
The Alfresco API

2 Alfresco API Version 1.0

Contents

The Alfresco API... 3

How does an application do work on behalf of a user?... 4

Registering your application.. 4

Authorization.. 4

Refreshing an access token..7

Alfresco CMIS API...9

Getting Started...9

The domain model...9

What does a request look like?...10

Getting the service document..10

Getting information on a node...11

Getting the children of a node...11

Getting the contents of a document.. 12

Updating the contents of a document... 13

Alfresco REST API.. 14

Getting Started...14

What is an entity?..14

What does a request look like?...15

What does a response look like?..22

Using HTTP OPTIONS to get entity metadata..24

API Reference... 28

Networks.. 28

Sites... 31

Site membership requests...38

People.. 42

Tags... 53

Nodes...55

Favorites...67

Copyright.. 73

The Alfresco API

The Alfresco API 3

The Alfresco API

The Alfresco API lets you access content managed by Alfresco Cloud from your own applications.
The API is RESTful, which means each call is an HTTP request, so you don't even need a
programming language to try it out. You can just type a URL address in a web browser. It
consists of two parts, the standard CMIS API, which lets you manage and access content, and
the new Alfresco REST API which lets you manage Alfresco's additional features such as ratings
and comments, that are not covered by the CMIS standard.

All you need to get started is an Alfresco Cloud account. Once you have that, you can try out API
calls using:

• A web browser

• An HTTP URL tool such as cURL or RESTClient. Some of these tools let you build your
GET, PUT, POST, and DELETE commands simply, take care of authentication, and will
save your test calls for repeated use.

You make API requests by sending a URL using one of five HTTP API methods, GET, POST,
PUT, DELETE, and OPTIONS. Here's an example:-

https://api.alfresco.com/yourcompany.com/public/alfresco/versions/1/sites/fred-
bloggs-yourcompany-com

Sending this URL using the HTTP GET method invokes the sites Alfresco Public RESTFul
method. This call requests information on the site with the id fred.blogs.yourcompany.com. The
server will return an HTTP response with the following JSON body :-

{
 "entry":{
 "title":"Fred Blogg's Home",
 "description":"Fred Blogg's private home site.",
 "visibility":"PRIVATE",
 "id":"fred-bloggs-yourcompany-com"
 }
}

http://cloud.alfresco.com/
http://curl.haxx.se/
http://restclient.org/

How does an application do work on behalf of a user?

4 Alfresco API Version 1.0

How does an application do work on behalf of a user?

You can register your application with Alfresco to use our authentication.

An Alfresco application uses the OAuth 2.0 authorization code flow to authenticate itself with
Alfresco Cloud and to allow users to authorize the application to access data on their behalf.

You first register your application on the Alfresco Developer site. You provide a callback URI, and
a scope. Registration will provide you with an API key and a key secret which are required by
your application to authorize itself. When a user runs your application, the application requests an
authorization code from Alfresco using its API key, key secret, callback URI and scope. Alfresco
will inform the user that your application wishes to access resources, and asks the user to grant
or deny access.

If the user grants access, Alfresco returns an authorization code to the application. Your
application then exchanges the authorization code for an access token. Your application can then
call the Alfresco CMIS API and the Alfresco REST API with the access token.

Registering your application

To use the Alfresco API, your application must first be registered with the Alfresco Developer
Portal.

Go to https://developer.alfresco.com and sign up. When your account is approved, you can
register your application. You must provide a callback URL and a scope. The callback URL is the
part of your application that exchanges the authorization code for an access token. The scope
should always be set to public_api. call.

Once your application is approved, The Auth tab will show an API Key, and a Key Secret. These
will be needed by your application for authorization.

Authorization

Your application uses the information registered with Alfresco to authorize itself when it is run by
a user.

Requesting an authorization code

The following HTML is from the Alfresco OAuth sample and shows an application with a API
Key (client_id) of l74dx104ddc00c3db4509b2d02f62c3a01234 , a redirect URI of http://
localhost:8080/alfoauthsample/mycallback.html and a scope of public_api authorizing
with Alfresco. You should always use the value public_api for scope.

<!DOCTYPE html>
<html>
<head>
<title>Alfresco OAuth Sample Demo</title>
<meta http-equiv="Pragma" content="no-cache">
<meta http-equiv="Expires" content="-1">
</head>
<body>
<h1>Welcome to the Alfresco OAuth Sample App</h1>
<form action="https://api.alfresco.com/auth/oauth/versions/2/authorize">
client_id: <input
 name="client_id"
 value="l74dx104ddc00c3db4509b2d02f62c3a01234"
 size="50px"
>
This must match the registered value

http://tools.ietf.org/html/draft-ietf-oauth-v2-31
https://developer.alfresco.com
https://developer.alfresco.com/

How does an application do work on behalf of a user?

The Alfresco API 5

redirect_uri: <input
 name="redirect_uri"
 value="http://localhost:8080/alfoauthsample/mycallback.html"
 size="70px"
>
* This must match the registered value

scope: <input
 name="scope"
 value="public_api"
>

response_type: <input
 name="response_type"
 value="code"
 readonly="readonly"
>

<input type="submit"></form>
</html>

Alfresco will ask the user for their userid and password to grant or deny access to resources
for your application. If they grant access, then Alfresco will invoke the callback URI with the
authorization code.

Exchanging the authorization code for an access token

Once the application has an authorization code, it can exchange this for an access token.
The following HTML is from the Alfresco OAuth sample and shows an application with
an authorization code of f9d9f182-700b-4c67-8235-b6ea08870872 API Key (client_id)
of l74dx104ddc00c3db4509b2d02f62c3a01234 , and a key secret (client_secret) of
ebf0708b9c8a46efb0115024a7a204e0 requesting an access token. Note that once the
application has an authorization code, it has 10 minutes to exchange it. After that, the
authorization code is invalid and the application must request a new one.

<!DOCTYPE html>
<html>
<head>
<title>OAuth Callback page</title>
<meta http-equiv="Pragma" content="no-cache">
<meta http-equiv="Expires" content="-1">
</head>
<body>
<h1>OAuth Sample - Callback page</h1>
<form id="tokenForm" action="https://api.alfresco.com/auth/oauth/versions/2/
token" method="post" target="ipostresponse">
code: <input id="authCode" name="code" value="f9d9f182-700b-4c67-8235-
b6ea08870872" size="50px">

client_id: <input name="client_id"
 value="l74dx104ddc00c3db4509b2d02f62c3a01234" size="50px">
* This must match the registered value in the developer portal

client_secret: <input name="client_secret"
 value="ebf0708b9c8a46efb0115024a7a204e0" size="50px">
* This must match the registered value in the developer portal

redirect_uri: <input name="redirect_uri" value="http://localhost:8080/
alfoauthsample/mycallback.html" size="70px">
* This must match the registered value in the developer portal

grant_type: <input name="grant_type" value="authorization_code"
 readonly="readonly">

<input type="submit">
</form>

How does an application do work on behalf of a user?

6 Alfresco API Version 1.0

</html>

The application will get a JSON response body like this:

{
 "access_token":"87727764-3876-43b9-82a1-1ca917302ce5",
 "token_type":"Bearer",
 "expires_in":3600,
 "refresh_token":"596f6074-f432-4aeb-a162-8196213c659c",
 "scope":"public_api"
}

The following table explains the response properties :-

Property JSON
Type

Description

access_token string An access token that can be used to make authenticated calls using
the Alfresco API for one hour.

token_type string The type of token.

expires_in number The number of seconds the access token will be valid for. Alfresco will
issue access tokens valid for one hour.

refresh_token string Once the access token expires, the application must Refreshing an
access token on page 7 using this refresh token. The refresh
token is valid for seven days.

scope string Always use public_api as the value of scope.

The access token can be used to make authenticated calls using the Alfresco API for one hour.
After that period, the application must Refreshing an access token on page 7 using the
refresh token.

Using the access token

For simplicity the example below adds the access token to the query as a parameter. Note that
the preferred method to pass the access token to Alfresco is to include it in the HTTP request
header in the Authorization field in the following format:

 Value: Bearer [your access token]

This is a an example:

Bearer d1358c05-6564-4086-94b6-a7e14ce3490

The application now has an access token, and can use it to make API calls. The following HTML
code is from the Alfresco OAuth sample and shows an authenticated call to the sites API.

<!DOCTYPE html>
<html>
<head>
<title>Alfresco OAuth Sample Demo</title>
<meta http-equiv="Pragma" content="no-cache">
<meta http-equiv="Expires" content="-1">
</head>
<body>
<h1>OAuth Sample - Use the access token</h1>
<form id="callerForm" action="" method="get" target="ipostresponse">
Paste your Access token here: <input name="access_token" value=""
 size="60px">

API url to call (via HTTP.GET) <input id="urlToCall" value="https://
api.alfresco.com/alfresco.com/public/alfresco/versions/1/sites"
 size="70px">

<input type="submit">

How does an application do work on behalf of a user?

The Alfresco API 7

</form>
</body>
</html>

The application will get a JSON response body like this:

{
 "list" : {
 "pagination" : {
 "count" : 2,
 "hasMoreItems" : false,
 "skipCount" : 0,
 "maxItems" : 100
 },
 "entries" : [{
 "entry" : {
 "site" : {
 "id" : "general-test-site",
 "title" : "General Test Site",
 "visibility" : "PRIVATE",
 "description" : "Test Site"
 },
 "id" : "general-test-site",
 "role" : "SiteCollaborator"
 }
 }, {
 "entry" : {
 "site" : {
 "id" : "fred-bloggs-yourcompany-com",
 "visibility" : "PRIVATE",
 "description" : "Fred Bloggs's private home site."
 },
 "id" : "fred-bloggs-yourcompany-com",
 "role" : "SiteManager"
 }
 }]
 }
}

Refreshing an access token

After one hour, your application's access token will be invalid. You can use the refresh token to
request a new access token without having to re-authenticate with the user. The refresh token is
valid for 7 days or until a new access token is requested.

When the access token expires, API requests will receive an HTTP 401 response with the
following body:

{
 "error":"invalid_request",
 "error_description":"The access token expired"
}

The error description The access token expired is the only way your application can
recognize this error. Your application should request a new access token using the refresh
token.

The following HTML is from the Alfresco OAuth sample and shows an application with
a refresh token of e98f372c-e5a6-49e5-ba55-a035234577eb2 API Key (client_id)
of l74dx104ddc00c3db4509b2d02f62c3a01234, and a key secret (client_secret) of
ebf0708b9c8a46efb0115024a7a204e0 requesting a new access code.

<!DOCTYPE html>

How does an application do work on behalf of a user?

8 Alfresco API Version 1.0

<html>
<head>
<meta charset="UTF-8">
<title>Alfresco OAuth Sample Demo</title>
<meta http-equiv="Pragma" content="no-cache">
<meta http-equiv="Expires" content="-1">
</head>
<body>
<h1>OAuth Sample - Refresh the access token</h1>
<form id="tokenForm" action="https://api.alfresco.com/auth/oauth/versions/2/
token" method="post" target="ipostresponse">
refresh_token: <input name="refresh_token" value="e98f372c-e5a6-49e5-ba55-
a035234577eb2" size="60px">

client_id: <input name="client_id"
 value="l74dx104ddc00c3db4509b2d02f62c3a01234" size="50px">
* This must match the registered value in the developer portal

client_secret: <input name="client_secret"
 value="ebf0708b9c8a46efb0115024a7a204e0" size="50px">
* This must match the registered value in the developer portal

grant_type: <input name="grant_type" value="refresh_token"
 readonly="readonly">

<input type="submit">
</form>
</body>
</html>

The response will have a body that looks like this:

{
 "access_token":"28f88a82-a62b-4e44-9312-16a4a5d2e71c",
 "token_type":"Bearer",
 "expires_in":3600,
 "refresh_token":"e98f372c-e5a6-49e5-ba55-a0358d877eb2",
 "scope":"public_api"
}

Note that you can refresh the access token at any time before the timeout expires. The old
access token becomes invalid when the new one is granted. The new refresh token supplied in
the response body can be used in the same way.

Alfresco CMIS API

The Alfresco API 9

Alfresco CMIS API

CMIS (Content Management Interoperability Services) is a vendor-neutral OASIS Web services
interface specification that enables interoperability between Enterprise Content Management
(ECM) systems. CMIS allows rich information to be shared across Internet protocols in vendor-
neutral formats, among document systems, publishers and repositories, in a single enterprise and
between companies.

You can use basic HTTP methods to invoke CMIS methods, or you can use one of the many
language-specific libraries that wrap CMIS. One such example for the Java language is the
OpenCMIS Client API provided by the Apache Chemistry project. Apache Chemistry provides
client libraries for many other languages such as Python, PHP, and .NET.

Getting Started

To get you started with CMIS, this section explains the format of the URL you will use, and what
responses to expect.

Note when reading this documentation and any other information on CMIS, that the CMIS term
repository maps directly to the Alfresco Cloud term network.

The domain model

CMIS defines a domain model. A client will access a CMIS service endpoint described by a
URL. A service endpoint must have at least one repository. A repository, in this case an instance
of Alfresco, is a data store which contains content. Each item of content is an object such as
a folder, or a document. A repository is identified by its ID, and has a set of capabilities which
describe what optional CMIS functionality the repository supports.

Using the CMIS service endpoint in an HTTP Get call will return the endpoint's CMIS service
document which describes the CMIS functionality it supports.

Each CMIS object has an ID, type, and a set of properties for that type. There are four base types
for a CMIS object :-

Document
An item of content. The document may have a content stream, which is the actual file
associated with the document. A content stream exists only as part of its containing document
object. A content stream has a mimetype associated with it. A document object may contain
one or more renditions, which are alternate views of the content. Documents objects are the
only objects that are versionable. Each version of a document has its own object ID. All the
versions of a document make up a version series and share a version series ID. You can
create, read, update and delete documents using CMIS methods.

Folder
A container used to organize the document objects. A repository has one root folder. All other
folder objects have one parent folder. A folder has a folder path representing its place in the
repository's folder hierarchy.

Relationship
A relationship between a source object and a target object. Creating, changing and deleting
relationships does not change the source or target objects themselves.

Policy
An optional repository-specific object that can be applied to controllable objects. The behavior
of policies are not modeled by the CMIS specification. A policy object may be applied to
multiple controllable objects and a controllable object may have multiple policies applied to it.
A policy object can not be deleted if it is currently applied to one or more controllable objects.

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=cmis
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=cmis
http://chemistry.apache.org/java/developing/guide.html
http://chemistry.apache.org/

Alfresco CMIS API

10 Alfresco API Version 1.0

What does a request look like?

You call a method on the CMIS AtomPub REST API by issuing an authenticated HTTP request
with a URL.

The four HTTP methods are used to support the traditional Create, Read, Update, and Delete
(CRUD) operations of content management:-

POST
is used to create a new entities

GET
is used to retrieve information

PUT
is used to update a single entity

DELETE
is used to delete a single entity

Request URL format

Each request is a URL with a specific format.

This is an example of a request URL

 https://api.alfresco.com/yourcomopany.com/public/cmis/versions/1.0/atom/
content?id=a99ae2db-0e40-4fb6-bf67-3f331a358cfc

Each request URL is made up of the following elements:-

1. The protocol, which will always be https

2. The hostname which will always be api.alfresco.com

3. Your network id, which in this case is yourcompany.com

4. The API you want to call. In this case it is the public Alfresco CMIS API identified as /
public/cmis.

5. /versions/n. This specifies the version of the CMIS API you are using. Currently n will
always be 1.0.

6. The CMIS binding. Currently the Alfresco cloud supports the atom binding.

7. The CMIS method itself. In this case the request is to get the content of a CMIS document
with a specific id.

Getting the service document

The capabilities available to your application from the Alfresco Cloud are described in a an
AtomPub document returned when calling the base URL. The service document contains
information on the repository, the CMIS methods that can be called on it, and the parameters for
those methods.

Getting the service document for all networks

To retrieve the service document for the current authenticated user's networks in the Alfresco
cloud, use the HTTP GET method with this URL:

 https://api.alfresco.com/cmis/versions/1.0/atom/

The response body is an AtomPub XML document which describes the CMIS capabilities in a
standard way. See the CMIS specification for more details.

http://docs.oasis-open.org/cmis/CMIS/v1.0/os/cmis-spec-v1.0.html

Alfresco CMIS API

The Alfresco API 11

Getting the service document for a specific network

To retrieve the service document for a specific network that the current authenticated user is a
member of, use the HTTP GET method with a URL that specifies the network. For example this
URL returns the service document for the yourcompany.com network.

 https://api.alfresco.com/yourcompany.com/public/cmis/versions/1.0/atom

The response body is an AtomPub XML document which describes the CMIS capabilities in a
standard way. See the CMIS specification for more details.

Getting information on a node

You can get information on a specific node in the repository by using its id. The resulting
AtomPub XML document describes the node. You can tailor the information returned by providing
HTML parameters.

URL format

Here is an example of a URL to retrieve information on a specific node:

https://api.alfresco.com/yourcompany.com/public/cmis/versions/1.0/atom/id?
id=5dba1525-44a6-45ed-a42e-4a155a3f0539

The response body is an AtomPub XML document which describes the CMIS capabilities in a
standard way. See the CMIS specification for more details.

Parameters

You can add the following optional HTTP parameters to the URL:

Parameter Optional? Default value Description

filter Yes Repository specific A comma-separated list of query names
that defines which properties must be
returned by the repository.

includeAllowableActions Yes false A boolean value. A value of true
specifies that the repository must return
the allowable actions for the node.

includeRelationships Yes IncludeRelationships.NONEThe relationships in which the node
participates that must be returned in the
response.

renditionFilter Yes cmis:none A filter describing the set of renditions
that must be returned in the response.

includePolicyIds Yes false A boolean value. A value of true
specifies the repository must return the
policy ids for the node.

includeAcl Yes false A boolean value. A value of true
specifies the repository must return the
Access Control List (ACL) for the node.

Getting the children of a node

You can get the children of a specific node in the repository by using its id. The resulting
AtomPub XML document describes children of the node. You can tailor the information returned
by providing HTML parameters. You can use this method to navigate a folder tree in the
repository.

http://docs.oasis-open.org/cmis/CMIS/v1.0/os/cmis-spec-v1.0.html
http://docs.oasis-open.org/cmis/CMIS/v1.0/os/cmis-spec-v1.0.html

Alfresco CMIS API

12 Alfresco API Version 1.0

URL format

Here is an example of a URL to retrieve information on a specific node:

https://api.alfresco.com/yourcompany.com/public/cmis/versions/1.0/atom/
children?id=5dba1525-44a6-45ed-a42e-4a1a1a3f0539

The response body is an AtomPub XML document which describes the child nodes in a standard
way. See the CMIS specification for more details.

Parameters

You can add the following optional HTTP parameters to the URL:

Parameter Optional? Default value Description

filter Yes Repository specific A comma-separated list of query names
that defines which properties must be
returned by the repository.

orderBy Yes Repository specific A comma-separated list of query names
that defines the order of the results
set. Each query name in the list must
be followed by the string ASC or DESC
to specify the direction of the order,
ascending or descending.

includeAllowableActions Yes false A boolean value. A value of true
specifies that the repository must return
the allowable actions for each node.

includeRelationships Yes IncludeRelationships.NONEThe relationships in which each node
participates that must be returned in the
response.

renditionFilter Yes cmis:none A filter describing the set of renditions
that must be returned in the response.

includePathSegment Yes false A boolean value. A value of true
returns a path segment in the response
for each child object that can be used to
construct that object's path.

maxItems Yes Repository specific The maximum number of items to return
in the response.

skipCount Yes 0 The number of objects to skip over
before returning any results.

Getting the contents of a document

You can get the contents of a specific document in the repository by using its id. The format of
the URl and the parameters that you can use are detailed in the service document.

URL format

Here is an example of a URL to retrieve the contents of a specific document:

https://api.alfresco.com/yourcompany.com/public/cmis/versions/1.0/atom/content?
id=824ba7cd-dcee-4908-8917-7b6ac0611c97

The response body is the content of the document. The format is specific to the type of content,
so for example, getting the contents of a text document returns a text response body.

http://docs.oasis-open.org/cmis/CMIS/v1.0/os/cmis-spec-v1.0.html

Alfresco CMIS API

The Alfresco API 13

Updating the contents of a document

You can replace the contents of a specific document in the repository by using its id. The format
of the URl and the parameters that you can use are detailed in the service document.

URL format

Here is an example of a URL to retrieve the contents of a specific document:

https://api.alfresco.com/yourcompany.com/public/cmis/versions/1.0/atom/content?
id=824ba7cd-dcee-4908-8917-7b6ac0611c97

Request Header

The request Content-Type must be of the same mime-type as the target document. In this
example, we are updating a plain text document.

Content-Type: text/plain; charset=utf-8

Request body

The request body is the new content of the document.

Some updated text.

Response

If the request is successful an HTTP CREATED response (status 201) is returned.

Alfresco REST API

14 Alfresco API Version 1.0

Alfresco REST API

The API gives your application access to Alfresco Networks, Sites, Containers, Comments,
Ratings, and tags. Unlike CMIS, response and request bodies are all specified with simple JSON.

Getting Started

To get you started with the API, this section explains the format of the URL you will use, and what
to expect in responses.

What is an entity?

The generic term used in the API for any object in an Alfresco repository is entity. An entity is of a
specific entity type, and has a unique entity id.

The Alfresco REST API operates on the following entity types:

sites
An Alfresco site is a project area where you can share content and collaborate with other site
members.

containers
A container is a folder or space in a site.

members
Members are the people who collaborate on a site.

people
People are the users of Alfresco. A person entity describes the user as they are known to
Alfresco.

favoriteSites
The sites that a person has marked as favorite in Alfresco.

preferences
A person's preferences in Alfresco.

networks
A network is the group of users and sites that belong to an organization. Networks are
organized by email domain. When a user signs up for an Alfresco account , their email domain
becomes their Home Network.

activities
Activities describe any past activity in a site, for example creating an item of content,
commenting on a node, liking an item of content.

nodes
A node is an overall term for an item of content or a folder.

comments
A person can comment on folders and individual items to give other users information or notes
specific to that content.

tags
Any item of Alfresco content can be tagged.

ratings
A person can rate an item of content by liking it. They can also remove their like of an item of
content.

Alfresco REST API

The Alfresco API 15

favorites
A favorite describes an Alfresco entity that a person has marked as a favorite.

site membership request
A site membership request describes a request for a person to join a site in Alfresco.

A logical group of entities is termed a collection.

What does a request look like?

You call a method on the API by issuing an authenticated HTTP request with a URL.

The four HTTP methods are used in the following ways:-

POST
is used to create a new entity in a collection of entities

GET
is used to retrieve information on a single entity or to retrieve a list of entities

PUT
is used to update a single entity

DELETE
is used to delete a single entity

Request URL format

Each request is a URL with a specific format.

This is an example of a request URL

 https://api.alfresco.com/example.com/public/alfresco/versions/1/sites

Each request URL is made up of the following elements:-

1. The protocol, which will always be https

2. The hostname which will always be api.alfresco.com

3. Your network id, which in this case is yourcompany.com

4. The API you want to call. In this case it is the Alfresco REST API identified as /public/
alfresco.

5. /versions/n. This specifies the version of the API you are using. Currently n will always
be 1.

6. The API method itself. In this case the request is for all instances of the entity type sites.

API method format

The method itself consists of at least one entity type, or an entity type and an entity id, or
concatenations of entity type and id pairs, optionally followed by HTTP parameters that filter the
results.

For example the following API method will return a list of all site entities:

 sites

The entity type can be followed by an entity id, so for example the following API method will
return on the site entity with the id fred-bloggs-yourcompany-com.

Alfresco REST API

16 Alfresco API Version 1.0

 sites/fred-bloggs-yourcompany-com

Entity types and ids can be concatenated, so for example the following API method will get site
membership information for a specific person from a specific site

 sites/fred-bloggs-yourcompany-com/members/fred.bloggs@yourcompany.com

Specifying the current user

When making an Alfresco REST API call, your application may not know the userId of the
currently authenticated user. You can use the string -me- to represent that user in request URLs,
and PUT and POST request bodies.

For example, assuming the currently authenticated user is fred.bloggs@yourcompany.comthe
following URL will return a list of site memberships for the currently authenticated user:

 https://api.alfresco.com/yourcompany.com/public/alfresco/versions/1/
people/fred.bloggs@yourcompany.com/sites

Using the current user -me-, the following URL will return the same list of site memberships:

 https://api.alfresco.com/yourcompany.com/public/alfresco/versions/1/
people/-me-/sites

HTTP Parameters

The API provides several HTTP parameters that you can append to any API method URL to
filter the returned results. The parameters are optional and can be use in combination with each
other. There are also parameters that are used in a specific API method. You will find those
documented in the API reference. Parameters listed here are applicable to any API method.

Pagination

As a developer, the REST API gives you control on how much of a returned collection you want
to receive.

The collection returned by a simple request can contain a large number of entities. You
can control the size of the list using pagination. So for example if a node with an id of
e8680e58-0701-4b64-950d-66cce277fbc7 has 100 comments the following request will return a
list of 100 entities:

 nodes/e8680e58-0701-4b64-950d-66cce277fbc7/comments

You can get just the first 10 items using the maxItems parameter:

 nodes/e8680e58-0701-4b64-950d-66cce277fbc7/comments?maxItems=10

You can then get the second page of 10 items using the skipCount parameter:

 nodes/e8680e58-0701-4b64-950d-66cce277fbc7/comments?
maxItems=10&skipCount=10

A returned list object will always contain a pagination object which has the following properties:

skipCount
An integer describing how many entities exist in the collection before those included in this list.

Alfresco REST API

The Alfresco API 17

maxItems
The maxItems parameter used to generate this list, or if there was no maxItems parameter the
default value, 10.

count
The number of objects in the entries array.

hasMoreItems
A boolean value which is true if there are more entities in the collection beyond those in this
response. A true value means request with a larger value for the skipCount or the maxItems
parameter will return more entities.

totalItems
An integer describing the total number of entities in the collection. The API may not be able to
determine this value, in which case this property will not be present.

Filtering properties

You may only be interested in a subset of properties in a returned entity. You can use the
properties parameter to restrict the returned properties.

The properties parameter is a comma-separated list of property names:-

properties=property1,property2...

For example if you invoked the following API method using the HTTP GET method:-

 sites

Alfresco would return a list of site objects each with four properties; id, title, visibility,
description. Your application may only interested in say two properties, title and
description. You can filter the returned site objects like this :-

 sites?properties=title,description

The collection returned will look like this:-

{
 "list" : {
 "pagination" : {
 "count" : 2,
 "hasMoreItems" : false,
 "totalItems" : 2,
 "skipCount" : 0,
 "maxItems" : 100
 },
 "entries" : [{
 "entry" : {
 "title" : "Test Site",
 "description" : "A site for testing"
 }
 }, {
 "entry" : {
 "title" : "Fred Bloggs's Home",
 "description" : "Fred Blogs's private home site."
 }
 }]
 }
}

Each entry in the list is a site object filtered to include just the title and description properties.

Including relations

Use the relations parameter to include one or more related entities in a single response.

Alfresco REST API

18 Alfresco API Version 1.0

The entity types in Alfresco are organized in a tree structure. So for example, the sites entity
has two children, containers and members. You can reduce network traffic by using the
relations parameter to include one or more child entities in a single response. The parameter is
a comma separated list of entity types
relations=entity1,entity2,...

If you you invoked the following API method using the HTTP GET method:-

 sites?relations=containers,members

Alfresco returns a list of site objects, and retrieves the child container and member objects
for each site in the returned collection, and returns them in a peer object of the entry object
containing the site. Here is an example of the returned JSON:-

{
 "list" : {
 "pagination" : {
 "count" : 2,
 "hasMoreItems" : false,
 "totalItems" : 2,
 "skipCount" : 0,
 "maxItems" : 100
 },
 "entries" : [{
 "entry" : {
 "id" : "test",
 "title" : "test",
 "visibility" : "PUBLIC"
 },
 "relations" : {
 "containers" : {
 "list" : {
 "pagination" : {
 "count" : 1,
 "hasMoreItems" : false,
 "totalItems" : 1,
 "skipCount" : 0,
 "maxItems" : 100
 },
 "entries" : [{
 "entry" : {
 "id" : "5b0d84c8-0749-4fee-bd4f-9134d6990e5b",
 "folderId" : "documentLibrary"
 }
 }]
 }
 },
 "members" : {
 "list" : {
 "pagination" : {
 "count" : 2,
 "hasMoreItems" : false,
 "skipCount" : 0,
 "maxItems" : 100
 },
 "entries" : [{
 "entry" : {
 "id" : "fred-bloggs@yourcompany.com",
 "person" : {
 "enabled" : true,
 "lastName" : Bloggs",
 "id" : "fred.bloggs@yourcompany.com",
 "email" : "fred.bloggs@yourcompany.com",
 "company" : {
 },
 "firstName" : "Fred"

Alfresco REST API

The Alfresco API 19

 },
 "role" : "SiteManager"
 }
 }, {
 "entry" : {
 "id" : "joe-bloggs@yourcompany.com",
 "person" : {
 "enabled" : true,
 "lastName" : "Bloggs",
 "id" : "joe.bloggs@yourcompany.com",
 "email" : "joe.bloggs@yourcompany.com",
 "company" : {
 },
 "firstName" : "Joe"
 },
 "role" : "SiteConsumer"
 }
 }]
 }
 }
 }
 }, {
 "entry" : {
 "id" : "fred-bloggs-yourcompany-com",
 "title" : "Fred Bloggs's Home",
 "visibility" : "PRIVATE",
 "description" : "Fred Bloggs's private home site."
 },
 "relations" : {
 "containers" : {
 "list" : {
 "pagination" : {
 "count" : 1,
 "hasMoreItems" : false,
 "totalItems" : 1,
 "skipCount" : 0,
 "maxItems" : 100
 },
 "entries" : [{
 "entry" : {
 "id" : "289f9030-eef6-421f-bdb6-1e6d2da165b6",
 "folderId" : "documentLibrary"
 }
 }]
 }
 },
 "members" : {
 "list" : {
 "pagination" : {
 "count" : 1,
 "hasMoreItems" : false,
 "skipCount" : 0,
 "maxItems" : 100
 },
 "entries" : [{
 "entry" : {
 "id" : "fred.bloggs@alfresco.com",
 "person" : {
 "enabled" : true,
 "lastName" : "Raff",
 "location" : "Somewhere",
 "avatarId" : "85d45e64-eb02-44e1-b989-dbf571ab0704",
 "instantMessageId" : "fredb",
 "googleId" : "fredb@gmail.com",
 "id" : "fred.bloggs@alfresco.com",
 "skypeId" : "fredb",
 "email" : "fred.bloggs@alfresco.com",
 "description" : "Been with company for n years",

Alfresco REST API

20 Alfresco API Version 1.0

 "company" : {
 "organization" : "Your Company",
 "address1" : "Some place",
 "address2" : "Somewhere",
 "postcode" : "Z99 9Z9",
 "telephone" : "01234 123456",
 "fax" : "01234 123457",
 "email" : "info@yourcompany.com"
 },
 "firstName" : "Fred",
 "telephone" : "01234 567890",
 "jobTitle" : "VP of something",
 "mobile" : "07777 567890"
 },
 "role" : "SiteManager"
 }
 }]
 }
 }
 }
 }]
 }
}

Filtering relations

You can include just those properties in which you are interested in objects returned in a relations
object.

You can include an optional comma-separated list of properties in any entity specified in a
relations parameter to filter the resulting objects to include just those properties you are interested
in.

relations=relation1(property1,property2,...),relation2(propertya,propertyb,...),relation3,...

For example, if you wanted to retrieve a list of all sites, their top-level containers, and their
members, but you only needed the id of the sites, the folderId of the containers, and the id and
role of the members, you would invoke the following API method using the HTTP GET method:-

 sites?properties=id&relations=containers(folderId),members(id,role)

Alfresco returns a list of filtered site objects, with the child container and member objects filtered
to contain just the requested properties. Here is an example of the returned JSON:-

{
 "list" : {
 "pagination" : {
 "count" : 2,
 "hasMoreItems" : false,
 "totalItems" : 2,
 "skipCount" : 0,
 "maxItems" : 100
 },
 "entries" : [{
 "entry" : {
 "id" : "test"
 },
 "relations" : {
 "containers" : {
 "list" : {
 "pagination" : {
 "count" : 1,
 "hasMoreItems" : false,
 "totalItems" : 1,
 "skipCount" : 0,
 "maxItems" : 100
 },

Alfresco REST API

The Alfresco API 21

 "entries" : [{
 "entry" : {
 "folderId" : "documentLibrary"
 }
 }]
 }
 },
 "members" : {
 "list" : {
 "pagination" : {
 "count" : 2,
 "hasMoreItems" : false,
 "skipCount" : 0,
 "maxItems" : 100
 },
 "entries" : [{
 "entry" : {
 "id" : "fred-bloggs@yourcompany.com"
 "role" : "SiteManager"
 }
 }, {
 "entry" : {
 "id" : "joe-bloggs@yourcompany.com"
 "role" : "SiteConsumer"
 }
 }]
 }
 }
 }
 }, {
 "entry" : {
 "id" : "fred-bloggs-yourcompany-com"
 },
 "relations" : {
 "containers" : {
 "list" : {
 "pagination" : {
 "count" : 1,
 "hasMoreItems" : false,
 "totalItems" : 1,
 "skipCount" : 0,
 "maxItems" : 100
 },
 "entries" : [{
 "entry" : {
 "folderId" : "documentLibrary"
 }
 }]
 }
 },
 "members" : {
 "list" : {
 "pagination" : {
 "count" : 1,
 "hasMoreItems" : false,
 "skipCount" : 0,
 "maxItems" : 100
 },
 "entries" : [{
 "entry" : {
 "id" : "fred.bloggs@alfresco.com"
 "role" : "SiteManager"
 }
 }]
 }
 }
 }
 }]

Alfresco REST API

22 Alfresco API Version 1.0

 }
}

What does a response look like?

All responses are JSON objects. The format of the response object depends on the request. The
object may contain an entry object, an entry and a relations object, a list object, or an error object.
Note that if a property or an entire object has no value, then it is not returned in the parent object.

Entry object

An API call which returns information about a single entity will return in an entry object. Here is an
example response from a request for information on a site with a specific site-id:-

{
 "entry":{
 "title":"Fred Blogg's Home",
 "description":"Fred Blogg's private home site.",
 "visibility":"PRIVATE",
 "id":"fred-bloggs-yourcompany-com"
 }
}

Note that the entry object's properties are variable and depend on the API call made.

Relations object

If an API method specifies the Including relations on page 17 parameter, then any included
children will be returned in a relations object. Here is an example of a relations object :-

 "relations" : {
 "containers" : {
 "list" : {
 "pagination" : {
 "count" : 1,
 "hasMoreItems" : false,
 "totalItems" : 1,
 "skipCount" : 0,
 "maxItems" : 100
 },
 "entries" : [{
 "entry" : {
 "id" : "b9f8c112-66b9-4733-a77d-46e61c395706",
 "folderId" : "documentLibrary"
 }
 }]
 }
 }
 }

List object

An API call which returns information about a several entities will return in a list object. A list will
always have two properties, pagination and entries . The pagination object is described in
Pagination on page 16 . The entries object is an array of entry objects. Here is an example
response from a request for information on all sites:-

{
 "list":{
 "pagination":{
 "count":1,
 "hasMoreItems":false,
 "totalItems":1,

Alfresco REST API

The Alfresco API 23

 "skipCount":0,
 "maxItems":10
 },
 "entries":[
 {
 "entry":{
 "title":"Fred Blogg's Home",
 "description":"Fred Blogg's private home site.",
 "visibility":"PRIVATE",
 "id":"fred-bloggs-yourcompany-com"
 }
 }
]
 }
}

Error object

An API call which fails for some reason will return an error object containing these properties:-

errorKey
A unique string identifier

statusCode
The HTTP status code for the type of error. The same code is returned in the HTTP response.

briefSummary
description of the cause of the error

descriptionUrl
A URL to a detailed description of the error

stackTrace
If an exception was thrown, this contains the Java stack trace as a string

additionalState
This optional property if it is present contains a free-form JSON object with additional
information on the state of the server and/or the request

Here is an example of an error object from a request for a specific site-id that does not exist on
the server:

 {
 "error" : {
 "statusCode" : 404,
 "briefSummary" : "07220488 The entity with id: frank-bloggs-yourcompany-com
 was not found",
 "stackTrace" :
 "[org.alfresco.rest.api.impl.SitesImpl.validateSite(SitesImpl.java:111),
 org.alfresco.rest.api.impl.SitesImpl.getSite(SitesImpl.java:137), ... ,java.lang.Thread.run(Thread.java:662)]",
 "descriptionURL" : "http://someError?id=null"
 }
}

Note that the stack trace has been truncated for this example.

Date and Time format

Dates in the JSON response object are encoded as character strings using the extended format
defined by ISO 8601:2004 They are always in UTC.

You can find the ISO 8601:2004 here. Here's an example of what to expect in a date/time string
in a JSON response:-

"createdAt" : "2012-07-20T21:46:09.659+0000"

http://www.iso.org/iso/catalogue_detail?csnumber=40874

Alfresco REST API

24 Alfresco API Version 1.0

Using HTTP OPTIONS to get entity metadata

The Alfresco REST API supports the use of the HTTP OPTIONS method to retrieve structured
information on the methods available on an entity and its relations.

Method

For example, to get information on the nodes entity, the methods you can use on it, its children
(or relations), and the methods you can use on those, you can invoke the following API method
using the HTTP OPTIONS method:-

nodes

Example request URL

https://api.alfresco.com/yourcompany.com/public/alfresco/versions/1/nodes

Response

• If the request is successful an HTTP OK is returned (status 200).

Example response body
{
 "list" : {
 "pagination" : {
 "count" : 4,
 "hasMoreItems" : false,
 "totalItems" : 4,
 "skipCount" : 0,
 "maxItems" : 100
 },
 "entries" : [{
 "entry" : {
 "metaData" : {
 "uniqueId" : "/nodes",
 "type" : "ENTITY"
 }
 }
 }, {
 "entry" : {
 "metaData" : {
 "uniqueId" : "/nodes/{entityId}/tags",
 "type" : "RELATIONSHIP",
 "operations" : [{
 "httpMethod" : "POST",
 "title" : "Add the tag to the node with id 'nodeId'.",
 "parameters" : [{
 "name" : "entityId",
 "required" : true,
 "title" : "The unique id of the entity being addressed",
 "description" : "The unique id must be a String. It is returned
 as an 'id' from the entity",
 "dataType" : "java.lang.String",
 "allowMultiple" : false,
 "paramType" : "TEMPLATE"
 }, {
 "name" : "TAG",
 "required" : true,
 "title" : "The entity",
 "description" : "What shall we say?",
 "dataType" : "org.alfresco.rest.api.model.Tag",
 "allowMultiple" : false,
 "paramType" : "OBJECT"
 }]
 }, {

Alfresco REST API

The Alfresco API 25

 "httpMethod" : "GET",
 "title" : "A paged list of tags on the node 'nodeId'.",
 "parameters" : [{
 "name" : "entityId",
 "required" : true,
 "title" : "The unique id of the entity being addressed",
 "description" : "The unique id must be a String. It is returned
 as an 'id' from the entity",
 "dataType" : "java.lang.String",
 "allowMultiple" : false,
 "paramType" : "TEMPLATE"
 }]
 }, {
 "httpMethod" : "DELETE",
 "title" : "Remove the tag from the node with id 'nodeId'.",
 "parameters" : [{
 "name" : "entityId",
 "required" : true,
 "title" : "The unique id of the entity being addressed",
 "description" : "The unique id must be a String. It is returned
 as an 'id' from the entity",
 "dataType" : "java.lang.String",
 "allowMultiple" : false,
 "paramType" : "TEMPLATE"
 }]
 }],
 "parentResource" : "/nodes"
 }
 }
 }, {
 "entry" : {
 "metaData" : {
 "uniqueId" : "/nodes/{entityId}/ratings",
 "type" : "RELATIONSHIP",
 "operations" : [{
 "httpMethod" : "POST",
 "title" : "Apply a rating for node 'nodeId'.",
 "parameters" : [{
 "name" : "entityId",
 "required" : true,
 "title" : "The unique id of the entity being addressed",
 "description" : "The unique id must be a String. It is returned
 as an 'id' from the entity",
 "dataType" : "java.lang.String",
 "allowMultiple" : false,
 "paramType" : "TEMPLATE"
 }, {
 "name" : "NODERATING",
 "required" : true,
 "title" : "The entity",
 "description" : "What shall we say?",
 "dataType" : "org.alfresco.rest.api.model.NodeRating",
 "allowMultiple" : false,
 "paramType" : "OBJECT"
 }]
 }, {
 "httpMethod" : "GET",
 "title" : "A paged list of ratings for node 'nodeId'.",
 "parameters" : [{
 "name" : "entityId",
 "required" : true,
 "title" : "The unique id of the entity being addressed",
 "description" : "The unique id must be a String. It is returned
 as an 'id' from the entity",
 "dataType" : "java.lang.String",
 "allowMultiple" : false,
 "paramType" : "TEMPLATE"
 }]

Alfresco REST API

26 Alfresco API Version 1.0

 }, {
 "httpMethod" : "GET",
 "title" : "Get the rating with id 'ratingSchemeId' for node
 'nodeId'.",
 "parameters" : [{
 "name" : "entityId",
 "required" : true,
 "title" : "The unique id of the entity being addressed",
 "description" : "The unique id must be a String. It is returned
 as an 'id' from the entity",
 "dataType" : "java.lang.String",
 "allowMultiple" : false,
 "paramType" : "TEMPLATE"
 }, {
 "name" : "relationshipId",
 "required" : true,
 "title" : "The unique id of the entity relationship being
 addressed",
 "description" : "The unique id must be a String. It is only valid
 in the scope of the relationship",
 "dataType" : "java.lang.String",
 "allowMultiple" : false,
 "paramType" : "TEMPLATE"
 }]
 }, {
 "httpMethod" : "DELETE",
 "title" : "Missing @WebApiDescription annotation",
 "description" : "This method should be annotated with
 @WebApiDescription",
 "parameters" : [{
 "name" : "entityId",
 "required" : true,
 "title" : "The unique id of the entity being addressed",
 "description" : "The unique id must be a String. It is returned
 as an 'id' from the entity",
 "dataType" : "java.lang.String",
 "allowMultiple" : false,
 "paramType" : "TEMPLATE"
 }]
 }],
 "parentResource" : "/nodes"
 }
 }
 }, {
 "entry" : {
 "metaData" : {
 "uniqueId" : "/nodes/{entityId}/comments",
 "type" : "RELATIONSHIP",
 "operations" : [{
 "httpMethod" : "POST",
 "title" : "Create a comment for the node 'nodeId'.",
 "parameters" : [{
 "name" : "entityId",
 "required" : true,
 "title" : "The unique id of the entity being addressed",
 "description" : "The unique id must be a String. It is returned
 as an 'id' from the entity",
 "dataType" : "java.lang.String",
 "allowMultiple" : false,
 "paramType" : "TEMPLATE"
 }, {
 "name" : "COMMENT",
 "required" : true,
 "title" : "The entity",
 "description" : "What shall we say?",
 "dataType" : "org.alfresco.rest.api.model.Comment",
 "allowMultiple" : false,
 "paramType" : "OBJECT"

Alfresco REST API

The Alfresco API 27

 }]
 }, {
 "httpMethod" : "GET",
 "title" : "Returns a paged list of comments for the document/folder
 identified by nodeId, sorted chronologically with the newest first.",
 "parameters" : [{
 "name" : "entityId",
 "required" : true,
 "title" : "The unique id of the entity being addressed",
 "description" : "The unique id must be a String. It is returned
 as an 'id' from the entity",
 "dataType" : "java.lang.String",
 "allowMultiple" : false,
 "paramType" : "TEMPLATE"
 }]
 }, {
 "httpMethod" : "PUT",
 "title" : "Updates the comment with the given id.",
 "parameters" : [{
 "name" : "entityId",
 "required" : true,
 "title" : "The unique id of the entity being addressed",
 "description" : "The unique id must be a String. It is returned
 as an 'id' from the entity",
 "dataType" : "java.lang.String",
 "allowMultiple" : false,
 "paramType" : "TEMPLATE"
 }, {
 "name" : "relationshipId",
 "required" : true,
 "title" : "The unique id of the entity relationship being
 addressed",
 "description" : "The unique id must be a String. It is only valid
 in the scope of the relationship",
 "dataType" : "java.lang.String",
 "allowMultiple" : false,
 "paramType" : "TEMPLATE"
 }, {
 "name" : "COMMENT",
 "required" : true,
 "title" : "The entity",
 "description" : "What shall we say?",
 "dataType" : "org.alfresco.rest.api.model.Comment",
 "allowMultiple" : false,
 "paramType" : "OBJECT"
 }]
 }, {
 "httpMethod" : "DELETE",
 "title" : "Delete the comment with the given commentNodeId.",
 "parameters" : [{
 "name" : "entityId",
 "required" : true,
 "title" : "The unique id of the entity being addressed",
 "description" : "The unique id must be a String. It is returned
 as an 'id' from the entity",
 "dataType" : "java.lang.String",
 "allowMultiple" : false,
 "paramType" : "TEMPLATE"
 }]
 }],
 "parentResource" : "/nodes"
 }
 }
 }]
 }
}

Alfresco REST API

28 Alfresco API Version 1.0

API Reference

This reference material has a description of each of the Alfresco entities operated on by the
REST API, and of the methods that are available for each of those entities.

Networks

A network is the group of users and sites that belong to an organization. Networks are organized
by email domain. When a user signs up for an Alfresco account , their email domain becomes
their Home Network.

Network object

Property Type JSON Type Description

id id string This network's unique id

type enumerated string string This network's type

isEnabled boolean boolean Is this network active?

createdAt Date Time String The date time this network was
created

quotas array array Limits and usage of each quota.
A network will have quotas
for File space, the number
of sites in the network, the
number of people in the network,
and the number of network
administrators.

paidNetwork boolean boolean Is this a paid network?

subscriptionLevel enumerated string string The type of subscription for
this network. Possible values
are Free, Standard, and
Enterprise

Example of a network object

 "entry" : {
 "id" : "yourcompany.com",
 "createdAt" : "2012-06-07T10:22:28.000+0000",
 "quotas" : [{
 "limit" : 52428800,
 "id" : "fileUploadQuota"
 }, {
 "limit" : 5368709120,
 "usage" : 149102356,
 "id" : "fileQuota"
 }, {
 "limit" : -1,
 "usage" : 29,
 "id" : "siteCountQuota"
 }, {
 "limit" : -1,
 "usage" : 33,
 "id" : "personCountQuota"
 }, {
 "limit" : -1,
 "usage" : 15,
 "id" : "personInternalOnlyCountQuota"
 }, {
 "limit" : 0,
 "usage" : 0,
 "id" : "personNetworkAdminCountQuota"

Alfresco REST API

The Alfresco API 29

 }],
 "paidNetwork" : false,
 "isEnabled" : true,
 "subscriptionLevel" : "Free"
 }

List order

Lists of these entities are returned ordered by ascending id.

Get a specific network

Method

Using the HTTP GET method:-

networks/<networkId>

Example request URL

https://api.alfresco.com/yourcompany.com/public/alfresco/versions/1/networks/
yourcompany.com

Response

• If the networkId does not exist in this network, an HTTP Not Found (status 404) is
returned.

• If the request is successful an HTTP OK is returned (status 200).

Example response body

{
 "id" : "yourcompany.com",
 "createdAt" : "2012-06-07T10:22:28.000+0000",
 "quotas" : [{
 "limit" : 52428800,
 "id" : "fileUploadQuota"
 }, {
 "limit" : 5368709120,
 "usage" : 149102356,
 "id" : "fileQuota"
 }, {
 "limit" : -1,
 "usage" : 29,
 "id" : "siteCountQuota"
 }, {
 "limit" : -1,
 "usage" : 33,
 "id" : "personCountQuota"
 }, {
 "limit" : -1,
 "usage" : 15,
 "id" : "personInternalOnlyCountQuota"
 }, {
 "limit" : 0,
 "usage" : 0,
 "id" : "personNetworkAdminCountQuota"
 }],
 "paidNetwork" : false,
 "isEnabled" : true,
 "subscriptionLevel" : "Free"
 }

Alfresco REST API

30 Alfresco API Version 1.0

Get networks for the current authenticated person

Method

Using the HTTP GET method on the root URL.

Example request URL

https://api.alfresco.com/

Response

• If the request is successful an HTTP OK is returned (status 200).

Example response body

{
 "list" : {
 "pagination" : {
 "count" : 1,
 "hasMoreItems" : false,
 "totalItems" : 1,
 "skipCount" : 0,
 "maxItems" : 100
 },
 "entries" : [{
 "entry" : {
 "id" : "yourcompany.com",
 "homeNetwork" : true,
 "createdAt" : "2012-06-07T10:22:28.000+0000",
 "quotas" : [{
 "limit" : 52428800,
 "id" : "fileUploadQuota"
 }, {
 "limit" : 5368709120,
 "usage" : 149102356,
 "id" : "fileQuota"
 }, {
 "limit" : -1,
 "usage" : 29,
 "id" : "siteCountQuota"
 }, {
 "limit" : -1,
 "usage" : 33,
 "id" : "personCountQuota"
 }, {
 "limit" : -1,
 "usage" : 15,
 "id" : "personInternalOnlyCountQuota"
 }, {
 "limit" : 0,
 "usage" : 0,
 "id" : "personNetworkAdminCountQuota"
 }],
 "paidNetwork" : false,
 "isEnabled" : true,
 "subscriptionLevel" : "Free"
 }
 }
]
 }
}

Alfresco REST API

The Alfresco API 31

Sites

An Alfresco site is a project area where you can share content and collaborate with other site
members. There are API calls for getting a list of sites, and for getting information on a single site.

Site object

Property Type JSON Type Description

title string string The site's name (used in the site's list and on the
sites dashboard).

description string string The description of the site

visibility string string The visibility of the site, PRIVATE, PUBLIC, or
MODERATED.

id id string The site identifier. An opaque string which uniquely
identifies this site.

Example of a site object

{
 "title":"Fred Bloggs's Home",
 "description":"Fred Bloggs's private home site.",
 "visibility":"PRIVATE",
 "id":"fred-bloggs-yourcompany-com"
}

Methods

Methods for Site objects.

Get a list of sites

Method

Using the HTTP GET method:-

sites

Example request URL

https://api.alfresco.com/yourcompany.com/public/alfresco/versions/1/sites

Response

• If the request is successful an HTTP OK is returned (status 200).

Example response body

{
 "list":{
 "pagination":{
 "count":1,
 "hasMoreItems":false,
 "totalItems":1,
 "skipCount":0,
 "maxItems":10
 },
 "entries":[
 {
 "entry":{

Alfresco REST API

32 Alfresco API Version 1.0

 "title":"Fred Blogg's Home",
 "description":"Fred Blogg's private home site.",
 "visibility":"PRIVATE",
 "id":"fred-bloggs-yourcompany-com"
 }
 }
]
 }
}

Get information for a site

Method

Using the HTTP GET method:-

sites/<siteId>

Example request URL

https://api.alfresco.com/yourcompany.com/public/alfresco/versions/1/sites/fred-
bloggs-yourcompany-com

Response

• If the siteId does not exist in this network, an HTTP Not Found (status 404) is returned.

• If the request is successful an HTTP OK is returned (status 200).

Example response body

{
 "entry":{
 "title":"Fred Blogg's Home",
 "description":"Fred Blogg's private home site.",
 "visibility":"PRIVATE",
 "id":"fred-bloggs-yourcompany-com"
 }
}

Containers

A container is a folder or space in a site. There are API calls for getting a list of top-level
containers in a site, and for getting a container by its containerId.

Container object

Property Type JSON Type Description

folderId string string The container's descriptive name.

id id string The container identifier. An opaque string which
uniquely identifies this container.

Example of a container object

{
 "folderId":"documentLibrary",
 "id":"7fb6c69b-f462-429a-a168-87762f660c65"
}

List order

Lists of these entities are returned ordered by ascending folderId.

Alfresco REST API

The Alfresco API 33

Methods

Methods for Container objects.

Get a list of containers

Method

Using the HTTP GET method:-

sites/<siteId>/containers

Example request URL

https://api.alfresco.com/yourcompany.com/public/alfresco/versions/1/sites/fred-
bloggs-yourcompany-com/containers

Response

• If the siteId does not exist in this network, an HTTP Not Found (status 404) is returned.

• If the request is successful an HTTP OK is returned (status 200).

Example response body

{
 "list":{
 "pagination":{
 "count":1,
 "hasMoreItems":false,
 "skipCount":0,
 "maxItems":100
 },
 "entries":[
 {
 "entry":{
 "folderId":"documentLibrary",
 "id":"7fb6c69b-f462-429a-a168-87762f660c65"
 }
 }
]
 }
}

Get information for a container

Method

Using the HTTP GET method:-

sites/<siteId>/containers/<containerId>

Example request URL

https://api.alfresco.com/yourcompany.com/public/alfresco/versions/1/sites/fred-
bloggs-yourcompany-com/containers/7fb6c69b-f462-429a-a168-87762f660c65

Response

• If the siteId or containerId do not exist in this network, an HTTP Not Found (status 404) is
returned.

Alfresco REST API

34 Alfresco API Version 1.0

• If the request is successful an HTTP OK is returned (status 200).

Example response body

{
 "entry":{
 "folderId":"documentLibrary",
 "id":"7fb6c69b-f462-429a-a168-87762f660c65"
 }
}

Members

Members are the people who collaborate on a site. There are API calls for getting a list of the
members of the site, getting the site membership information for a person, adding a person to a
site, and updating a person's site membership information.

Member object

Property Type JSON Type Description

role enumerated
string

string The member's role. Possible values are
SiteManager, SiteContributor, and
SiteCollaborator.

id email id string The person's personId - the email address with
which the person registered

People on page
42

person object object An embedded person object describing this
member.

Example of a member object

{
 "role":"SiteManager",
 "id":"fred.bloggs@yourcompany.com",
 "person":{
 "enabled":true,
 "lastName":"Bloggs",
 "location":"Somewhere",
 "avatarId":"6be34757-5764-4a4b-a86c-f5f0878b9700",
 "instantMessageId":"fred",
 "googleId":"fred@google.com",
 "id":"fred.bloggs@yourcompany.com",
 "skypeId":"fredbloggs",
 "email":"fred.bloggs@yourcompany.com",
 "description":"a person",
 "company":{
 "organization":"alfresco",
 "address1":"somewhere",
 "postcode":"fff fff",
 "telephone":"01234 456789",
 "fax":"01234 456789",
 "email":"info@yourcompany.com"
 },
 "firstName":"Fred",
 "telephone":"01234 99229922",
 "jobTitle":"Chief Bottle Washer",
 "mobile":"07777 012345"
 }
 }

List order

Lists of these entities are returned ordered by ascending (lastName, firstName, role).

Alfresco REST API

The Alfresco API 35

Methods

Methods for Member objects.

Get a list of members

Method

Using the HTTP GET method:-

sites/<siteId>/members

Example request URL

https://api.alfresco.com/yourcompany.com/public/alfresco/versions/1/sites/fred-
bloggs-yourcompany-com/members

Response

• If the siteId does not exist in this network, an HTTP Not Found (status 404) is returned.

• If the request is successful an HTTP OK is returned (status 200).

Example response body

{
 "list":{
 "pagination":{
 "count":1,
 "hasMoreItems":false,
 "totalItems":-1,
 "skipCount":0,
 "maxItems":10
 },
 "entries":[
 {
 "entry":{
 "role":"SiteManager",
 "id":"fred.bloggs@yourcompany.com",
 "person":{
 "enabled":true,
 "lastName":"Bloggs",
 "location":"Somewhere",
 "avatarId":"6be34757-5764-4a4b-a86c-f5f0878b9700",
 "instantMessageId":"fred",
 "googleId":"fred@google.com",
 "id":"fred.bloggs@yourcompany.com",
 "skypeId":"fredbloggs",
 "email":"fred.bloggs@yourcompany.com",
 "description":"a person",
 "company":{
 "organization":"alfresco",
 "address1":"somewhere",
 "postcode":"fff fff",
 "telephone":"01234 456789",
 "fax":"01234 456789",
 "email":"info@yourcompany.com"
 },
 "firstName":"Fred",
 "telephone":"01234 99229922",
 "jobTitle":"Chief Bottle Washer",
 "mobile":"07777 012345"
 }
 }
]
 }

Alfresco REST API

36 Alfresco API Version 1.0

}

Get information for a member of a site

Method

Using the HTTP GET method:-

sites/<siteId>/members/<personId>

Example request URL

https://api.alfresco.com/yourcompany.com/public/alfresco/versions/1/sites/fred-
bloggs-yourcompany-com/members/fred.bloggs@yourcompany.com

Response

• If the siteId or personId do not exist in this network, an HTTP Not Found (status 404) is
returned.

• If the request is successful an HTTP OK is returned (status 200).

Example response body

 {
 "entry":{
 "role":"SiteManager",
 "id":"fred.bloggs@yourcompany.com",
 "person":{
 "enabled":true,
 "lastName":"Bloggs",
 "location":"Somewhere",
 "avatarId":"6be34757-5764-4a4b-a86c-f5f0878b9700",
 "instantMessageId":"fred",
 "googleId":"fred@google.com",
 "id":"fred.bloggs@yourcompany.com",
 "skypeId":"fredbloggs",
 "email":"fred.bloggs@yourcompany.com",
 "description":"a person",
 "company":{
 "organization":"alfresco",
 "address1":"somewhere",
 "postcode":"fff fff",
 "telephone":"01234 456789",
 "fax":"01234 456789",
 "email":"info@yourcompany.com"
 },
 "firstName":"Fred",
 "telephone":"01234 99229922",
 "jobTitle":"Chief Bottle Washer",
 "mobile":"07777 012345"
 }
 }

Create a member of a site

Method

Using the HTTP POST method:-

sites/<siteId>/members

Example request URL

https://api.alfresco.com/yourcompany.com/public/alfresco/versions/1/sites/fred-
bloggs-yourcompany-com/members

Alfresco REST API

The Alfresco API 37

POST body

Property Type JSON Type Description

id email id string The id of the person.

role enumerated type string The role for this person. Possible values are
SiteConsumer and SiteManager.

Example POST body

{
 'id': 'joe.bloggs@yourcompany.com',
 'role': 'SiteConsumer'
}

Response

• If the siteId or personId do not exist in this network, an HTTP Not Found (status 404) is
returned.

• If the request is successful a HTTP CREATED response (status 201) is returned.

Example response body

{
 "entry":{
 "id":"fred.bloggs@yourcompany.com",
 "role":"SiteConsumer"
 }
}

Update a member of a site

Method

Using the HTTP PUT method:-

sites/<siteId>/members/<personId>

Example request URL

https://api.alfresco.com/yourcompany.com/public/alfresco/versions/1/sites/fred-
bloggs-yourcompany-com/members/joe.bloggs@yourcompany.com

PUT body

Property Type JSON Type Description

role enumerated type string The new role for this person. Possible values
are SiteConsumer, SiteCollaborator, and
SiteManager.

Example PUT body

{
 'role': 'SiteManager'
}

Response

• If siteId, personId, or role do not exist an HTTP Not Found (status 404) is returned with a
Not Found.

• If the personId supplied is not a member of the site an HTTP Bad Request (status 400) is
returned with an Bad Request.

Alfresco REST API

38 Alfresco API Version 1.0

• If the request is successful an HTTP OK is returned (status 200).

Example response body

{
 "entry":{
 "id":"joe.bloggs@yourcompany.com",
 "role":"SiteManager"
 }
}

Remove a member of a site

Method

Using the HTTP DELETE method:-

sites/<siteId>/members/<personId>

A personID is always the email address that they registered with

Example request URL

https://api.alfresco.com/yourcompany.com/public/alfresco/versions/1/sites/fred-
bloggs-yourcompany-com/members/fred.bloggs@yourcompany.com/

Response

• If the siteId or personId do not exist in this network, an HTTP Not Found (status 404) is
returned.

• If the person is not a member of the site, an Bad Request (status 400) is returned.

• If the request is successful an HTTP No Content is returned (status 204), and the person's
site membership is removed.

Site membership requests

A site membership request describes a request for a person to join a site in Alfresco. There are
API calls for getting a list of a user's site membership requests, for joining a site, for modifying a
request to join a site, and for deleting a site membership request.

Site membership request object

Property Type JSON Type Description

id string string The site id.

site object object The target site.

message string string An optional message from the requester explaining
why access is being requested.

createdAt date time string The time this site membership request was made.

modifiedAt date time string The time this site membership request was
modified.

Example of a site membership request object

{
 "entry": {
 "id" : "the-secret-site",
 "createdAt" : "2012-07-20T21:46:09.659+0000",
 "modifiedAt" : "2012-07-20T21:46:09.659+0000",
 "message" : "I need this access for national security reasons!",
 "site": {

Alfresco REST API

The Alfresco API 39

 "id" : "the-secret-site",
 "guid" : "8ac18731-601b-4bb4-be1a-cd5d252cce3f",
 "title" : "The Company’s Secret Site",
 "visibility" : "MODERATED",
 "description" : "The Company’s Secret Site"
 }
 }
 }

List order

Lists of these entities are returned ordered by ascending site title.

Get a list of site membership requests

Method

Using the HTTP GET method:-

people/>personId>/site-membership-requests

Example request URL

https://api.alfresco.com/yourcompany.com/public/alfresco/versions/1/people/
fred.bloggs@yourcompany.com/site-membership-requests

Response

• If the request is successful an HTTP OK is returned (status 200).

• If the personId does not exist in this network an HTTP Not Found is returned (status 404).

• If the current user does not have permission to access the site membership requests of the
personId, an HTTP Not Found is returned (status 404).

Example response body

{
 "list" : {
 "pagination" : {
 "count" : 2,
 "hasMoreItems" : false,
 "skipCount" : 0,
 "maxItems" : 100
 },
 "entries": [{
 "entry": {
 "id" : "fred-bloggs-yourcompany-com",
 "createdAt" : "2012-07-20T21:46:09.659+0000",
 "site": {
 "id" : "fred-bloggs-yourcompany-com",
 "guid" : "9de68812-720c-5ed4-de2d-fe4a364ddb2e",
 "title" : "Fred Bloggs's Site",
 "visibility" : "MODERATED",
 "description" : "Fred Bloggs's Site"
 }
 }
 },
 {
 "entry": {
 "id" : "the-secret-site",
 "createdAt" : "2012-08-20T21:46:09.659+0000",
 "modifiedAt" : "2012-09-20T21:46:09.672+0000",
 "message" : "I need this access for national security reasons!",
 "site": {
 "id" : "the-secret-site",

Alfresco REST API

40 Alfresco API Version 1.0

 "guid" : "8ac18731-601b-4bb4-be1a-cd5d252cce3f",
 "title" : "The Company’s Secret Site",
 "visibility" : "MODERATED",
 "description" : "The Company’s Secret Site"
 }
 }
 }
]
 }
}

Join a site

Method

Using the HTTP POST method:-

people/<personId>/site-membership-requests

Example request URL

https://api.alfresco.com/yourcompany.com/public/alfresco/versions/1/people/-
me-/site-membership-requests

POST body

Property Type JSON Type Description

id string string The id of the site to be joined.

message string string An optional message describing why site
membership is being requested.

Example POST body

{
 "id" : "secret-site",
 "message" : "I need this access for national security reasons!"
}

Response

• If the request is successful an HTTP Created is returned (status 201).

• If the personId is already a member of siteId an HTTP Bad Request is returned (status
400).

• If an existing site membership request by personId for siteId exists, an HTTP Bad
Request is returned (status 400).

• If the personId does not exist in this network an HTTP Not Found is returned (status 404).

• If the siteId does not exist in this network an HTTP Not Found is returned (status 404).

• If the siteId is private an HTTP Not Found is returned (status 404).

• If the current user does not match the personId, the user does not have permission to
create this site membership request, and an HTTP Not Found is returned (status 404).

Example response body

{
 "entry" : {
 "targetGuid" : "8ac18731-601b-4bb4-be1a-cd5d252cce3f",
 "createdAt" : "2012-07-20T21:46:09.659+0000",
 "target": {
 "site" : {

Alfresco REST API

The Alfresco API 41

 "id" : "foo",
 "guid" : "8ac18731-601b-4bb4-be1a-cd5d252cce3f",
 "title" : "The Foo Site",
 "visibility" : "PRIVATE",
 "description" : "The Foo Site",
 "role" : "SiteManager"
 }
 }
 }
}

Modifying a site membership request

Method

Using the HTTP PUT method:-

people/<personId>/site-membership-requests/<siteId>

Example request URL

https://api.alfresco.com/yourcompany.com/public/alfresco/versions/1/people/-
me-/site-membership-requests/secret-site

PUT body

Property Type JSON Type Description

message string string An optional message describing why site
membership is being requested.

Example PUT body

{
 "message" : "I need this access for national security reasons!"
}

Response

• If the request is successful an HTTP Created is returned (status 200).

• If the personId does not exist in this network an HTTP Not Found is returned (status 404).

• If the siteId does not exist in this network an HTTP Not Found is returned (status 404).

• If the siteId does match a site membership request for personId, an HTTP Not Found is
returned (status 404).

• If the current user does not match the personId, the user does not have permission to
modfiy this site membership request, and an HTTP Not Found is returned (status 404).

Example response body

 {
 "entry": {
 "id" : "the-secret-site",
 "createdAt" : "2012-07-20T21:46:09.659+0000",
 "modifiedAt" : "2012-08-20T21:46:09.659+0000",
 "message" : "I need this access for national security reasons!",
 "site": {
 "id" : "the-secret-site",
 "guid" : "8ac18731-601b-4bb4-be1a-cd5d252cce3f",
 "title" : "The Company’s Secret Site",
 "visibility" : "MODERATED",
 "description" : "The Company’s Secret Site"

Alfresco REST API

42 Alfresco API Version 1.0

 }
 }
}

Delete a site membership request

Method

Using the HTTP DELETE method:-

people/<personId>/site-membership-requests/<siteId>

Example request URL

https://api.alfresco.com/yourcompany.com/public/alfresco/versions/1/people/-
me-/site-membership-requests/secret-site

Response

• If the request is successful the site membership request is removed and an HTTP No
Content (status 204) is returned.

• If the personId does not exist in this network, an HTTP Not Found (status 404) is returned.

• If the specified siteId does not exist in this network, an HTTP Not Found (status 404) is
returned.

• If the specified siteId does not does not match a site request for personId, an HTTP Not
Found (status 404) is returned.

• If the current user does not match the personID, the user making the API call does not
have sufficient permission to withdraw this site request, and an HTTP Not Found is
returned (status 404).

People

People are the users of Alfresco. A person entity describes the user as they are known to
Alfresco. There are API methods to get the sites a person is a member of, to get the the details of
a person, their favorite sites, preferences, and networks they are a member of. Methods are also
available to process activities related to a person.

Person object

Property Type JSON Type Description

enabled boolean boolean Is this person currently enabled?

lastName string string the person's last name

location string string The person's location or address

avatarId id string The id of the person's avatar

instantMessageIdstring string The person's instant message Id

googleId string string The person's Google Id

id email id string The person's personId - the email address with
which the person registered

skypeId string string The person's Skype Id

description string string The person's description

company company object An embedded company object describing the
person's company

firstName string string The person's first name

telephone string string The person's telephone number

jobTitle string string The person's job title

mobile string string The person's mobile number

Alfresco REST API

The Alfresco API 43

Example of a person object

{
 "entry" : {
 "enabled" : true,
 "lastName" : "Bloggs",
 "location" : "Somewhere",
 "avatarId" : "85d45e64-eb02-44e1-b989-dbf571ab0704",
 "instantMessageId" : "fredb",
 "googleId" : "fredb@gmail.com",
 "id" : "fred.bloggs@yourcompany.com",
 "skypeId" : "fredb",
 "email" : "fred.bloggs@yourcompany.com",
 "description" : "Been with company for n years",
 "company" : {
 "organization" : "Your Company",
 "address1" : "Some place",
 "address2" : "Somewhere",
 "postcode" : "Z99 9Z9",
 "telephone" : "01234 123456",
 "fax" : "01234 123457",
 "email" : "info@yourcompany.com"
 },
 "firstName" : "Fred",
 "telephone" : "01234 567890",
 "jobTitle" : "VP of something",
 "mobile" : "07777 567890"
 }
}

Methods

Methods for Person objects.

Get information about a person

Method

Using the HTTP GET method:-

people/<personId>

A personID is always the email address that they registered with

Example request URL

https://api.alfresco.com/yourcompany.com/public/alfresco/versions/1/people/
fred.bloggs@yourcompany.com

Response

• If the personId does not exist in this network, an HTTP Not Found (status 404) is returned.

• If the request is successful an HTTP OK is returned (status 200).

Example response body

{
 "entry":{
 "enabled":true,
 "lastName":"Bloggs",
 "location":"Someplace",
 "avatarId":"93df15f5-dee2-4bfe-8f1d-f0026d548f86",
 "instantMessageId":"fredb",
 "googleId":"fred.bloggs@gmail.com",
 "id":"fred.bloggs@yourcompany.com",

Alfresco REST API

44 Alfresco API Version 1.0

 "skypeId":"fredb",
 "description":"A generic person",
 "company":{
 "organization":"Alfresco",
 "address1":"address",
 "postcode":"post code",
 "telephone":"0123 456789",
 "fax":"0123 456789",
 "email":"enquiries@yourcompany.com"
 },
 "firstName":"Fred",
 "telephone":"0123 456777",
 "jobTitle":"VP of something",
 "mobile":"0777 456777"
 }
}

Note that the response object is an entry containing a People on page 42 entity with an
embedded company entity.

Sites

An Alfresco site is a project area where you can share content and collaborate with other site
members. There are API calls for getting a list of sites that a person is a member of, and for
getting information about a person's membership of a single site.

For more information on the site object, see Sites on page 31.

Get a list of a person's site memberships

Method

Using the HTTP GET method:-

people/<personId>/sites

A personID is always the email address that they registered with.

Example request URL

https://api.alfresco.com/yourcompany.com/public/alfresco/versions/1/people/
fred.bloggs@yourcompany.com/sites

Response

• If the personId or the siteId does not exist in this network, an HTTP Not Found (status
404) is returned.

• If the request is successful an HTTP OK is returned (status 200).

Example response body

{
 "list" : {
 "pagination" : {
 "count" : 2,
 "hasMoreItems" : false,
 "skipCount" : 0,
 "maxItems" : 100
 },
 "entries" : [{
 "entry" : {
 "site" : {
 "id" : "general-test-site",

Alfresco REST API

The Alfresco API 45

 "title" : "General Test Site",
 "visibility" : "PRIVATE",
 "description" : "Test Site"
 },
 "id" : "general-test-site",
 "role" : "SiteCollaborator"
 }
 }, {
 "entry" : {
 "site" : {
 "id" : "fred-bloggs-yourcompany-com",
 "visibility" : "PRIVATE",
 "description" : "Fred Bloggs's private home site."
 },
 "id" : "fred-bloggs-yourcompany-com",
 "role" : "SiteManager"
 }
 }]
 }
}

Note that each entry in the response list is a Members on page 34 entity with an embedded
Sites on page 31 entity.

Get information about a person's site membership

Method

Using the HTTP GET method:-

people/<personId>/sites/<siteId>

A personID is always the email address that they registered with

Example request URL

https://api.alfresco.com/yourcompany.com/public/alfresco/versions/1/people/
fred.bloggs@yourcompany.com/sites/fred-bloggs-yourcompany-com

Response

• If the siteId or personId do not exist in this network, an HTTP Not Found (status 404) is
returned.

• If the request is successful an HTTP OK is returned (status 200).

Example response body

{
 "entry" : {
 "site" : {
 "id" : "fred-bloggs-yourcompany-com",
 "title" : "Fred Bloggs's Home",
 "visibility" : "PRIVATE",
 "description" : "Fred Bloggs's private home site."
 },
 "id" : "fred-bloggs-yourcompany-com",
 "role" : "SiteManager"
 }
}

Note that the response object is an entry containing a Members on page 34 entity with an
embedded Sites on page 31 entity.

Favorite sites

The sites that a person has marked as favorite in Alfresco.

Alfresco REST API

46 Alfresco API Version 1.0

Favorite-sites object

Property Type JSON Type Description

id email id string The person's personId. The email address the
person registered with.

site Sites on page
31

object An embedded site object.

Example of a favorite-sites object

{
 "list" : {
 "pagination" : {
 "count" : 1,
 "hasMoreItems" : false,
 "totalItems" : 1,
 "skipCount" : 0,
 "maxItems" : 100
 },
 "entries" : [{
 "entry" : {
 "id" : "fred-bloggs-yourcompany-com",
 "title" : "Fred Bloggs's Home",
 "visibility" : "PRIVATE",
 "description" : "Fred Bloggs's private home site."
 }
 }]
 }
}

List order

Lists of these entities are returned ordered by ascending title.

Get a person's favorite sites

Method

Using the HTTP GET method:-

people/<personId>/favorite-sites

A personID is always the email address that they registered with.

Example request URL

https://api.alfresco.com/yourcompany.com/public/alfresco/versions/1/people/
fred.bloggs@yourcompany.com/favorite-sites

Response

• If the personId does not exist in this network, an HTTP Not Found (status 404) is returned.

• If the request is successful an HTTP OK is returned (status 200).

Example response body

{
 "list":{
 "pagination":{
 "count":1,
 "hasMoreItems":false,
 "skipCount":0,

Alfresco REST API

The Alfresco API 47

 "maxItems":100AlfrescoRESTAPITheAlfrescoAPI43
 },
 "entries":[
 {
 "entry":{
 "id":"fred-bloggs-yourcompany-com",
 "site":{
 "title":"Fred Bloggs's Home",
 "description":"Fred Bloggs's private home site.",
 "visibility":"PRIVATE",
 "id":
 "fred-bloggs-yourcompany-com"
 }
 }
 }
]
 }
}

Note that each entry in the response list is a Favorite sites on page 45 entity with an
embedded Sites on page 31 entity.

Preferences

A person's preferences in Alfresco.

Preferences object

Property Type JSON Type Description

id id string The unique preference id.

value Any JSON
primitive value

Any JSON
primitive value

The value of the preference.

Example of a preferences object

{
 "value":true,
 "id":"org.alfresco.share.sites.favourites.fred-bloggs-yourcompany-com"
}

List order

Lists of these entities are returned ordered by ascending id.

Get a person's preferences

Method

Using the HTTP GET method:-

people/<personId>/preferences

A personID is always the email address that they registered with.

Example request URL

https://api.alfresco.com/yourcompany.com/public/alfresco/versions/1/people/
fred.bloggs@yourcompany.com/preferences

Response

• If the personId does not exist in this network, an HTTP Not Found (status 404) is returned.

• If the request is successful an HTTP OK is returned (status 200).

Alfresco REST API

48 Alfresco API Version 1.0

Example response body

{
 "list" : {
 "pagination" : {
 "count" : 3,
 "hasMoreItems" : false,
 "skipCount" : 0,
 "maxItems" : 100
 },
 "entries":[
 {
 "entry":{
 "value":"4452493d-675f-42f2-9fb9-50ee97c8c5c9,b8a10d93-
b383-4127-9f36-ff0ec5f2c450",
 "id":"org.alfresco.share.documents.favourites"
 }
 },
 {
 "entry":{
 "value":true,
 "id":"org.alfresco.share.sites.favourites.fred-bloggs-
yourcompany-com"
 }
 },
 {
 "entry":{
 "value":true,
 "id":"org.alfresco.share.sites.favourites.test-site-1"
 }
 }
]
 }
}

Get a preference

Method

Using the HTTP GET method:-

people/<personId>/preferences/<preferenceId>

A personID is always the email address that they registered with.

Example request URL

https://api.alfresco.com/yourcompany.com/public/alfresco/versions/1/people/
fred.bloggs@yourcompany.com/preferences/org.alfresco.share.documents.favourites

Response

• If the personId or the preferenceId does not exist in this network, an HTTP Not Found
(status 404) is returned.

• If the request is successful an HTTP OK is returned (status 200).

Example response body

{
 "entry":{
 "value":"4452493d-675f-42f2-9fb9-50ee97c8c5c9,b8a10d93-b383-4127-9f36-
ff0ec5f2c450",
 "id":"org.alfresco.share.documents.favourites"
 }

Alfresco REST API

The Alfresco API 49

}

Networks

A network is the group of users and sites that belong to an organization. Networks are organized
by email domain. When a user signs up for an Alfresco account , their email domain becomes
their Home Network.

Network object

See Networks on page 28 for information on the network entity.

Get a specific network

Method

Using the HTTP GET method:-

people/<personId>/networks/<networkId>

A personID is always the email address that they registered with.

Example request URL

https://api.alfresco.com/yourcompany.com/public/alfresco/versions/1/people/
fred.bloggs@yourcompany.com/networks/yourcompany.com

Response

• If the personId or the networkId does not exist in this network, an HTTP Not Found (status
404) is returned.

• If the request is successful an HTTP OK is returned (status 200).

Example response body

{
 "id" : "alfresco.com",
 "createdAt" : "2012-06-07T10:22:28.000+0000",
 "quotas" : [{
 "limit" : 52428800,
 "id" : "fileUploadQuota"
 }, {
 "limit" : 5368709120,
 "usage" : 149102356,
 "id" : "fileQuota"
 }, {
 "limit" : -1,
 "usage" : 29,
 "id" : "siteCountQuota"
 }, {
 "limit" : -1,
 "usage" : 33,
 "id" : "personCountQuota"
 }, {
 "limit" : -1,
 "usage" : 15,
 "id" : "personInternalOnlyCountQuota"
 }, {
 "limit" : 0,
 "usage" : 0,
 "id" : "personNetworkAdminCountQuota"
 }],
 "paidNetwork" : false,
 "isEnabled" : true,

Alfresco REST API

50 Alfresco API Version 1.0

 "subscriptionLevel" : "Free"
 }

Get a person's networks

Method

Using the HTTP GET method:-

people/<personId>/networks

A personID is always the email address that they registered with.

Example request URL

https://api.alfresco.com/yourcompany.com/public/alfresco/versions/1/people/
fred.bloggs@yourcompany.com/networks

Response

• If the personId does not exist in this network, an HTTP Not Found (status 404) is returned.

• If the request is successful an HTTP OK is returned (status 200).

Example response body

{
 "list" : {
 "pagination" : {
 "count" : 1,
 "hasMoreItems" : false,
 "totalItems" : 1,
 "skipCount" : 0,
 "maxItems" : 100
 },
 "entries" : [{
 "entry" : {
 "id" : "yourcompany.com",
 "homeNetwork" : true,
 "network" : {
 "id" : "alfresco.com",
 "createdAt" : "2012-06-07T10:22:28.000+0000",
 "quotas" : [{
 "limit" : 52428800,
 "id" : "fileUploadQuota"
 }, {
 "limit" : 5368709120,
 "usage" : 149102356,
 "id" : "fileQuota"
 }, {
 "limit" : -1,
 "usage" : 29,
 "id" : "siteCountQuota"
 }, {
 "limit" : -1,
 "usage" : 33,
 "id" : "personCountQuota"
 }, {
 "limit" : -1,
 "usage" : 15,
 "id" : "personInternalOnlyCountQuota"
 }, {
 "limit" : 0,
 "usage" : 0,
 "id" : "personNetworkAdminCountQuota"
 }],

Alfresco REST API

The Alfresco API 51

 "paidNetwork" : false,
 "isEnabled" : true,
 "subscriptionLevel" : "Free"
 }
 }
 }]
 }
}

Activities

Activities describe any past activity in a site, for example creating an item of content, commenting
on a node, liking an item of content.

Activity object

Property Type JSON Type Description

postPersonId email id string The id of the person who performed the activity

id id string The unique id of the activity

siteId id string The unique id of the site on which the activity was
performed

postedAt Date Time string The date time at which the activity was performed

feedPersonId email id string The feed on which this activity was posted

activitySummary object object An object summarizing the activity

activityType enumerated
string

string The type of activity. The following are the possible
values:-

• org.alfresco.comments.comment-created

• org.alfresco.comments.comment-updated

• org.alfresco.comments.comment-deleted

• org.alfresco.documentlibrary.files-added

• org.alfresco.documentlibrary.files-updated

• org.alfresco.documentlibrary.files-deleted

• org.alfresco.documentlibrary.file-added

• org.alfresco.documentlibrary.file-created

• org.alfresco.documentlibrary.file-deleted

• org.alfresco.documentlibrary.file-liked

• org.alfresco.documentlibrary.inline-edit

• org.alfresco.documentlibrary.folder-liked

• org.alfresco.site.user-joined

• org.alfresco.site.user-left

• org.alfresco.site.user-role-changed

• org.alfresco.site.group-added

• org.alfresco.site.group-removed

• org.alfresco.site.group-role-changed

• org.alfresco.discussions.reply-created

• org.alfresco.subscriptions.followed

• org.alfresco.subscriptions.subscribed

Example of a network object

 "postPersonId" : "fred.bloggs@yourcompany.com",
 "id" : 554,

Alfresco REST API

52 Alfresco API Version 1.0

 "siteId" : "fred-bloggs-yourcompany-com",
 "networkId" : "yourcompany.com",
 "feedPersonId" : "fred.bloggs@yourcompany.com",
 "activitySummary" : {
 "lastName" : "Bloggs",
 "title" : "testing",
 "objectId" : "e8680e58-0701-4b64-950d-66cce277fbc7",
 "firstName" : "Fred",
 },
 "activityType" : "org.alfresco.comments.comment-deleted",
 "postedAt" : "2012-08-22T19:45:00.000+0000"

List order

Lists of these entities are returned ordered by descending postedAt.

Get activities

Use this to get a list of recent activities, optionally filtered by siteId.

Method

Using the HTTP GET method:-

people/<personId>/activities[?siteId=siteId?who=me|others]

A personID is always the email address that they registered with. The method accepts two http
parameters which can be used singly, or together to filter the results:-

siteId
The id of a specific site. Specifying this parameter filters the returned collection to include just
those activities for the specific site.

who
Specifying a value of me filters the returned collection to include just those activities for the
specified user. Specifying a value of others filters the returned collection to include just those
activities that are not for the specified user.

Example request URL

https://api.alfresco.com/yourcompany.com/public/alfresco/versions/1/people/-
me-/activities?who=me

Response

• If the personId does not exist in this network, an HTTP Not Found (status 404) is returned.

• If the request is successful an HTTP OK is returned (status 200).

Example response body

{
 "list" : {
 "pagination" : {
 "count" : 3,
 "hasMoreItems" : false,
 "skipCount" : 0,
 "maxItems" : 100
 },
 "entries" : [{
 "entry" : {
 "postPersonId" : "fred.bloggs@yourcompany.com",
 "id" : 1886,
 "siteId" : "test-test",
 "networkId" : "yourcompany.com",

Alfresco REST API

The Alfresco API 53

 "feedPersonId" : "fred.bloggs@yourcompany.com",
 "activitySummary" : {
 "lastName" : "Bloggs",
 "title" : "Fred Bloggs (ffred.bloggs@yourcompany.com)",
 "memberPersonId" : "fred.bloggs@yourcompany.com",
 "memberLastName" : "Bloggs",
 "role" : "",
 "firstName" : "Fred",
 "memberFirstName" : "Fred"
 },
 "activityType" : "org.alfresco.site.user-left",
 "postedAt" : "2012-08-22T19:45:00.000+0000"
 }
 }, {
 "entry" : {
 "postPersonId" : "ffred.bloggs@yourcompany.com",
 "id" : 1882,
 "siteId" : "test-test",
 "networkId" : "yourcompany.com",
 "feedPersonId" : "fred.bloggs@yourcompany.com",
 "activitySummary" : {
 "lastName" : "Bloggs",
 "title" : "Fred Bloggs (fred.bloggs@yourcompany.com)",
 "memberPersonId" : "ffred.bloggs@yourcompany.com",
 "memberLastName" : "Bloggs",
 "role" : "SiteConsumer",
 "firstName" : "Fred",
 "memberFirstName" : "Fred"
 },
 "activityType" : "org.alfresco.site.user-joined",
 "postedAt" : "2012-08-22T19:43:43.000+0000"
 }
 }, {
 "entry" : {
 "postPersonId" : "fred.bloggs@yourcompany.com",
 "id" : 1878,
 "siteId" : "fred-blogs-alfresco-com",
 "networkId" : "yourcompany.com",
 "feedPersonId" : "fred.bloggs@yourcompany.com",
 "activitySummary" : {
 "lastName" : "Bloggs",
 "title" : "testing",
 "objectId" : "e8680e58-0701-4b64-950d-66cce277fbc7",
 "firstName" : "Fred"
 },
 "activityType" : "org.alfresco.comments.comment-deleted",
 "postedAt" : "2012-08-22T19:24:48.000+0000"
 }
 }]
 }
}

Tags

Any item of Alfresco content can be tagged. API methods exist to return a list of tags currently
being used in a network.

Tag object

Property Type JSON Type Description

id string string The unique id of the tag

tag string string The value of the tag

Example of a tag object

Alfresco REST API

54 Alfresco API Version 1.0

{
 "id" : "ed2444b5-d0c1-440b-b5b8-34a53e578091",
 "tag" : "test tag 1"
}

Get a list of all tags

Method

Using the HTTP GET method:-

tags

Example request URL

https://api.alfresco.com/yourcompany.com/public/alfresco/versions/1/tags

Response

• If the request is successful an HTTP OK is returned (status 200).

Example response body

{
 "list" : {
 "pagination" : {
 "count" : 1,
 "hasMoreItems" : false,
 "skipCount" : 0,
 "maxItems" : 100
 },
 "entries" : [{
 "entry" : {
 "id" : "ed2444b5-d0c1-440b-b5b8-34a53e578091",
 "tag" : "test tag 1"
 }
 }]
 }
}

Update a tag

Method

Using the HTTP PUT method:-

tags/<tagId>

Example request URL

https://api.alfresco.com/yourcompany.com/public/alfresco/versions/1/
tags/159d7f5d-680f-4504-b92e-8687d9fd1e82

PUT body

Property Type JSON Type Description

tag string string The new tag value

Example PUT body

{
 "tag": "new value"

Alfresco REST API

The Alfresco API 55

}

Response

• If the tagId does not exist in this network, an HTTP Not Found (status 404) is returned.

• If the request is successful an HTTP OK response (status 200) is returned.

Example response body

{
 "entry" : {
 "id" : "159d7f5d-680f-4504-b92e-8687d9fd1e82",
 "tag" : "new value"
 }
}

Nodes

A node is an overall term for an item of content or a folder. API methods are available to work
with a node's comments, tags, and ratings.

Comments

A person can comment on folders and individual items to give other users information or notes
specific to that content. API methods exist to get a list of comments, get a specific comment, and
add a comment to a node.

Comment object

Property Type JSON Type Description

edited boolean boolean True if the comment has been edited since it was
first created

content string string The comment itself

id id string A unique opaque string id

modifiedAt Date Time string The date time that the comment was last modified

createdBy People on page
42

object An embedded People on page 42 describing the
person who created this comment

canDelete boolean boolean True if this comment can be deleted by the current
authenticated user. False if not, or if the node that is
being commented upon is either a working copy or
locked.

modifiedBy People on page
42

object An embedded People on page 42 describing the
person who last modified this comment

createdAt Date Time string The date time that the comment was created

canEdit boolean boolean True if this comment can be edited by the current
authenticated user. False if not, or if the node that is
being commented upon is either a working copy or
locked.

Example of a comment object

"edited" : false,
"content" : "<p>comment 13</p>",
"id" : "e1f349fb-79ee-4604-a563-16af8b78aa3c",
"modifiedAt" : "2012-07-20T21:46:09.659+0000",
"createdBy" : {
 "enabled" : true,

Alfresco REST API

56 Alfresco API Version 1.0

 "lastName" : "Bloggs",
 "location" : "Somewhere",
 "avatarId" : "85d45e64-eb02-44e1-b989-dbf571ab0704",
 "instantMessageId" : "fredb",
 "googleId" : "fredb@gmail.com",
 "id" : "fred.bloggs@yourcompany.com",
 "skypeId" : "fredb",
 "email" : "fred.bloggs@yourcompany.com",
 "description" : "Been with company for n years",
 "company" : {
 "organization" : "Your Company",
 "address1" : "Some place",
 "address2" : "Somewhere",
 "postcode" : "Z99 9Z9",
 "telephone" : "01234 123456",
 "fax" : "01234 123457",
 "email" : "info@yourcompany.com"
 },
 "firstName" : "Fred",
 "telephone" : "01234 567890",
 "jobTitle" : "VP of something",
 "mobile" : "07777 567890"
},
"canDelete" : true,
"modifiedBy" : {
 "enabled" : true,
 "lastName" : "Bloggs",
 "location" : "Somewhere",
 "avatarId" : "85d45e64-eb02-44e1-b989-dbf571ab0704",
 "instantMessageId" : "fredb",
 "googleId" : "fredb@gmail.com",
 "id" : "fred.bloggs@yourcompany.com",
 "skypeId" : "fredb",
 "email" : "fred.bloggs@yourcompany.com",
 "description" : "Been with company for n years",
 "company" : {
 "organization" : "Your Company",
 "address1" : "Some place",
 "address2" : "Somewhere",
 "postcode" : "Z99 9Z9",
 "telephone" : "01234 123456",
 "fax" : "01234 123457",
 "email" : "info@yourcompany.com"
 },
"createdAt" : "2012-07-20T21:46:09.659+0000",
"canEdit" : true

Get a list of a node's comments

Method

Using the HTTP GET method:-

nodes/<nodeId>/comments

Example request URL

https://api.alfresco.com/yourcompany.com/public/alfresco/versions/1/
nodes/159d7f5d-680f-4504-b9ee-8687d9fd1e82/comments

Response

• If the nodeId does not exist an HTTP Not Found is returned (status 404).

• If the nodeId exists, but does not identify a folder or a document, an HTTP Bad Request is
returned (status 400).

Alfresco REST API

The Alfresco API 57

• If the request is successful an HTTP OK is returned (status 200).

Example response body

{
{
 "list" : {
 "pagination" : {
 "count" : 2,
 "hasMoreItems" : false,
 "totalItems" : 2,
 "skipCount" : 0,
 "maxItems" : 100
 },
 "entries" : [{
 "entry" : {
 "edited" : false,
 "content" : "<p>A second test comment</p>",
 "id" : "3ae53d3f-63d6-4065-a7bf-68921a5ba08d",
 "modifiedAt" : "2012-07-30T17:05:28.617+0000",
 "createdBy" : {
 "enabled" : true,
 "lastName" : "Bloggs",
 "location" : "Somewhere",
 "avatarId" : "85d45e64-eb02-44e1-b989-dbf571ab0704",
 "instantMessageId" : "fredb",
 "googleId" : "fredb@gmail.com",
 "id" : "fred.bloggs@yourcompany.com",
 "skypeId" : "fredb",
 "email" : "fred.bloggs@yourcompany.com",
 "description" : "Been with company for n years",
 "company" : {
 "organization" : "Your Company",
 "address1" : "Some place",
 "address2" : "Somewhere",
 "postcode" : "Z99 9Z9",
 "telephone" : "01234 123456",
 "fax" : "01234 123457",
 "email" : "info@yourcompany.com"
 },
 "firstName" : "Fred",
 "telephone" : "01234 567890",
 "jobTitle" : "VP of something",
 "mobile" : "07777 567890"
 },
 "canDelete" : true,
 "modifiedBy" : {
 "enabled" : true,
 "lastName" : "Bloggs",
 "location" : "Somewhere",
 "avatarId" : "85d45e64-eb02-44e1-b989-dbf571ab0704",
 "instantMessageId" : "fredb",
 "googleId" : "fredb@gmail.com",
 "id" : "fred.bloggs@yourcompany.com",
 "skypeId" : "fredb",
 "email" : "fred.bloggs@yourcompany.com",
 "description" : "Been with company for n years",
 "company" : {
 "organization" : "Your Company",
 "address1" : "Some place",
 "address2" : "Somewhere",
 "postcode" : "Z99 9Z9",
 "telephone" : "01234 123456",
 "fax" : "01234 123457",
 "email" : "info@yourcompany.com"
 },
 "createdAt" : "2012-07-30T17:05:28.617+0000",
 "canEdit" : true

Alfresco REST API

58 Alfresco API Version 1.0

 }
 }, {
 "entry" : {
 "edited" : false,
 "content" : "<p>A test comment</p>",
 "id" : "7749ea0e-583f-4fbe-a3c0-82a604d7151a",
 "modifiedAt" : "2012-07-30T17:05:15.153+0000",
 "createdBy" : {
 "enabled" : true,
 "lastName" : "Bloggs",
 "location" : "Somewhere",
 "avatarId" : "85d45e64-eb02-44e1-b989-dbf571ab0704",
 "instantMessageId" : "fredb",
 "googleId" : "fredb@gmail.com",
 "id" : "fred.bloggs@yourcompany.com",
 "skypeId" : "fredb",
 "email" : "fred.bloggs@yourcompany.com",
 "description" : "Been with company for n years",
 "company" : {
 "organization" : "Your Company",
 "address1" : "Some place",
 "address2" : "Somewhere",
 "postcode" : "Z99 9Z9",
 "telephone" : "01234 123456",
 "fax" : "01234 123457",
 "email" : "info@yourcompany.com"
 },
 "firstName" : "Fred",
 "telephone" : "01234 567890",
 "jobTitle" : "VP of something",
 "mobile" : "07777 567890"
 },
 "canDelete" : true,
 "modifiedBy" : {
 "enabled" : true,
 "lastName" : "Bloggs",
 "location" : "Somewhere",
 "avatarId" : "85d45e64-eb02-44e1-b989-dbf571ab0704",
 "instantMessageId" : "fredb",
 "googleId" : "fredb@gmail.com",
 "id" : "fred.bloggs@yourcompany.com",
 "skypeId" : "fredb",
 "email" : "fred.bloggs@yourcompany.com",
 "description" : "Been with company for n years",
 "company" : {
 "organization" : "Your Company",
 "address1" : "Some place",
 "address2" : "Somewhere",
 "postcode" : "Z99 9Z9",
 "telephone" : "01234 123456",
 "fax" : "01234 123457",
 "email" : "info@yourcompany.com"
 },
 "createdAt" : "2012-07-30T17:05:15.153+0000",
 "canEdit" : true
 }
 }]
 }
}

Create a comment

Method

Using the HTTP POST method:-

nodes/<nodeId>/comments

Alfresco REST API

The Alfresco API 59

Example request URL
https://api.alfresco.com/yourcompany.com/public/alfresco/versions/1/
nodes/159d7f5d-680f-4504-b9ee-8687d9fd1e82/comments

POST body

Property Type JSON Type Description

content string string The comment text. Note that you can provide an
array of comments.

Example POST body

Creating a single comment:

{
 “content”: “This is a comment”
}

Creating more than one comment:

[
{
 “content”: “This is a comment”
},
{
 “content”: “This is another comment”
}
]

Response

• If the nodeId does not exist in this network, an HTTP Not Found (status 404) is returned.

• If the request is successful an HTTP CREATED response (status 201) is returned.

Example response body

Creating a single comment:

{
 "entry" : {
 "edited" : false,
 "content" : "<p>This is a comment</p>",
 "id" : "9f1618c4-84b1-4fac-9393-c3869e58ff7c",
 "modifiedAt" : "2012-07-30T17:18:48.921+0000",
 "createdBy" : {
 "enabled" : true,
 "lastName" : "Bloggs",
 "location" : "Somewhere",
 "avatarId" : "85d45e64-eb02-44e1-b989-dbf571ab0704",
 "instantMessageId" : "fredb",
 "googleId" : "fredb@gmail.com",
 "id" : "fred.bloggs@yourcompany.com",
 "skypeId" : "fredb",
 "email" : "fred.bloggs@yourcompany.com",
 "description" : "Been with company for n years",
 "company" : {
 "organization" : "Your Company",
 "address1" : "Some place",
 "address2" : "Somewhere",
 "postcode" : "Z99 9Z9",
 "telephone" : "01234 123456",
 "fax" : "01234 123457",
 "email" : "info@yourcompany.com"
 },

Alfresco REST API

60 Alfresco API Version 1.0

 "firstName" : "Fred",
 "telephone" : "01234 567890",
 "jobTitle" : "VP of something",
 "mobile" : "07777 567890"
 },
 "canDelete" : true,
 "modifiedBy" : {
 "enabled" : true,
 "lastName" : "Bloggs",
 "location" : "Somewhere",
 "avatarId" : "85d45e64-eb02-44e1-b989-dbf571ab0704",
 "instantMessageId" : "fredb",
 "googleId" : "fredb@gmail.com",
 "id" : "fred.bloggs@yourcompany.com",
 "skypeId" : "fredb",
 "email" : "fred.bloggs@yourcompany.com",
 "description" : "Been with company for n years",
 "company" : {
 "organization" : "Your Company",
 "address1" : "Some place",
 "address2" : "Somewhere",
 "postcode" : "Z99 9Z9",
 "telephone" : "01234 123456",
 "fax" : "01234 123457",
 "email" : "info@yourcompany.com"
 },
 "createdAt" : "2012-07-30T17:18:48.921+0000",
 "canEdit" : true
 }
}

Creating more than one comment:

[{
 "id" : "7ca79723-fcfb-4c64-86c5-0fe18dc3575b",
 "content" : "This is a comment",
 "createdAt" : "2012-09-16T18:20:17.841+0000",
 "createdBy" : "fred.bloggs@yourcompany.com",
 "modifiedAt" : "2012-09-16T18:20:17.841+0000",
 "modifiedBy" : "fred.bloggs@yourcompany.com",
 "edited" : false,
 "canEdit" : true,
 "canDelete" : true
}, {
 "id" : "7b2ead2f-efc7-4405-83de-b1d7ceff3f23",
 "content" : "This is another comment",
 "createdAt" : "2012-09-16T18:20:17.883+0000",
 "createdBy" : "fred.bloggs@yourcompany.com",
 "modifiedAt" : "2012-09-16T18:20:17.883+0000",
 "modifiedBy" : "fred.bloggs@yourcompany.com",
 "edited" : false,
 "canEdit" : true,
 "canDelete" : true
}]

Update a comment

Method

Using the HTTP PUT method:-

nodes/<nodeId>/comments/<commentId>

Example request URL
https://api.alfresco.com/yourcompany.com/public/alfresco/versions/1/
nodes/159d7f5d-680f-4504-b92e-8687d9fd1e82/comments/159d7f5d-680f-4524-
b9ee-8687d9221e22

Alfresco REST API

The Alfresco API 61

PUT body

Property Type JSON Type Description

content string string The new comment text

Example PUT body

{
 "content": "This is an updated comment"
}

Response

• If the nodeId or commentId does not exist in this network, an HTTP Not Found (status
404) is returned.

• If the request is successful an HTTP OK response (status 200) is returned.

Example response body

{
 "entry" : {
 "edited" : true,
 "content" : "<p>This is an updated comment</p>",
 "id" : "9f1618c4-84b1-4fac-9393-c3869e58ff7c",
 "modifiedAt" : "2012-07-31T17:18:48.921+0000",
 "createdBy" : {
 "enabled" : true,
 "lastName" : "Bloggs",
 "location" : "Somewhere",
 "avatarId" : "85d45e64-eb02-44e1-b989-dbf571ab0704",
 "instantMessageId" : "fredb",
 "googleId" : "fredb@gmail.com",
 "id" : "fred.bloggs@yourcompany.com",
 "skypeId" : "fredb",
 "email" : "fred.bloggs@yourcompany.com",
 "description" : "Been with company for n years",
 "company" : {
 "organization" : "Your Company",
 "address1" : "Some place",
 "address2" : "Somewhere",
 "postcode" : "Z99 9Z9",
 "telephone" : "01234 123456",
 "fax" : "01234 123457",
 "email" : "info@yourcompany.com"
 },
 "firstName" : "Fred",
 "telephone" : "01234 567890",
 "jobTitle" : "VP of something",
 "mobile" : "07777 567890"
 },
 "canDelete" : true,
 "modifiedBy" : {
 "enabled" : true,
 "lastName" : "Bloggs",
 "location" : "Somewhere",
 "avatarId" : "85d45e64-eb02-44e1-b989-dbf571ab0704",
 "instantMessageId" : "fredb",
 "googleId" : "fredb@gmail.com",
 "id" : "fred.bloggs@yourcompany.com",
 "skypeId" : "fredb",
 "email" : "fred.bloggs@yourcompany.com",
 "description" : "Been with company for n years",
 "company" : {
 "organization" : "Your Company",

Alfresco REST API

62 Alfresco API Version 1.0

 "address1" : "Some place",
 "address2" : "Somewhere",
 "postcode" : "Z99 9Z9",
 "telephone" : "01234 123456",
 "fax" : "01234 123457",
 "email" : "info@yourcompany.com"
 },
 "createdAt" : "2012-07-30T17:18:48.921+0000",
 "canEdit" : true
 }
}

Remove a comment

Method

Using the HTTP DELETE method:-

nodes/<nodeId>/comments/<commentId>

Example request URL

https://api.alfresco.com/yourcompany.com/public/alfresco/versions/1/
nodes/e8680e58-0701-4b64-950d-66cce277fbc7/comments/e1f349fb-79ee-4604-
a563-16af8b78aa3c

Response

• If the nodeId or commentId do not exist in this network, an HTTP Not Found (status 404)
is returned.

• If the request is successful an HTTP No Content is returned (status 204), and the
comment is removed.

Tags

Any item of Alfresco content can be tagged. API methods exist to return a list of tags for a specific
node and to add a tag to a node.

For more information on the tag entities see Tags on page 53.

Get a list a node's tags

Method

Using the HTTP GET method:-

nodes/<nodeId>/tags

Example request URL

https://api.alfresco.com/yourcompany.com/public/alfresco/versions/1/nodes/
e8680e58-0701-4b64-950d-66cce277fbc7/tags

Response

• If the nodeId does not exist an HTTP Not Found is returned (status 404).

• If the request is successful an HTTP OK is returned (status 200).

Example response body

{
 "list" : {
 "pagination" : {

Alfresco REST API

The Alfresco API 63

 "count" : 1,
 "hasMoreItems" : false,
 "totalItems" : 1,
 "skipCount" : 0,
 "maxItems" : 100
 },
 "entries" : [{
 "entry" : {
 "id" : "3ccdc60e-1853-4cc0-9d29-280a3f7d3c03",
 "tag" : "test-tag"
 }
 }]
 }
}

Create a tag

Method

Using the HTTP POST method:-

nodes/<nodeId>/tags

Example request URL

https://api.alfresco.com/yourcompany.com/public/alfresco/versions/1/
nodes/159d7f5d-680f-4504-b9ee-8687d9fd1e82/tags

POST body

Property Type JSON Type Description

tag string string The tag to be created. Note that you can provide an
array of tags.

Example POST body

Creating a single tag:

{
 "tag": "test-tag-1"
}

Creating more than one tag:

[
 {
 "tag":"test-tag-1"
 },
 {
 "tag":"test-tag-2"
 }
]

Response

• If the nodeId does not exist in this network, an HTTP Not Found (status 404) is returned.

• If the request is successful an HTTP CREATED response (status 201) is returned.

Example response body

When creating a single tag:

{
 "entry" : {

Alfresco REST API

64 Alfresco API Version 1.0

 "id" : "d4919919-2d49-4365-9f35-806914542245",
 "tag" : "test-tag-1"
 }
}

When creating than one tag, and array is returned:

[{
 "tag" : "test-tag-1",
 "id" : "bd69d53d-e104-4ac8-b2b6-d1283276d74f"
}, {
 "tag" : "test-tag-2",
 "id" : "27cbd230-0c5e-4a54-87fb-3258c70956cc"
}
]

Remove a tag

Method

Using the HTTP DELETE method:-

nodes/<nodeId>/tags/<tagId>

Example request URL

https://api.alfresco.com/yourcompany.com/public/alfresco/versions/1/tags/
e8680e58-0701-4b64-950d-66cce277fbc7/tags/3ccdc60e-1853-4cc0-9d29-280a3f7d303

Response

• If the nodeId does not exist in this network, an HTTP Not Found (status 404) is returned.

• If the request is successful an HTTP No Content is returned (status 204), and the tag is
removed from the node.

Ratings

A person can rate an item of content by liking it. They can also remove their like of an item of
content. API methods exist to get a list of ratings and to add a new rating.

Rating object

Property Type JSON Type Description

id id string The rating scheme id. Currently there are two
schemes defined, likes and fiveStar. Only the
likes scheme is used in Alfresco Cloud. .

aggregate object object An object with properties specific to the rating
scheme. For likes this will contain a single
property numberOfRatings . For fiveStar this
will contain numberOfRatings and average .

ratedAt Date Time string The date time the current authenticated user rated
the item of content.

myRating boolean or
number

boolean or
number

The value of the rating. For the likes scheme,
values are true or true. For the fiveStar
scheme, the value is an integer between one and
five inclusively.

Example of a rating object

"id":"likes",
"aggregate":{
 "numberOfRatings":1

Alfresco REST API

The Alfresco API 65

},
"ratedAt":"2012-05-25T09:08:01.846+0000",
"myRating":true

Get a node's ratings

Method

Using the HTTP GET method:-

nodes/<nodeId>/ratings

Example request URL

https://api.alfresco.com/yourcompany.com/public/alfresco/versions/1/
nodes/159d7f5d-680f-4504-b9ee-8687d9fd1e82/ratings

Response

• If the nodeId does not exist an HTTP Not Found is returned (status 404).

• If the request is successful an HTTP OK is returned (status 200).

Example response body

Note that the return object is always a list with an entry for each rating scheme id. If node has not
been rated in a scheme, then the ratedAt and myRating properties are null, and are not present
in the response object.

{
 "list" : {
 "pagination" : {
 "count" : 2,
 "hasMoreItems" : false,
 "totalItems" : 2,
 "skipCount" : 0,
 "maxItems" : 100
 },
 "entries" : [{
 "entry" : {
 "id" : "likes",
 "aggregate" : {
 "numberOfRatings" : 1
 },
 "ratedAt" : "2012-07-30T17:31:32.242+0000",
 "myRating" : true
 }
 }, {
 "entry" : {
 "id" : "fiveStar",
 "aggregate" : {
 "numberOfRatings" : 0
 }
 }
 }]
 }
}

Get a specific rating

Method

Using the HTTP GET method:-

nodes/<nodeId>/rating/rating/<ratingId>

Alfresco REST API

66 Alfresco API Version 1.0

Example request URL

https://api.alfresco.com/yourcompany.com/public/alfresco/versions/1/
nodes/159d7f5d-680f-4504-b9ee-8687d9fd1e82/rating/likes

Response

• If the nodeId does not exist an HTTP Not Found is returned (status 404).

• If the ratingId does not exist an HTTP Bad request is returned (status 400).

• If the request is successful an HTTP OK is returned (status 200).

Example response body

{
 "entry" : {
 "id" : "likes",
 "aggregate" : {
 "numberOfRatings" : 0
 }
 }
}

Remove a rating

Method

Using the HTTP DELETE method:-

nodes/<nodeId>/ratings/<ratingId>

Example request URL

https://api.alfresco.com/yourcompany.com/public/alfresco/versions/1/ratings/
e8680e58-0701-4b64-950d-66cce277fbc7/ratings/likes

Response

• If the nodeId or ratingId do not exist in this network, an HTTP Not Found (status 404) is
returned.

• If the request is successful an HTTP No Content is returned (status 204), and the rating is
removed.

Rate a node

Method

Using the HTTP POST method:-

nodes/<nodeId>/ratings

Example request URL

https://api.alfresco.com/yourcompany.com/public/alfresco/versions/1/
nodes/159d7f5d-680f-4504-b9ee-8687d9fd1e82/ratings

POST body

Property Type JSON Type Description

id enumerated type string The rating scheme type. Possible values are likes
and fiveStar.

myRating boolean or
integer

boolean or
number

The rating. The type is specific to the rating scheme,
boolean for the likes and an integer for the
fiveStar

Alfresco REST API

The Alfresco API 67

Example POST body

{
 "id": "likes",
 "myRating" : true
}

Response

• If the nodeId does not exist in this network, an HTTP Not Found (status 404) is returned.

• If the request is successful an HTTP CREATED response (status 201) is returned.

Example response body

{
 "entry" : {
 "id" : "likes",
 "aggregate" : {
 "numberOfRatings" : 1
 },
 "ratedAt" : "2012-07-30T19:07:34.975+0000",
 "myRating" : true
 }
}

Favorites

A favorite describes an Alfresco entity that a person has marked as a favorite. There are API calls
for getting a list of a user's favorites, for getting a specific favorite, for adding a favorite, and for
deleting a favorite.

Favorite object

Property Type JSON Type Description

targetGuid id string The guid of the object that is a favorite.

createdAt date time string The time the object was made a favorite.

target object object The object that is a favorite. This can currently be a
site, a folder, or a file.

Example of a favorite object

{
 "targetGuid" : "54a924c0-d437-4482-8cbc-78c2995c83ae",
 "createdAt" : "2012-07-20T21:46:09.659+0000",
 "target": {
 "file" : {
 "id" : "54a924c0-d437-4482-8cbc-78c2995c83ae",
 "guid" : "54a924c0-d437-4482-8cbc-78c2995c83ae",
 "name" : "fred.txt",
 "title" : "Fred Bloggs's Document",
 "description" : "This is Fred’s resume",
 "createdAt" : "2013-01-09T13:23:07.894-05:00",
 "modifiedAt" : "2013-01-16T15:41:35.265-05:00",
 "createdBy" : "fred.bloggs@yourcompany.com",
 "modifiedBy" : "wilma.bloggs@yourcompany.com",
 "mimeType" : "text/plain",
 "sizeInBytes" : "1024",
 "versionLabel" : "1.0"
 }
}

Alfresco REST API

68 Alfresco API Version 1.0

List order

Lists of these entities are returned ordered by ascending target/type, and then by descending
createdAt date.

Get a list of favorites

Method

Using the HTTP GET method:-

people/<personId>/favorites

Example request URL

https://api.alfresco.com/yourcompany.com/public/alfresco/versions/1/people/
fred.bloggs@yourcompany.com/favorites

Parameters

You can use the where parameter to restrict the list in the response to entries of a specific kind.
The where parameter takes a value. The value is a single predicate that may include one or more
EXISTS conditions. The EXISTS condition uses a single operand to limit the list to include entries
that include that one property. The property values are:-

• target/file

• target/folder

• target/site

For example, the following where parameter restricts the returned list to the file favorites for a
person:

where=(EXISTS(target/file))

You can specify more than one condition using OR. The predicate must be enclosed in
parentheses.

For example, the following where parameter restricts the returned list to the file and folder
favorites for a person:

where=(EXISTS(target/file OR EXISTS(target/folder))

The -me- string can be used in place of <personId> to get the favorites of the currently
authenticated user.

Response

• If the request is successful an HTTP OK is returned (status 200).

• If an invalid where parameter was specified an HTTP Bad Request is returned (status
400).

• If the personId does not exist in this network an HTTP Not Found is returned (status 404).

• If the current user does not have permission to access the favorites of the personId, an
HTTP Not Found is returned (status 404).

Example response body

{
 "list" : {
 "pagination" : {
 "count" : 3,
 "hasMoreItems" : false,
 "skipCount" : 0,

Alfresco REST API

The Alfresco API 69

 "maxItems" : 100
 },
 "entries": [
 {
 "entry": {
 "targetGuid" : "54a924c0-d437-4482-8cbc-78c2995c83ae",
 "createdAt" : "2012-07-20T21:46:09.659+0000",
 "target": {
 "file" : {
 "id" : "54a924c0-d437-4482-8cbc-78c2995c83ae",
 "guid" : "54a924c0-d437-4482-8cbc-78c2995c83ae",
 "name" : "fred.txt",
 "title" : "Fred Bloggs's Document",
 "description" : "This is Fred’s resume",
 "createdAt" : "2013-01-09T13:23:07.894-05:00",
 "modifiedAt" : "2013-01-16T15:41:35.265-05:00",
 "createdBy" : "fred.bloggs@yourcompany.com",
 "modifiedBy" : "wilma.bloggs@yourcompany.com",
 "mimeType" : "text/plain",
 "sizeInBytes" : "1024",
 "versionLabel" : "1.0"
 }
 }
 }
 },
 {
 "entry": {
 "targetGuid" : "f504ba02-d36c-49ca-8159-a53f7f6efc4f",
 "createdAt" : "2012-07-20T21:46:09.659+0000",
 "target": {
 "folder" : {
 "id" : "f504ba02-d36c-49ca-8159-a53f7f6efc4f",
 "guid" : "f504ba02-d36c-49ca-8159-a53f7f6efc4f",
 "name" : "Fred Bloggs's Folder",
 "title" : "Fred Bloggs's Folder",
 "description" : "This is Fred’s folder",
 "createdAt" : "2010-03-26T11:22:09.600+0000",
 "modifiedAt" : "2013-01-16T15:41:35.265-05:00",
 "createdBy" : "fred.bloggs@yourcompany.com",
 "modifiedBy" : "wilma.bloggs@yourcompany.com"
 }
 }
 }
 },
 {
 "entry": {
 "targetGuid" : "8ac18731-601b-4bb4-be1a-cd5d252cce3f",
 "createdAt" : "2012-07-20T21:46:09.659+0000",
 "target": {
 "site" : {
 "id" : "foo-site",
 "guid" : "8ac18731-601b-4bb4-be1a-cd5d252cce3f",
 "title" : "The Foo Site",
 "visibility" : "PRIVATE",
 "description" : "The Foo Site",
 "role" : "SiteManager"
 }
 }
 }

 }

]
 }
}

Alfresco REST API

70 Alfresco API Version 1.0

Get a favorite

Method

Using the HTTP GET method:-

people/<personId>/favorites/<targetGuid>

Example request URL

https://api.alfresco.com/yourcompany.com/public/alfresco/versions/1/people/-
me-/favorites/8ac18731-601b-4bb4-be1a-cd5d252cce3f

Response

• If the request is successful an HTTP OK is returned (status 200).

• If the personId does not exist in this network an HTTP Not Found is returned (status 404).

• If there is no favorite with the targetGuid for the personId an HTTP Not Found is returned
(status 404).

• If the current user does not have permission to access the favorites of the personId, an
HTTP Not Found is returned (status 404).

Example response body

{
 "entry" : {
 "targetGuid" : "8ac18731-601b-4bb4-be1a-cd5d252cce3f",
 "createdAt" : "2012-07-20T21:46:09.659+0000",
 "target": {
 "site" : {
 "id" : "foo",
 "guid" : "8ac18731-601b-4bb4-be1a-cd5d252cce3f",
 "title" : "The Foo Site",
 "visibility" : "PRIVATE",
 "description" : "The Foo Site",
 "role" : "SiteManager"
 }
 }
 }
}

Add a favorite

Method

Using the HTTP POST method:-

people/<personId>/favorites

Example request URL

https://api.alfresco.com/yourcompany.com/public/alfresco/versions/1/people/-
me-/favorites

POST body

Property Type JSON Type Description

target object object An object identifying the entity to be favorited. The
object consists of a single property which is an
object with name of site, file, or folder. The content
of that object is the guid of the target entity.

Alfresco REST API

The Alfresco API 71

Example POST body

{
 "target": {
 "site" : {
 "guid" : "8ac18731-601b-4bb4-be1a-cd5d252cce3f"
 }
 }
}

Response

• If the request is successful an HTTP Created is returned (status 201).

• If the target guid does not describe a site, file, or folder an HTTP Bad Request is returned
(status 400).

• If the personId does not exist in this network an HTTP Not Found is returned (status 404).

• If the target entity does not exist in this network an HTTP Not Found is returned (status
404).

• If a favorite already exists with the id of the posted does not exist in this network an HTTP
Not Found is returned (status 404).

• If an entity does exist with the id of the posted object, but is not the same type of the
posted object, an HTTP Not Found is returned (status 404).

• If the current user does not have permission to access the favorites of the personId, an
HTTP Not Found is returned (status 404).

Example response body

{
 "entry" : {
 "targetGuid" : "8ac18731-601b-4bb4-be1a-cd5d252cce3f",
 "createdAt" : "2012-07-20T21:46:09.659+0000",
 "target": {
 "site" : {
 "id" : "foo",
 "guid" : "8ac18731-601b-4bb4-be1a-cd5d252cce3f",
 "title" : "The Foo Site",
 "visibility" : "PRIVATE",
 "description" : "The Foo Site",
 "role" : "SiteManager"
 }
 }
 }
}

Delete a favorite

Method

Using the HTTP DELETE method:-

people/<personId>/favorites/<targetGuid>

Example request URL

https://api.alfresco.com/yourcompany.com/public/alfresco/versions/1/people/-
me-/favorites/8ac18731-601b-4bb4-be1a-cd5d252cce3f

Response

• If the request is successful the favorite is removed and an HTTP No Content is returned.

Alfresco REST API

72 Alfresco API Version 1.0

• If the personId does not exist in this network, an HTTP Not Found (status 404) is returned.

• If no favorite exists with the specified targetGuid, an HTTP Not Found (status 404) is
returned.

Copyright

The Alfresco API 73

Copyright

Copyright 2012 by Alfresco and others.

Information in this document is subject to change without notice. No part of this document may
be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Alfresco. The trademarks, service marks,
logos, or other intellectual property rights of Alfresco and others used in this documentation
("Trademarks") are the property of Alfresco and their respective owners. The furnishing of this
document does not give you license to these patents, trademarks, copyrights, or other intellectual
property except as expressly provided in any written agreement from Alfresco.

The United States export control laws and regulations, including the Export Administration
Regulations of the U.S. Department of Commerce, and other applicable laws and regulations
apply to this documentation which prohibit the export or re-export of content, products, services,
and technology to certain countries and persons. You agree to comply with all export laws,
regulations, and restrictions of the United States and any foreign agency or authority and assume
sole responsibility for any such unauthorized exportation.

You may not use this documentation if you are a competitor of Alfresco, except with Alfresco's
prior written consent. In addition, you may not use the documentation for purposes of evaluating
its functionality or for any other competitive purposes.

If you need technical support for this product, contact Customer Support by email at
support@alfresco.com. If you have comments or suggestions about this documentation, contact
us at documentation@alfresco.com.

This copyright applies to the current version of the licensed program.

	Contents
	The Alfresco API
	How does an application do work on behalf of a user?
	Registering your application
	Authorization
	Refreshing an access token

	Alfresco CMIS API
	Getting Started
	The domain model
	What does a request look like?
	Request URL format

	Getting the service document
	Getting information on a node
	Getting the children of a node
	Getting the contents of a document
	Updating the contents of a document

	Alfresco REST API
	Getting Started
	What is an entity?
	What does a request look like?
	Request URL format
	API method format
	Specifying the current user
	HTTP Parameters
	Pagination
	Filtering properties
	Including relations
	Filtering relations

	What does a response look like?
	Date and Time format

	Using HTTP OPTIONS to get entity metadata

	API Reference
	Networks
	Get a specific network
	Get networks for the current authenticated person

	Sites
	Methods
	Get a list of sites
	Get information for a site

	Containers
	Methods
	Get a list of containers
	Get information for a container

	Members
	Methods
	Get a list of members
	Get information for a member of a site
	Create a member of a site
	Update a member of a site
	Remove a member of a site

	Site membership requests
	Get a list of site membership requests
	Join a site
	Modifying a site membership request
	Delete a site membership request

	People
	Methods
	Get information about a person

	Sites
	Get a list of a person's site memberships
	Get information about a person's site membership

	Favorite sites
	Get a person's favorite sites

	Preferences
	Get a person's preferences
	Get a preference

	Networks
	Get a specific network
	Get a person's networks

	Activities
	Get activities

	Tags
	Get a list of all tags
	Update a tag

	Nodes
	Comments
	Get a list of a node's comments
	Create a comment
	Update a comment
	Remove a comment

	Tags
	Get a list a node's tags
	Create a tag
	Remove a tag

	Ratings
	Get a node's ratings
	Get a specific rating
	Remove a rating
	Rate a node

	Favorites
	Get a list of favorites
	Get a favorite
	Add a favorite
	Delete a favorite

	Copyright

