www.egiz.gv.at

' . E-Mail: post@eqgiz.gv.at

E—Gove rnment Telefon: ++43 (316) 873 5514
. : ++43 (316) 873 5520
- EG IZ |nnOV8tI0nSZGHtrum Inffeldgassenga*/-g(l)l(g éra)\z /7A1?55tria

MOCCA

Modular Open Citizen Card Architecture

Overview for Developers

Clemens Orthacker Martin Centner Wolfgang Bauer

Version 1.0 2008-08-29

Table of Contents

OVErVIEW TOF DEVEIOPETSottt et e e et e et e e et e et eea e e e san e et e et e eaeraaes 1
N] o 1T o USRS 1
FZ 111 (o o |1 ox 1o o SRR 2
2.1 [T o= | O O SR 2
2.2 (@01 10T O O PP PPPPP PR 2
2.3 YT V=] G O O SRS 3
B S To (U1 =T 0 1] 0 TP PSSP REPPPP S PPPPPRPPIN 3
3.1 YU o] oL (=T I @ @ SR o L= T [] AP 3
3.2 ESSENTIAI USE CASES.....ueiiiiiiiiiiiiiiiiii ettt ettt e e e e e s s bbbt e e e e e e e s s bbbt e eeeeeeeeeans 4
10 1V T I A (ol a1 (= od (1] = PP 5
4.1 SNV T 5
4.2 LO70] ¢ 0] oT0] 1 =] 0| 5T P P TUPTTPUPPRI 6
4.3 BaSIC REQUEST PrOCESSING ...ccoiiiiiiiiiii ettt e e e e e e e e e e s s r e e e e e e e e aaans 7
4.4 PACKAGING -ttt et e e e e e 8
4.5 L (O[T A0S U o (U P 9
4.6 ClaSS DIBQGIAIMS. ...cciieiiiiiiite ettt e e et e e e e e e st e e et e e e e e e e e bbb e e e e e e e e e e annneene s 10

G A I I = 11 o [o OO SRUR 10

4.6.2 Y IO 0] 491 09 F=T g o F= P 11
5 Bibliography.....cccoooiiiii 11
1 Glossary

CCE Citizen Card Environment
CC Citizen Card
OA Online Application: a CC enabled Web-Application

2 Introduction

The Austrian citizen card forms the basis for e-government applications. The CC is used for identity
management and for qualified electronic signatures. To interact with this CC a middleware, the so
called citizen card environment, provides a high-level abstraction layer. Applications use this
middleware to make use of the CC’s functions. In principle, CCE runs as a service, listening on a
dedicated TCP port. This document assumes that you have already studied the specifications of the
CCE that can be found on the web (1).

Current CCE implementations have to be installed on the user's PC. This has the significant
drawback that the user must install a piece of software before she can use a CC enabled
application. In particular this can be annoying in situations, where the user has not the privileges to
install new software (e.g. in Internet Cafes or airport lounges).

To overcome this situation, the goal of this project is to develop 3 different forms of the CCEs, which
will be described subsequently.

2.1 Local CCE

The local CCE is the conventional approach, where the middleware runs completely on the client’s
PC. This situation is drawn in the following figure.

Client Online
1 Application

Figure 1: Local CCE

2.2 Online CCE

Whereas the local CCE requires a piece of software to be installed on the client’s local PC the
online CCE overcomes this shortcoming by a slightly different approach as shown in the following
figure.

Online
Application

CCE Server

Figure 2: Online CCE

Only the minimum piece of software, required to access the user’s CC, runs on the client's machine.
To execute this software from the browser it is implemented as Java applet.

2.3 Server CCE

Finally, the server CCE does not require any code to be executed on the client’'s machine.

Online
Application

CCE Server
SSCD

Figure 3: Server CCe

The Server CCE variant does not even require a traditional CC in form of a smart card. However,
the users’ CC data (private keys, certificates and identity link) are stored on the CCE server.
MOCCA is a software framework that offers support for all three variants. Furthermore, it contains
subprojects that use this framework to implement each of the previously described solutions. This
document describes the core features and main architectural decisions for the MOCCA project.

3 Requirements

Only the main requirements, significantly influencing the software architecture, are listed here.

3.1 Supported CCE Request

Not all requests as specified in (1) are supported by MOCCA. Only the most relevant, especially
when used as server or online CCE, are supported in this project, as listed below:
e (Create XML Signature Request

e Infobox Read Request : here only the following infoboxes are supported:

3

o IdentityLink

To support these requests the CCE must also handle the following infoboxes internally:
o CertifiedKeypair

o SecureSignatureKeypair

Furthermore the following restrictions apply:
No Description Remarks

SignatureEnvironment/@Reference: only formdata, http/https
URL are supported. Furthermore the Response must be of
1 content type text/xml
External Stylesheet or DTD URIs: only HTTP/HTTPS URLs are
2 supported
LocRefContent: only formdata HTTP HTTPS URL supported. In
3 particular this means no relative URIs are supported
Hence we do not
support supplements
Transforms: no stylesheets with references to other stylesheets are within DataobjectInfo
4 supported elements

Table 1: Request Restrictions

3.2 Essential Use Cases

The main uses cases, defining the software architecture are shown in the following use case
diagram.

BHL

CreateXMLSignature
i

I
| ==include==
I

oA \ MOAID-Logon

I
i =<=nclude==
I

ReadinfoBox

Figure 4: Use Case Diagram

The basic request processing is defined by the CCE’s HTTP binding as specified in (2). This
specification is translated into the following UML activity diagram.

Process Headers

—

[RedirectURL]

Send HTTP Redirect

access control
(command execution)

Attention B

Receive HTTP Reguest

Process %

access control
(command response)

Attention B

[StyleshestURL]

[DataURL]

[Contert-Type=
applicationfe-www-form-urlencoded
multipartform-clata)

[else]

[Content-Type=text/ml,
HTTP-Responsel=<ok/>]

'
() '
Transform Result &

(,_l_

K\SendHTTP. sponse [

A
[Content-Type=text/xml,
text/plain,
textihitml
[else]

HTTP-Response=<olfs]

(Send HTTP Request to DatalRL]

[HTTP-Code=200] [HTTP-Code=307]

Set DatalRL

[else]

[else]

[HTTP-Code=
301, lssue Error
302,
303]

Figure 5: HTTP Binding

~
>

[Content-Type=text/xmi]

[else]

4 Software Architecture

4.1 Layering

OA

Request Processing

Security Token Abstracton

Card Access : SMCC

MOCCA

Figure 6: Software Layering

The MOCCA project uses 3 different abstraction layers as shown in the following figure.

The yellow drawn parts of Figure 6 are implemented in MOCCA. The online application OA
accesses MOCCA via the standardized CCE interface. The MOCCA layers have the following
responsibilities:
e Request Processing: This layer handles the processing of the XML requests and covers the HTTP
binding as described in Figure 5. This layer is intended to be used for all 3 variants of the CCE.
e Security Token Abstraction: this layer is used during request processing to access the CC. Here
different implementations exist for local, online and server CCEs.

e SMCC: This smart card abstraction layer is used to communicate with the CC.

4.2 Components

The following component diagram shows the online CCE, which is the most complex scenario. The
Browser communicates with the OA. If required the browser invokes the CCE using the
standardized CCE interface. The BindingProcessor performs the XML processing and handling of
the HTTP binding (e.g. dataurl connection handling). The BindingProcessor uses the STAL to
access the security token. In the case of the online CCE, STAL requests are forwarded to the applet
(component labeled STAL RequestBroker) using standard web service calls. The applet uses the
SMCCStal to access the smartcard on the client’'s machine (remark: in the local CCE this SMCCStal
is directly invoked by the BindingProcessor and thus also a shared component).

HTTP-Frocessing lﬁ ¥ML-Frocessing

[]
| CCE Interface

1 L HTTPHTTPS
<<component== gl @ <<COMPanent=: gl!{

0OA BindingProcessor

HITE fI\ HTTPHTTPS
Cf STAL-API

<=component== gl
STAL-IMPL

©

<<co|np0ner‘d}>
STALRequestBroker | | _____ STAL Iﬁ

Adiph (Security Token Abstraction Layern)
<<COMmponents: gl \'[/

Browser

==component=>
Applet

STAL{API

=<componert=:= gl
SMCCStal

=<components= {l
SMCC

PC/5C

Figure 7: Component Diagram

4.3 Basic Request Processing

The basic request processing is sketched in the following sequence diagram.

1 sPeguenl) 1

1
| - i
1
. 1
& setfeousstdiresn) :
s T H
] 1
-
hetinstancel)
o
! e
& Gears Command | L
H
il a)
R
14 bl
1"
16 getResp)
Lk o
L ™ T 2 i) !
..... 1
u‘ ey : Tty 23 exefuseny
<l 1 =
s 1
- . ity
i H <+
. T H o
_— | el
""" l i <
' e — 1
- 1
4l 1
o 1
) I geesTALL) — E
= i
= L 1
* 1
i
S [« 1
= 1
S H
.......... BN 3 () E
i
1
Er—=rm 1
LI :
.. T H
i
4% nexPequest]) :
20 i
i
& 1
gl]
1
A5 handifitquet) 1
L 1 s
it 4T : E
i
e A | ittt Stttk Sttt | At i ! |
Y 1 [1
* s : 52 getimnan H E
I £
B H i
: i
4 el [i
1
H i
£ - ! H
S e !
i

Figure 8: Request Processing

4.4 Packaging

Figure 9: MOCCA Packaging

4.5 Project Structure

The following diagram shows the project structure and dependencies between sub-projects. Each
shown “package” is a maven project/module.

Figure 10: Project Structure

4.6 Class Diagrams

The following diagrams show some implementation aspects as class diagram. They are not further
commented but should help the reader to study the sourcecode.

4.6.1 HTTP Binding

Figure 11: HTTP Binding

10

4.6.2 SLCommands

<<Interface>>
SLCommand
[+NAMESPACE_URI : String p.ihwww buergerkarte atinamespaces/securitylayer/ 28"
SLCommandFactory +getName() : String
[+SCHEMA,_FILES : String[] = new String[I{ +init{aCbc : SLCommandContext, aUnmarshaliedRequest : Object) : void
"atigviegiz/bku/sicommandsischemalxml xsd", +executef) : SLResult
. wdsisch i hema xsd",
"atiaviegizibkulslcommandsischema/Core-1.2 xsd" ingtance Py A
i
Ilog - Log = LogFactory getl og(SLCommandFactory class) K
linstance : SLCommandFactory
|-slSchema - Schema
HExbCortext : JAXBCortext
|-siRequestTypeMap : Map<String, Class<? extends SLCommand=> = new HashMap=String, Class=7 extends SLCommand=>|
[+putimplClass{namespaceUri - String, localname : String, sICommandClass - Class<? extends SLCommand=) : void
rgetimplClass(name : QName) : Class<? extends SLCommand= <<Interface>>
(eetSLSchemals|Schema | Schema) : void CreateXMLSignatur o] <<Interface>> u:lm_?rfm:e:-)
[+getdaxbCortext() : JAXBCortext +prepare XMLSignature() - void I | ommand |
[+setdaxbContext(jaxbContext - JAXBContext) - void
l-ensureJaxbCortext() : void
[ensureSchemal) : void
(aetinstance() : SLCommandFactory.
| SLCommandFactory()
l#unmarshal(source : Source) : Object
[+createSLCommand(source : Source, context © SLCommandContext) : SLCommand
<<Interface>> SLSourceContext
SLResult TR | sourceProtocol : Protocal
+getResukType() . SLResukTyne SLResultType |-sourcelsDataURL : boolean
T sgetMimeType(). Siring i l-sourceCertificate : ¥509Certificate
write TofaResult - Resuft) . void L - sourceHTTPReferer : String
+wiiteTo(result - Result, transformer - Transformer) : void —— 3: Protocol
A A (+setSourceProtocol(sourceProtocol : Protocol) : void
l+isSourcelsDatalURL() : boolean
[+setSourcelsDataURL(sourcelsDatalRL : boolean) : void
l+getSourceCertificate() - X508Certificate
[+setSourceCertificate(sourceCertificate : XS09Certificate) - void
+oetSourceHTTPReferer() : String
[+setSourceHTTPReferer(sourceHTTPReferer : String) : woid
<<Interface>> <<Interface>> <<Interface>> <<Interface>>
‘ CreateXML Signatur eResult ! ! HullOper ! ! ErrorResult
SLTargetContext <<Interface>> SLC ontext <<Interface>>
targetProtocol - String InvocationStrategy stal : STAL SLCommandinvoker
-targetisDataURL : boolean -uriDerefCtx . URLDereferencerContext +invoke(aContext : SLSource Context) : void
HargetCertificate : X500Certificate SeISTAL(aStal: STAL) : void +getResult{aContext | SLTargetContext) : SLResult
+getTargetProtocal() : String +setURL Dersferencer Context(aCtx : URLDereferencerContext) : void pASoauANEa T BEESA M IE) ALK
+setTargetProtocol(targetProtocol : String) : void +getSTAL(): STAL [HRRREE R S SRR sORiig ko

+isTargetlsDatalURL() : boolean +getURLDereferencerContext() : URLDereferencerContext
+setTargetisDatalRL (targetisDatalRL : hoolean) : void
+getTargetCertificate() - ¥509Certificate

+setTargetCertificatetargetCertificate : XS09Certificate) : void

5 Bibliography

1. Arno Hollosi, Gregor Karlinger, Thomas Rossler, Martin Centner, et al. Die Applikationsschnittstelle
Security-Layer zur ésterreichischen Biirgerkarte. 2008.

2. —. Transportprotokolle fiir die Applikationsschnittstelle Security-Layer der ésterreichischen Biirgerkarte.
2008.

3. Biirgerkartenspezifikation. [Online] 2008.
http://www.buergerkarte.at/konzept/securitylayer/spezifikation/aktuell/.

11

	1 Glossary
	2 Introduction
	2.1 Local CCE
	2.2 Online CCE
	2.3 Server CCE

	3 Requirements
	3.1 Supported CCE Request
	3.2 Essential Use Cases

	4 Software Architecture
	4.1 Layering
	4.2 Components
	4.3 Basic Request Processing
	4.4 Packaging
	4.5 Project Structure
	4.6 Class Diagrams
	4.6.1 HTTP Binding
	4.6.2 SLCommands

	5 Bibliography

