date = “2015-10-09”
date.creation = “2015-10-01”
adm.status = “current”>

<skos:Concept rdf:about
=http://publications.europa.eu/resource/authority/data-theme/TRANS

 at:deprecated= “true”>

https://www.w3schools.com/xml/el_documentation.asp
https://www.w3schools.com/xml/el_import.asp
https://www.w3schools.com/xml/el_documentation.asp
https://www.w3schools.com/xml/el_import.asp
http://publications.europa.eu/resource/authority/data-theme/TRANS

Guidelines for the Use of Code Lists

30/05/2018 Page 16 of 25

vocabularies to ensure that those not interested by the extension can determine
which version would be most appropriate for their use.

When a consumer uses a remote code list, control is entirely with the code list
publisher. Code list consumers might prefer exerting some degree of control over the
version they use and could therefore find it preferable to use a local copy and replace
it (or not) with a newer version at a convenient time.

For XML, it is not uncommon for XML schemas not to import XSD code lists into the
schema, but to leave either the entire code list or its version unspecified. The instance
document can then mention a specific code list and/or code list version. In this case,
validation in some other manner than schema validation would be required.

Extending an XML code list

In the XML realm, the options for extending a code lists are limited, since extensibility
is not part of the specification as such. While some believe lists should not be
extended, this is not realistic in practice. Backwards compatibility is also an issue,
along with the fact that after publishing, the publisher cannot control what consumers
do with the code list, including for instance using an older version. However, there
are some possible approaches to extending XML code lists:

• Editing the original schema to add new values: this is an easy solution, but it
requires editing the original schemas, which presumes control over the
schemas. This is in effect creating a new version of the code list, which might
be dedicated to exclusively internal use.

• Creating a new list and joining it to the original using the xsd:union44 tag
allows the original list to remain unchanged, but all values must be known at
design time. Additionally, the xsd:union tag is not always supported by tools.

• Creating a pattern and combining it with the original enumerated type: this
enables the use of the same element for all data, and validation is done by
the parser, but the content of the element must be parsed to determine
whether it’s extended, and the xsd:union tag must be supported. The example
below illustrates how this method can be used to extend a list involving shoe
sizes available for a given model. Figure 9 shows the initial list, while Figure
10 presents a pattern for the new values. The pattern essentially calls for any
new string. The “x:” is a delineator between the initial elements and the
extensions. The last step is using xsd:union to combine the initial list and the
newly created pattern, as illustrated in Figure 11. The impact of the extension
can be observed in Figure 12, which shows the new values can be validated
by the parser.

44 W3Schools. XML Schema union Element. https://www.w3schools.com/xml/el_union.asp

https://www.w3schools.com/xml/el_union.asp
https://www.w3schools.com/xml/el_union.asp

Guidelines for the Use of Code Lists

30/05/2018 Page 17 of 25

Figure 9: Example initial list

Figure 10: Example pattern for new values

Figure 11: Example combination of initial list and extension pattern

Figure 12: Example of XML instances after extension

• Using a separate field for extensions refers to including an extension field in
the schema in order to accommodate additional values. This forgoes changing
the original schema, and allows changes after design time, as well as being in
line with the XML schema specifications. However, the values do need to occur
in elements rather than attributes. The example below illustrates how this
method can be used to extend a list involving shoe sizes available for a given
model. Figure 13 shows the initial list, where an extension is already being
prepared as an extension field. Figure 14 presents the creation of an additional
attribute named “extension” to accommodate the new values. Figure 15
presents some XML instances after the extension.

<xsd:simpleType name="ShoeSizeType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="36"/>
 <xsd:enumeration value="37"/>
 <xsd:enumeration value="38"/>
 <xsd:enumeration value="39"/>
 <xsd:enumeration value="40"/>
 <xsd:enumeration value="41"/>
 <xsd:enumeration value="42"/>
 <xsd:enumeration value="43"/>
 <xsd:enumeration value="44"/>
 <xsd:enumeration value="45"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="StringPatternType">
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="x:\S.*"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="NewShoeSizeType">
 <xsd:union memberTypes="ShoeSizeType StringPatternType"/>
</xsd:simpleType>
<xsd:element name="ShoeSize" type="NewShoeSizeType"/>

<ShoeSize>Black</ShoeSize>
<ShoeSize>x:35</ShoeSize>

Guidelines for the Use of Code Lists

30/05/2018 Page 18 of 25

Figure 13: Example of extension field in the schema for accommodating new values

Figure 14: Example of additional attribute

Figure 15: Example XML instances

• When there is no requirement to validate the schema in one pass, a code list
could also be extended using a documentation-based approach. This can
involve either the use of the xsd:union tag in combination with a string or the
use of xsd:annotation45, wherein additional values are added in the
xsd:documentation tag46. Figure 16 presents an example of this method being
used to extend a list involving shoe sizes available for a given model.

45 W3Schools. XML Schema annotation Element. https://www.w3schools.com/xml/el_annotation.asp
46 Extend enumerated lists in XML schema: https://www.ibm.com/developerworks/library/x-extenum/

<xsd:simpleType name="ShoeSizeType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="36"/>
 <xsd:enumeration value=”37"/>
 <xsd:enumeration value="38"/>
 <xsd:enumeration value="39"/>
 <xsd:enumeration value="40"/>
 <xsd:enumeration value="41"/>
 <xsd:enumeration value="42"/>
 <xsd:enumeration value="43"/>
 <xsd:enumeration value="44"/>
 <xsd:enumeration value="45"/>
 <xsd:enumeration value="Extension"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:complexType name="NewShoeSizeType">
 <xsd:simpleContent>
 <xsd:extension base="ShoeSizeType">
 <xsd:attribute name="extension" type="xsd:string"/>
 </xsd:extension>
 </xsd:simpleContent>
</xsd:complexType>
<xsd:element name="ShoeSize" type="ShoeSizeType"/>

<ShoeSize>40</ShoeSize>
<ShoeSize extension="35">Extension</ShoeSize>

https://www.w3schools.com/xml/el_annotation.asp
https://www.w3schools.com/xml/el_annotation.asp
https://www.ibm.com/developerworks/library/x-extenum/

Guidelines for the Use of Code Lists

30/05/2018 Page 19 of 25

Figure 16: Example of documentation-based extension

Extending an RDF code list

A consumer extending an RDF code list is technically not extending the list but
creating a new one based on the original. If a concept is considered important
enough, one may ask the manager of the original code list to consider adding the
term to the code list using the normal change request channels.

3.6 Create mappings
As a consumer, an organisation may be interested in reclassifying some concepts
when reusing an existing code list, meaning they would effectively become publishers
in their own right by making changes to a code list and thus creating a new version.
In other cases, mappings between code lists may need to be created when data from
different sources are being integrated or when systems are being connected.
Declaring relationships between codes in one code list to codes in another code list
may come up in the design phase, when first creating the code list or at a later stage.

If data resources managed by the user already have been classified using an existing
code list and there is a need to replace this classification by a new one, the user can
re-classify the resources by mapping the existing list to the new one. For example,
national data portals may map a local dataset theme vocabulary to the MDR data
themes NAL. This scenario also applies to data exchange, e.g. when a system collects
new data by showing the user a drop-down list based on a code list to select the
value for a certain field.
Mapping itself can be done by defining relations between entities of two code lists.
Relations and links can be based on the Simple Knowledge Organization System
(SKOS)47, which is a common data model for sharing a linking knowledge
organisation system. The following mappings exist in SKOS: exact match, close
match, broad match, narrow match, related match. SKOS can be used both in RDF
and XML. For instance, it is used by MDR NALs in both forms.

47 W3C. Simple Knowledge Organization System (SKOS). https://www.w3.org/2004/02/skos/

<xsd:simpleType name="ShoeSizeType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="36"/>
 <xsd:enumeration value="37"/>
 <xsd:enumeration value="38"/>
 <xsd:enumeration value="39"/>
 <xsd:enumeration value="40"/>
 <xsd:enumeration value="41"/>
 <xsd:enumeration value="42"/>
 <xsd:enumeration value="43"/>
 <xsd:enumeration value="44"/>
 <xsd:enumeration value="45"/>
 </xsd:restriction>
</xsd:simpleType>
<xsd:element name="ShoeSize" type="ShoeSizeType"/>

<xsd:simpleType name="ExtShoeSizeType">
 <xsd:union memberTypes="ShoeSizeType xsd:string"/>
</xsd:simpleType>
<xsd:element name="ShoeSize_docbased" type="ExtShoeSizeType"/>

https://www.w3.org/2004/02/skos/
https://www.w3.org/2004/02/skos/

Guidelines for the Use of Code Lists

30/05/2018 Page 20 of 25

The code list may need to be mapped with other vocabularies to facilitate cross-
referencing of terms in different vocabularies, for example creating links from the
MDR Language NAL48 to the Library of Congress Codes for the Representation of
Names of Languages Part 2 (ISO639-2)49 vocabulary. The creation of mappings
between controlled vocabularies can be a prerequisite to implementation of data
transformation routines. Additionally, mapping is an additive process, which can add
semantics that are otherwise missing from a vocabulary50. To make use of the
mappings, they should be published51 in human and machine-readable formats.
SKOS mapping specifications52 contain further details on how to map concepts from
different schemes.

In XML, the <xsd:id> and <xsd:idref> tags allow cross-referencing. For example, in
the MDR NAL currency code list references the XML schema.

3.7 Manage code list quality
Code list quality management subscribes to certain quality requirements common to
reference data:

• The codes should suit the use case of the code list;
• The code list should be maintained and reused;

• The definitions of the terms should be clear to both humans and machines.

Before starting, the quality requirements have to be explicitly stated. In addition, a
way to measure the quality level should be determined. The quality of a code list is
for a large part determined by the need for such a code list. Certain quality aspects
should already be considered in the design phase, as mentioned in section 3.1. Once
development has started, the quality should be continuously evaluated against the
pre-defined requirements. For instance, publishers could ensure that the most
important design principles are implemented by allowing review by code list
consumers or individuals not involved in the development of the code list. This would
cover aspects such as having a clearly defined scope and having understandable
terms as well stable concepts.

For more low-level aspects of code list quality management, publishers can rely on
the features of certain code list management tools. Some software provides features
like data traceability, configurable quality policies, allowing (or disallowing) duplicate
terms, auditing terms, and consistency control.

3.8 Communication
Communication is a cross-cutting horizontal process that covers the code list lifecycle
throughout its entirety. Therefore, a communication plan needs to cover the way all
parties communicate. Different consumer groups will have different communication
needs. It is up to the publisher to find suitable ways to communicate with all
stakeholders. This involves determining how to engage stakeholders, how to

48 MDR NAL: http://publications.europa.eu/mdr/authority/language/
49 ISO 639.2: http://www.loc.gov/standards/iso639-2/langhome.html
50 Strategies for Vocabulary Design and Development?

https://ecommons.cornell.edu/bitstream/handle/1813/42443/82-89-
Paper.pdf?sequence=3&isAllowed=y

51 Core Data Model Mapping Directory: http://mapping.semic.eu
52 SKOS mapping specifications: https://www.w3.org/2004/02/skos/mapping/spec/2004-11-11.html

http://publications.europa.eu/mdr/resource/authority/currency/xml/currencies.xml
http://publications.europa.eu/mdr/resource/authority-schema/cat-01-01.87-20171117.xsd
http://publications.europa.eu/mdr/authority/language/
http://www.loc.gov/standards/iso639-2/langhome.html
https://ecommons.cornell.edu/bitstream/handle/1813/42443/82-89-Paper.pdf?sequence=3&isAllowed=y
https://ecommons.cornell.edu/bitstream/handle/1813/42443/82-89-Paper.pdf?sequence=3&isAllowed=y
http://mapping.semic.eu/
https://www.w3.org/2004/02/skos/mapping/spec/2004-11-11.html

Guidelines for the Use of Code Lists

30/05/2018 Page 21 of 25

announce updates and changes to the code list, choosing the communication
channels that are suited for each group of consumers and organising events.

Depending on the main purpose of the code list, the publishers might take different
approaches to communication entirely, depending on whether the code list has been
created on request, or it exists as a general-purpose code list where the aim is to
raise awareness among potential consumers.

• For a code list that has been created on the request of some organisation or
group of organisations, changes to the code list might also be initiated by the
same organisation. As such, communication will involve contributions from
both sides, including how the requesting organisation chooses to govern its
requirements. In this case, for the publisher, communication will be almost
entirely concerning updates and changes to the code list.

• For a general-purpose code list, the publisher aims to ensure that as many
potential users as possible are aware of the code list and able to access its
updates. Here, communication might take more externally-focused forms,
such as blog posts, news items, social media activity, etc. Most users of a
general-purpose code list will not request changes, and if they do, it is up to
the publisher to choose when/if to implement them.

Documentation is one of the main means of communication between publishers and
other stakeholders. Aspects including licensing, change management, versioning
strategy, policy elements, etc. can be made clear through the use of thorough
documentation.

• A clear licensing policy informs decisions by potential consumers regarding the
possibility of re-using a code list.

• Communications regarding the change management approach of a given code
list help consumers interested in maintaining their content over time
automatically.

• For publishers, having a versioning strategy provides several benefits,
particularly in terms of facilitating updates to the code list. Appropriately-
implemented versioning also makes vocabularies more attractive for potential
consumers.

• Another important aspect of communication has to do with the policy
environment. Publishers can use documentation to justify investing in the
creation and maintenance of code lists. Additionally, potential consumers need
background information on the publisher to be able to make a sound decision
regarding re-using an existing code list.

Good communication also involves promoting code list releases, managing the culture
around the code list and providing training to potential users. Publishers should take
advantage of the opportunity to communicate to consumers by informing them that
there is a management team in place. Such a management team can provide support
for not just using a code list, but also in terms of change management and other
aspects.

Guidelines for the Use of Code Lists

30/05/2018 Page 22 of 25

4 CODE LIST GOVERNANCE

4.1 Context and the need for governance
Governance is permanent and active as long as a code list is still used or needed. In
the context of data specifications, governance represents “the set of roles and
responsibilities, cohesive policies and principles, and decision-making processes that
define, govern, and regulate the lifecycle of data specifications”53.

The governance of a code list consists of determining the different actors and their
roles in its development and management. This implies setting up a decision
structure, delegation and escalation paths and clearly defining all roles in the team
that creates and maintains the code list. Some good practices of code list governance
to take into account are:

• Involving direct stakeholders (e.g. key consumers) in the governance
process;

• Using interoperable tools based on open standards for supporting both the
governance and the management of code lists.

In special cases, the publisher is the same as the consumer of a code list. It is
recommended to separate the governance of code lists from the governance of the
IT systems in which the code lists will be integrated, but to coordinate the two in case
of reuse. There are at least two main reasons for this:

• Code lists have their own life cycle as standalone, reusable components.

• The requirements for code lists should be as generic as possible (decoupled
from any specific needs of IT systems) to ensure a higher degree of
reusability54.

There may be significant differences in the governance of code lists depending on
how often they are likely to change. For instance, a list of public services is likely to
change with relative frequency, while country codes only change exceptionally. This
could impose specific decisions regarding the governance structure, the decision-
making mechanisms, and frequency of planned updates.

Another point to be considered regarding code list governance concerns the
provenance of the codes. Some lists are simply facts from the real world and
enshrined in law, such as lists of hazardous substances, country names, or marital
statuses recognised in a jurisdiction. In such cases, the publisher may not be the
authoritative source but will follow the lead and act on behalf of the authoritative
source being the legislation.

4.2 Governance tasks and structure
In terms of code list governance, as for any other data specification, certain tasks
need to be fulfilled, as shown in Figure 17.

53 Metadata Governance and Management: https://joinup.ec.europa.eu/sites/default/files/custom-

page/attachment/methodology_and_tools_for_metadata_governance_and_management_for_eu_institu
tions.pdf

54 In practice, this is not always possible. Some code lists are destined for use in a specific community,
for very specific needs, which would essentially force the consumers in that community to adapt the
release cycles of their applications to the one of the code list.

https://joinup.ec.europa.eu/sites/default/files/custom-page/attachment/methodology_and_tools_for_metadata_governance_and_management_for_eu_institutions.pdf
https://joinup.ec.europa.eu/sites/default/files/custom-page/attachment/methodology_and_tools_for_metadata_governance_and_management_for_eu_institutions.pdf
https://joinup.ec.europa.eu/sites/default/files/custom-page/attachment/methodology_and_tools_for_metadata_governance_and_management_for_eu_institutions.pdf

Guidelines for the Use of Code Lists

30/05/2018 Page 23 of 25

Figure 17: Tasks related to code list governance

Figure 18 takes the tasks related to code list governance described in Figure 17 and
provides examples of how these tasks may be carried out.

It must be clear to the consumers of a code list who the owner or responsible
organisation or individual is. Contact data should be available55, ideally as part of the

55 Issues in Vocabulary Management:

http://groups.niso.org/apps/group_public/download.php/18054/TR-06-
201x_Issues_in_Vocabulary_Management.pdf

Set up a governance structure: permanent members,
temporary representatives, a secretariat.

Define the decision-making mechanisms: these define how
decisions related to the governance of the code list are taken
and who is responsible for taking and implementing those
decisions.

Set up a platform and establish it as the authoritative
source: this is where the code list is hosted.

Establish the promotion approach: this is the regime to be
applied to promote the sharing and re-use of the code list.

Elect steering committee, governance committee, operational
team.

Change and improve code list management processes, change
request management, schedule releases, deprecate, select
standards for management processes.

Set platform (such as the Metadata Registry) as authoritative
source for the code list during the release phase.

Raise awareness about code list releases through
presentations, webinars, social media activity.

Figure 18: Examples of code list governance tasks

http://groups.niso.org/apps/group_public/download.php/18054/TR-06-201x_Issues_in_Vocabulary_Management.pdf
http://groups.niso.org/apps/group_public/download.php/18054/TR-06-201x_Issues_in_Vocabulary_Management.pdf

Guidelines for the Use of Code Lists

30/05/2018 Page 24 of 25

metadata of the code list. Metadata, along with documentation, support the usability
of a code list.

4.3 Skills and expertise required for the governance and
management of code lists

The governance and management of a code list require people appointed in different
roles across the structures, from the steering committee, through the governance
committee and the operational team.

The steering committee generally consists of representatives of the publishing
organisation and has the purpose of setting the strategic direction for the code list.
The members of this structure should come from both the business side and the
technical side, and they should be able to take decisions on scope and goals. They
review the progress and solve conflicts, as well as appointing members of the
governance committee and the operational team.

The governance committee counts among its members the main stakeholders of a
code list or a group of code lists used in the same context or by the same group of
consumers. This committee will usually also be responsible for the governance of
other, related data models. They take decisions regarding operational support that
the operational team may need, and oversee the latter’s compliance, as well as
developing, disseminating and enforcing the required procedures.

The operational team handles the day-to-day aspects of the work, managing the
design of the code list, its development and support around it. The operational team
performs tasks related to the management of the code list rather than governance.
Table 1 contains an overview of the correspondence between activity area and
required skills.

Table 1: Skills required and corresponding area of activity

Skill Activity

Domain expertise Governance; management

Information management Management

Technical expertise (knowledge about
technical approaches, formats, etc.),
documentation and publication

Management

Release management Governance; management

Standardisation expertise Governance; management

Guidelines for the Use of Code Lists

30/05/2018 Page 25 of 25

5 SUMMARY

This section summarises the main takeaways and good practices related to code list
management and governance. These takeaways are meant to structure the way
stakeholders approach code lists throughout their lifecycle. Figure 19 presents the
report’s conclusions as a list of tips for code list management and governance.

Figure 19: 10 tips for code list management and governance

1. Establish governance structure, define decision-making mechanisms,
establish promotional approach, etc.

2. Define code list scope clearly, tailor approach to technology being
used.

3. Select terms understandable to humans and machines, without
overlaps.

4. Consider multilingualism.

5. Establish licensing approach: the more open, the better.

6. Map relationships between terms, where possible.

7. Commit to maintaining the code list and establish a change
management policy, using appropriate versioning

8. Provide platform for publication and use as single source for the code
list.

9. Handle retirement of terms with extreme care.

10. Prepare a communication plan: document carefully, promote code
list, manage stakeholders.

	1 Introduction
	1.1 Context
	1.2 Scope and objectives
	1.3 Target audience
	1.4 Structure

	2 Identifying the need for a code list and selecting the right one
	3 Management of the code list lifecycle
	3.1 Design
	Multilingualism
	Licensing
	Relationships
	Technologies

	3.2 Manage changes
	3.3 Release
	Versioning in XML
	Versioning in RDF
	Formats
	Publishing tools and platforms
	Licensing
	Getting new versions to consumers

	3.4 Retire
	Retiring elements in XML
	Retiring elements in RDF

	3.5 Use and extend
	Extending an XML code list
	Extending an RDF code list

	3.6 Create mappings
	3.7 Manage code list quality
	3.8 Communication

	4 Code list governance
	4.1 Context and the need for governance
	4.2 Governance tasks and structure
	4.3 Skills and expertise required for the governance and management of code lists

	5 Summary

