
M A N N I N G

Florian Müller
Jay Brown
Jeff Potts

FOREWORDS BY Richard J. Howarth
 John Newton

Dottie
Text Box
SAMPLE CHAPTER

CMIS and Apache Chemistry in Action
by Florian Müller

Jay Brown
Jeff Potts

Chapter 3

 Copyright 2013 Manning Publications

v

brief contents
PART 1 UNDERSTANDING CMIS ... 1

1 ■ Introducing CMIS 3

2 ■ Exploring the CMIS domain model 19

3 ■ Creating, updating, and deleting objects with CMIS 39

4 ■ CMIS metadata: types and properties 58

5 ■ Query 83

PART 2 HANDS-ON CMIS CLIENT DEVELOPMENT................... 115

6 ■ Meet your new project: The Blend 117

7 ■ The Blend: read and query functionality 150

8 ■ The Blend: create, update, and delete functionality 193

9 ■ Using other client libraries 235

10 ■ Building mobile apps with CMIS 277

PART 3 ADVANCED TOPICS ... 313

11 ■ CMIS bindings 315

12 ■ Security and control 339

13 ■ Performance 354

14 ■ Building a CMIS server 368

39

Creating, updating, and
deleting objects with CMIS

In the previous two chapters, you’ve learned how to access a CMIS repository as well
as the objects contained within it, but you haven’t made any changes to those
objects and you haven’t created new objects. You’ll learn how to do that in this
chapter. As in previous chapters, you’ll continue using the CMIS Workbench to run
Groovy code, but now you’ll create, update, version, and delete objects in the
repository.

This chapter covers
 Creating folders

 Creating documents with and without content

 Updating properties on objects

 Checking content into and out of the repository

 Creating versions of documents

 Deleting objects

40 CHAPTER 3 Creating, updating, and deleting objects with CMIS

3.1 Creating objects
Traversing the folder structure in the repository and reading documents and their
properties is all well and good, but at some point you’ll need to create new objects.
Let’s look at how to create the two objects you know about so far: folders and docu-
ments. You’ll learn how to create instances of other objects in the CMIS domain model
in later chapters.

3.1.1 Requirements for creating an object

At a minimum, a CMIS server will always need two pieces of information from you in
order to create a new object: the name of the object and the type of object to create.
Do you remember the list of properties common to all CMIS objects that was provided
in chapter 2? If so, you may recognize the name and object type from the list:

 cmis:name (String)—The name of this object
 cmis:objectTypeId (ID)—The opaque identifier for this object’s type

Creating a new object is a matter of calling the appropriate method and passing in
these two properties with the appropriate values.

3.1.2 Try it—create a folder

Let’s create a new folder called my first folder in the root of the InMemory Repository.
You saw in the previous chapter how to grab an instance of the root folder using
session.getRootFolder. That returns a folder object. If you look at the Javadoc for
the folder interface, you’ll see a createFolder method. In fact, you’ll see two, but
here you’ll use the one that only needs a properties map.

 To create the folder, you first need a handle to the folder that will contain the new
folder. Then you set up a properties map with the name and object type ID and pass
the properties to the createFolder method, as shown in the next listing.

def rootFolder = session.rootFolder

// create a map of properties
def props = ['cmis:objectTypeId': 'cmis:folder',

'cmis:name' : 'my first folder']

def someFolder = rootFolder.createFolder(props)

println("Folder created!")
println("id:" + someFolder.id)
println("name:" + someFolder.name)

After running this code in the Groovy Console, you should be able to flip back over to
the CMIS Workbench, refresh the root folder listing by clicking Go, and see your new
folder in the list, as shown in figure 3.1.

Listing 3.1 Creating a folder with Groovy

You saw this in chapter 2

Set up a map to
hold the properties

Add object
type and
name to
the map

Pass properties to
the createFolder
method

41Creating objects

3.1.3 Things to think about when creating folders

Creating a folder is a straightforward process. Still, we should review a few things you
might want to think about. We’ll do that in the following sections.

FOLDERS—CREATED CONTEXTUALLY

In the previous example, you saw that the createFolder method was called on the
rootFolder object. Folders are created contextually. In other words, CMIS has to know
where to create the new folder.

OBJECT TYPE

In listing 3.1, you saw that cmis:folder was used as the object type ID. Many CMIS
repositories have types that inherit from cmis:folder. These might be out-of-the-box
types or even types that you’ve defined to make the schema match your specific busi-
ness requirements. Any type that inherits from cmis:folder can be specified.

FOLDER NAME

The definition of what constitutes an allowable folder name is server-specific. It’s
usually nearly identical to what you would expect when creating folders and files in a
filesystem.

ARE YOU ALLOWED TO CREATE A FOLDER?
In listing 3.1, you didn’t check to see whether or not you were allowed to create a
folder in the root folder—you tried to create it and it worked. As you work through
the rest of this book you’ll come across several actions that may not always be possible
due to limitations of the underlying server, permissions, or the state of an object.

 You can code defensively by checking to see if you’re allowed to do something
before you do it. In this case, there’s an allowable action called CAN_CREATE_FOLDER. If
you wanted to, you could make your createFolder call conditional on the presence of
that allowable action, as follows:

if (Action.CAN_CREATE_FOLDER in
rootFolder.allowableActions.allowableActions) {
...set up the properties, create the folder, etc.

}

Figure 3.1 The new folder
shows up after you run the
createFolder code in
the Groovy console.

42 CHAPTER 3 Creating, updating, and deleting objects with CMIS

 You’ll see more examples of allowable actions later on in the book.

3.1.4 Try it—create a document

Creating documents isn’t much different from creating folders. You still need the
name and object type at a minimum.

 In this section, you’ll learn how to create documents. First you’ll create documents
that don’t have content, and then you’ll create documents using files on your local
filesystem.

 The simplest example is to create a document that doesn’t have content (a file)
associated with it. When you do that, it looks like you’re creating a folder. The only dif-
ference is the object type you’re passing in, as shown next.

def someFolder = session.getObjectByPath('/my first folder')

// create a map of properties
def props = ['cmis:objectTypeId': 'cmis:document',

'cmis:name' : 'my test doc']

def someDoc = someFolder.createDocument(props, null, null)

println("Doc created!")
println("id:" + someDoc.id)
println("name:" + someDoc.name)

Now you should be able to navigate into the folder you created earlier and see the
newly created document, as shown in figure 3.2.

 The document you created doesn’t have any content, and there are times when
you might need to create a document that includes a file. For example, a Company or
an Employee object might only have metadata associated with it and no file content. In
fact, in chapter 2 you learned that CMIS 1.1 includes a new type called cmis:item that
can be used specifically for this purpose. If you were using CMIS 1.1, you might choose
to create your Company or Employee objects as instances of cmis:item instead of
instances of cmis:document.

Listing 3.2 Creating a document that has no content looks much like creating a folder.

Create
document

in folder
you

created
earlier

Specify
‘cmis:document’
for object type ID

Pass in null as content stream to
create a document with no content;

second null is the versioning state

Figure 3.2 The newly created document sitting in the folder you created earlier

43Creating objects

If you’re developing an application that’s exclusively made up of contentless objects,
you might need to rethink your decision to use a content repository to persist your
data. More often, most of your objects will have files associated with them, so let’s see
how to create a document that includes a file.

 The key difference is that you have to create a content stream and then pass that to
the createDocument method. In listing 3.3, you can see a content stream being cre-
ated from a local file. In this example, it’s a PDF.

def someFolder = session.getObjectByPath('/my first folder')

def file = new File('/users/jpotts/Documents/sample/sample-a.pdf')

def name = file.getName()

def mimetype = 'application/pdf'

// create a map of properties
def props = ['cmis:objectTypeId': 'cmis:document',

'cmis:name' : name]

def contentStream = session.getObjectFactory().createContentStream(name,
file.size(),
mimetype,
new FileInputStream(file))

def someDoc = someFolder.createDocument(props, contentStream, null)

println("Doc created!")
println("id:" + someDoc.id)
println("name:" + someDoc.name)
println("length:" + someDoc.contentStreamLength)

If you run that code in the Groovy console, you should see the new document in the
CMIS Workbench (you may have to re-enter the folder or click Go to refresh the list).
If you click the link in the right-hand pane (see figure 3.3), you’ll launch the docu-
ment in its native application.

Listing 3.3 Creating a document with a content stream

Not all repositories support contentless document objects
Some repositories require document instances to always have a content stream.
For example, the OpenCMIS InMemory Repository and Alfresco don’t require content
streams, but SharePoint does. You can check whether or not your repository
requires documents to have a content stream by inspecting the type definition for
cmis:document.

You’ll learn about type definitions in chapter 4, but for now just know that the
cmis:document type definition has an attribute called contentStreamAllowed. If
the value of the attribute is required, then all instances of a document must have
a content stream. Of course, you could work around this by creating a content stream
with an empty string.

Set path to point
to sample file

Hardcode
mimetype

Instantiate a
ContentStream

Pass properties and
contentStream to

createDocument method

44 CHAPTER 3 Creating, updating, and deleting objects with CMIS

You might be looking at listing 3.3 and thinking, “That seems like a lot of work just to
add a file to the repository,” and you’re absolutely right. There is a shorter way to do
it. The CMIS Workbench ships with a set of helper scripts that can be accessed from
the Groovy console. The helper scripts include a function called createDocument-
FromFile, which does the work of figuring out the mimetype, setting up the proper-
ties, establishing a contentStream, and creating the document. The result, shown
next, is much more succinct.

cmis = new scripts.CMIS(session)

def someFolder = session.getObjectByPath('/my first folder')

def file = new File('/users/jpotts/Documents/sample/sample-b.pdf')

def someDoc = cmis.createDocumentFromFile(someFolder,
file,
"cmis:document",
null)

println("Doc created!")
println("id:" + someDoc.id)
println("name:" + someDoc.name)
println("length:" + someDoc.contentStreamLength)

Either way, the result is the same—the document object is created and the local file is
uploaded to the repository and set as the content stream on the document object.

 Now you know how to create folders and documents, both with and without con-
tent. If you stopped here, you could do quite a lot. Got a fileshare full of contracts and
legal documents? You could write a script to bulk load those into your company’s ECM
repository. Or how about an imaging application to feed scanned invoices into the
repository (which then might trigger an approval workflow if your repository supports
it). That’s some decent process automation, and the beauty is that it works regardless
of the repository you have now or decide to switch to at some point in the future,
because you’re coding against an industry-standard API.

Listing 3.4 Creating a document from a file by using the CMIS helper scripts

Figure 3.3 After creating a document that has a content stream, you can click
the content URL to open the file.

Load CMIS helper scriptsUse a file
with different

name from
before—

InMemory
server

requires
objects in

same folder
to be

uniquely
named

Set up
properties,
mimetype, and
contentStream,
and create
document with a
single call

45Creating objects

3.1.5 Things to think about when creating documents

There are a few things you may want to keep in mind when creating documents.

COPYING DOCUMENTS

It’s possible to create new document objects using objects that already exist in the
repository. The document object has a method called copy that takes a target folder as
its only argument. If you want to copy sample-b.pdf to another folder called target
folder, the code would look like the following.

def someDoc = session.getObjectByPath("/my first folder/sample-b.pdf")

def targetFolder = session.getObjectByPath("/target folder")

def copiedDoc = someDoc.copy(targetFolder)

Notice that the copy method doesn’t give you the opportunity to make any changes on
the source object, including the name. If you need to do that, use createDocument-
FromSource instead.

What other CMIS helper scripts are available?
You saw how the CMIS helper scripts distributed with the CMIS Workbench can make
your Groovy code more succinct. What other shortcuts are available? If you take a
look at the source code for the CMIS Workbench, you’ll find the Groovy file that
defines the CMIS helper scripts in /src/main/resources/scripts/CMIS.groovy. Con-
sult that file for the full list.

These are a few you might be interested in:

 getObject(id),getFolder(id), getDocument(id)—Retrieve a CMIS object,
folder, or document given its object ID.

 printProperties(id),printChildren(id),printRelationships(id),
printRenditions(id), printObjectSummary(id)—Dump information about
the object for the ID specified to the console.

 createFolder(), createTextDocument(), createRelationship()—Short-
cut methods for creating documents, folders, and relationships. See the code
for the method signatures.

 download(id, destination)—Downloads the file associated with the docu-
ment represented by the specified ID to the specified destination.

These helper scripts will only work with your code running in the Groovy console. They
aren’t part of the OpenCMIS API.

Grab a
reference to
the document
to copy ...

 ... and the folder to copy
it to (this code assumes
the folder exists).

Execute
the copy.

46 CHAPTER 3 Creating, updating, and deleting objects with CMIS

ONLY WORKS WITH THE WEB SERVICES BINDING In CMIS version 1.0, create-
DocumentFromSource isn’t supported by the AtomPub binding—it only works
when using the Web Services binding. The copy method relies on create-
DocumentFromSource. Unfortunately, this is one of the differences that exist
between the two bindings. You’ll learn more about bindings later in the book.
If you can’t wait to try out the Web Services binding, click the Connection
button, select the Web Services binding, and specify http://localhost:8080/
chemistry/services/DiscoveryService as the service URL.

IS A PARENT FOLDER ALWAYS REQUIRED?
In the examples you’ve seen so far, you’ve been calling the createDocument method
on the folder object where the document is to be stored. But some ECM repositories
support the notion of unfiled documents. These documents are free-floating—they
don’t live in a folder. To figure out whether or not your repository supports unfiled
documents, you can query its capabilities, as follows:

session.repositoryInfo.capabilities.unfilingSupported

If this returns true and you need to create an unfiled document object, use the create-
Document method on session instead of folder and pass in null as the folder ID.

ARE YOU ALLOWED?
As you saw earlier when creating folder objects, the repository might not always allow
you to create a new document. Similar to Action.CAN_CREATE_FOLDER, you can check
the folder’s allowable actions for Action.CAN_CREATE_DOCUMENT before attempting to
create a document. Here’s an example:

if (Action.CAN_CREATE_DOCUMENT in
someFolder.allowableActions.allowableActions) {
...set up the properties, create the folder, etc.

}

Now that you know how to create objects, it’s time to learn how to make changes to
them after they’ve been created. That’s where we’re headed next.

3.2 Updating objects
Some content-centric applications are used only for archival purposes—they never
need to change the documents once they’re stored in the repository. Most often,
though, your content application will need to make updates to objects in the repository.

 In the previous section, you saw that a document object has both metadata and a
content stream. When updating objects, you can update only the properties, only the
content, or both.

 Let’s look at examples of both of these types of updates. In the first example, you’ll
see how to change the name of one of the sample documents you created earlier. In
the second, you’ll see how to update the content stream.

47Updating objects

3.2.1 Try it—rename a document or a folder

The name of an object is stored in a property called cmis:name. To rename an object,
all you have to do is provide a new value for that property. Let’s change the name of
sample-a.pdf to sample-c.pdf. If you no longer have a document called sample-a.pdf,
no problem. You should be able to use what you learned in the previous section to cre-
ate one using code, or you can create one using the CMIS Workbench.

 Recall from section 3.1.4 that one of the things you provided when creating a doc-
ument was a properties map. To change the name of a document, you’ll provide a
map of the properties you want to update, and then call updateProperties, as shown
in the next listing.

def someDoc = session.getObjectByPath("/my first folder/sample-a.pdf")

println("Before: " + someDoc.name)

def props = ['cmis:name': 'sample-c.pdf']

someDoc.updateProperties(props, true)

println("After: " + someDoc.name)

That’s it. Now you know how to rename a document. You can use this approach to
change any property value.

GET DEFENSIVE Just like in the earlier creation examples, you can add a
defensive check (Action.CAN_UPDATE_PROPERTIES) before doing the update
if you want to. Defensive checks of the allowable actions allow you to not only
head off error messages before they are thrown, but also to adapt the user
interface based on what the server will allow. Hiding invalid choices from
users is a good usability practice.

3.2.2 Try it—update the content stream

You’ve renamed the PDF sample-a.pdf to sample-c.pdf. But if you open the file associ-
ated with that document, it’s still sample-a content, as shown in figure 3.4.

Listing 3.5 Renaming a document by updating its cmis:name property

Setting refresh to true
refreshes the object so
updated values are in
object instance

Figure 3.4 You renamed the sample-a.pdf document to sample-c.pdf, but it
still contains the original file content.

48 CHAPTER 3 Creating, updating, and deleting objects with CMIS

You can fix that by updating the content stream with a file from the local filesystem
called sample-c.pdf.

 This works much like creating a document. You need to set up a content stream
and then call setContentStream on an existing document. This is shown in the fol-
lowing listing.

def someDoc = session.getObjectByPath("/my first folder/sample-c.pdf")

def file = new File('/users/jpotts/Documents/sample/sample-c.pdf')

def name = file.getName()

def mimetype = 'application/pdf'

def contentStream = session.getObjectFactory().createContentStream(name,
file.size(),
mimetype,
new FileInputStream(file))

someDoc.setContentStream(contentStream, true, true)

println("Name: " + someDoc.name)
println("Length: " + someDoc.contentStreamLength)

When you update the content stream, the first flag tells the method to overwrite the
existing stream. If the document already has a content stream set, this must be set to
true. The second flag tells it to refresh the object, which is the same concept you saw
when updating the properties.

 Now when you open the PDF associated with sample-c.pdf, it will contain the con-
tent from the sample-c.pdf file, as shown in figure 3.5.

 Excellent. You can now change the content stream on a document when you need
to update its content.

 There’s an important caveat related to setting content streams. Different ECM
repositories have different rules concerning when content streams can be updated. If
you look at your repository’s capabilities, you’ll see that the InMemory Repository
allows content stream updates any time (as shown in figure 3.6).

Listing 3.6 Updating the content stream of a document with a local file

Grab existing
document

Set up
contentStream

Update
content
stream

Figure 3.5 The sample-c.pdf document now contains the content from
the local file named sample-c.pdf.

49Updating objects

You can also perform this check through code, as follows:

session.repositoryInfo.capabilities.contentStreamUpdatesCapability

The other two possible values for the content stream updates capability are none and
pwconly. none means what you think it means: once you set the content stream, you
can never update it. Yikes! pwc refers to the Private Working Copy, and it has to do
with versioning, which you’ll learn about in the next section. For now, know that when
a repository supports content stream updates to the PWC only, it means that to make a
change to the content stream, you’ll have to do a checkout on the document first,
which returns a PWC. Then you can update the PWC and do a check-in to commit the
change.

 Now you know how to determine if and when, generally speaking, content streams
can be updated in your repository. To check whether a specific content stream can be
updated, inspect the allowable actions on the document. You’ve seen multiple exam-
ples of this, so it should be very familiar to you now. The allowable action you’re look-
ing for is called CAN_SET_CONTENT_STREAM, and a conditional check would look
something like the following:

Figure 3.6 Some repositories don’t always allow content stream updates, but the InMemory
Repository allows them at any time.

50 CHAPTER 3 Creating, updating, and deleting objects with CMIS

if (Action.CAN_SET_CONTENT_STREAM in
someDoc.allowableActions.allowableActions) {
//...update the content stream

}

You can now create and update documents in your content repository, which is great.
 Now suppose you’re a developer in a law firm. Using what you know so far, you

could develop an application to help the firm’s attorneys collaboratively author con-
tracts. You can imagine that a given contract might go through several iterations
before it’s final. These are lawyers, after all. Inevitably, one of them is going to want to
undo a change (or multiple changes). Setting the content stream directly, like you’ve
been doing in this section, overwrites the file content—there’s no history, so the law-
yers wouldn’t be able to go back to an earlier version. Wouldn’t it be nice if you could
maintain older versions?

 You can, and that’s the subject of the next section.

3.2.3 Understanding versioning

Have you ever seen a file with a name something like potts_contract_v2_jtp_jb_fm_
legal_final_signed.pdf?

 This may seem like an extreme example, but it’s quite common. What’s going on
here is that multiple people are reviewing, updating, and approving the document.
The people involved in the process are attempting to keep track of the different ver-
sions of the document by adding things to the name of the file, like a version number
(v2), or their initials (jtp), or the fact that this is the final round of edits for this docu-
ment. It’s symptomatic of the fact that a plain filesystem isn’t rich enough to help you
track the multiple rounds of edits that documents and other digital assets go through
during routine business processes.

 A CMIS repository that supports versioning fixes this problem. Documents go
through their normal business process, and as they’re revised, the repository main-
tains a version history, as shown in figure 3.7.

 Users can revert back to previous versions at any time. Now the document’s name
can stay simple and descriptive, because the repository is keeping track of the version
history.

 Before we try a versioning example, let’s
talk about the mechanics of creating a ver-
sion and some of the terminology that goes
with it. Going back to the law firm example,
suppose rather than one lawyer working on a
contract, there’s a full legal team. If the legal
team is working on the contract, and the con-
tract lives in the CMIS repository, how would
you make sure that two lawyers don’t edit the
contract simultaneously? This problem is

potts_contract.pdf1.0

potts_contract.pdf1.1

potts_contract.pdf1.2

potts_contract.pdf2.0

Ti
m

e

Figure 3.7 CMIS repositories can keep
track of versions so you don’t have to.

51Updating objects

handled with checkout and check-in. Before making a change, the lawyer does a
checkout on the contract. When it’s checked out, no other members of the legal team
can make changes. When the changes are made, the lawyer does a check-in. Now it’s
available to others to make their changes.

 When you check out a document, you create a private working copy (PWC). As the
name suggests, this is a copy of the document that only the person performing the
checkout can change. It only exists as long as the document is checked out. Once the
document is checked in, the PWC is no longer needed. Figure 3.8 shows a series of
checkouts and check-ins happening over time, resulting in the version history you saw
previously.

 Now refer to figure 3.9. Notice that each version in the version history is identified
with a number. This is called the version label. Also notice that the version labels follow
a dot syntax and that there’s a gap between 1.2 and 2.0. Version labels that are not
whole numbers (like “1.2”) are said to be minor versions, whereas version numbers that
are whole numbers (like “2.0”) are called major versions. When you check in a docu-
ment, you can tell CMIS whether you’re checking in a minor version or a major ver-
sion. The decision is usually business-specific. Typically, documents that contain a
small number of changes are checked in as minor versions, whereas more significant
changes are checked in as major versions. The most recent version in a version history
is called the latest version.

Ti
m

e

potts_contract.pdf 1.0

potts_contract.pdf 1.1

potts_contract.pdf 1.2

potts_contract.pdf 2.0

potts_contract.pdf (PWC)

Checkout

Check-in

potts_contract.pdf (PWC)

Checkout

Check-in

potts_contract.pdf (PWC)
Checkout

Check-in

Figure 3.8 Checkouts
create PWCs that are edited
and then checked in to
create new versions.

52 CHAPTER 3 Creating, updating, and deleting objects with CMIS

You may be curious as to why the PWCs in figure 3.8 don’t have version labels. That’s
because a PWC isn’t a version. It’s a special kind of object that only exists while the
object is checked out, so it doesn’t have a version label.

 Now that you know how useful versioning can be and the terminology that goes
with it, it’s time to jump back into the CMIS Workbench and learn how to create ver-
sions in Groovy.

3.2.4 Try it—upload a new version of a document

The best way to understand how versions work is to try it yourself. In this section,
you’ll create a new document that you can then check out, modify, and check back in.
We’ll break this into three separate scripts that you’ll run from the Groovy console in
the CMIS Workbench as you’ve done in previous examples. First, you’ll write a script
to create the initial version of a document, then one to check out the document, and
finally one to check in a new version of the document.

CREATE A NEW DOCUMENT

This listing shows how to create the initial version of the document.

import org.apache.chemistry.opencmis.commons.enums.*

cmis = new scripts.CMIS(session)

def someFolder = session.getObjectByPath('/my first folder')

def f = new File('/users/jpotts/Documents/sample/potts_contract.docx')

def someDoc = cmis.createDocumentFromFile(someFolder,
f,
"cmisbook:officeDocument",
VersioningState.MAJOR)

println("Doc created!")
println("Id:" + someDoc.id)
println("Name:" + someDoc.name)
println("Length:" + someDoc.contentStreamLength)
println("Version:" + someDoc.versionLabel)
println("Is Latest?" + someDoc.latestVersion)
println("Is Major?" + someDoc.majorVersion)

Listing 3.7 Creating the initial version of a document

potts_contract.pdf Major version 1.0

potts_contract.pdf Minor version 1.1

potts_contract.pdf Minor version 1.2

potts_contract.pdf Latest version, major version 2.0

Ti
m

e
Figure 3.9 Major versions
are whole numbers; minor
versions are fractions. The
latest version is the most
recent version in the history.

Specify any
sample
document
that you can
edit.

Specify a
versionable
type.

The
VersioningState.

MAJOR argument
tells CMIS to

create this
version as a

major version.

The version label, latest version
flag, and major version flag return
information about the version.

53Updating objects

You may have noticed that we used a custom type called cmisbook:officeDocument
in the createInitialVersion.groovy script. In the OpenCMIS InMemory Reposi-
tory, cmis:document isn't versionable by default. In the InMemory Repository bundled
with this book, we’ve included a versionable type called cmisbook:officeDocument, so
we’re using that. If you’re building OpenCMIS from source, you can use
VersionableType, which is a versionable type shipped with that repository.

CHECK OUT AND DOWNLOAD THE DOCUMENT

Now you have an initial version of a document stored in the repository. It’s time to
check it out and download the Private Working Copy locally.

YOU MUST AUTHENTICATE TO PERFORM A CHECKOUT The OpenCMIS InMemory
Repository doesn’t require authentication, but if you don’t provide a username
and password, the server won’t let you perform a checkout. If you haven’t done
so already, go back to the connection dialog box and provide a username and
password before you run the checkout code. Any values will work.

Listing 3.8 shows how to do the checkout. It’s one method call. Once the document is
checked out, you can use the cmis.download shortcut script to download the file to
the local machine.

cmis = new scripts.CMIS(session)

def someDoc = session.
getObjectByPath('/my first folder/potts_contract.docx')

def pwcId = someDoc.checkOut()

println("Is checked out?" + someDoc.versionSeriesCheckedOut)
println("PWC ID:" + pwcId)

cmis.download(pwcId,

'/users/jpotts/Desktop/potts_contract.docx')

Make sure the target directory exists before you run this example, or you may end up
with a checked-out file that doesn’t exist locally. If this happens to you, use the CMIS
Workbench to cancel the checkout of the document, which is an action on the
Actions tab.

 After running this example, the document in the repository will be checked out and
a copy of the document will be placed on the local filesystem in the path specified.

MODIFY THE LOCAL FILE AND CHECK IT IN
The document in the repository is now checked out—that will keep others from mak-
ing changes to it while you’ve got the PWC downloaded to your machine. You don’t
have to modify the file, of course, but in real life you probably wouldn’t check it in
unless it had been modified.

 The next listing shows how to check in the modified local file as a new version.

Listing 3.8 Checking out the document and downloading it from the repository

Call checkOut
method, which
returns object ID
of the PWC

CMIS helper
includes
download method
that downloads

54 CHAPTER 3 Creating, updating, and deleting objects with CMIS

def someDoc = session.
getObjectByPath("/my first folder/potts_contract.docx")

println("id:" + someDoc.id)
println("name:" + someDoc.name)

if (!someDoc.latestVersion) {
someDoc = someDoc.getObjectOfLatestVersion(false)

}

println("Version:" + someDoc.versionLabel)
println("Is Major?" + someDoc.majorVersion)

def pwcId
if (someDoc.versionSeriesCheckedOut) {

pwcId = someDoc.versionSeriesCheckedOutId
} else {

pwcId = someDoc.checkOut()
someDoc.refresh()

}
def pwc = session.getObject(pwcId)

println("Checked out?" + someDoc.versionSeriesCheckedOut)
println("Checked out by:" +

someDoc.versionSeriesCheckedOutBy)

def file = new File('/users/jpotts/Desktop/potts_contract.docx')

def name = file.getName()

def mimetype = someDoc.contentStreamMimeType

def contentStream = session.getObjectFactory().createContentStream(name,
file.size(),
mimetype,
new FileInputStream(file))

def newDocId = pwc.checkIn(false,
null,
contentStream,
"Made a minor change")

println("Checked in new version")

def newDoc = session.getObject(newDocId)
newDoc.refresh()
println("Version:" + newDoc.versionLabel)
println("Is Latest?" + newDoc.latestVersion)
println("Is Major?" + newDoc.majorVersion)

In the preceding example, you pass a value of false to the checkIn method to indi-
cate that the document should be checked in as a minor version. The check-in com-
ment summarizes what’s changed.

 After running this code, you should be able to use the CMIS Workbench to see that
the version has been incremented. If you click the content URL, you should see that
the file contains the new version of the content.

Listing 3.9 Checking in a modified local file as a new version

Check makes sure
you’re working with
the latest version

versionSeriesCheckedOutId
property returns object ID
of the PWC

Otherwise, document
wasn’t checked out, so
example won’t work

Dumps the name
of the person

who checked out
the document

File being
opened is the

locally
modified

document
that will be

checked in as
new version

Pass in null for properties
map because no properties
are being changed

55Deleting objects

CMIS 1.1: BATCH UPDATES All of the updates shown in this section have been
against one object at a time. If you’re processing a large list of objects, this
results in more network traffic than you would probably like. New in CMIS 1.1
is the ability to perform bulk updates of properties. The new bulkUpdate-
Properties method takes an array of object IDs to update, as well as a map of
properties to set on every object in the list. The method returns a list of object
IDs that were successfully updated.

3.3 Deleting objects
You now know how to create and update objects in the repository. At some point,
you’ll need to know how to delete objects. Let’s cover some requirements for deleting
objects, and then you can try it yourself. After that we’ll discuss some special consider-
ations to think about when deleting objects.

3.3.1 Requirements for deleting objects

It’s quite easy to delete an object from the repository—you call the object’s delete
method. If the object’s allowable actions include CAN_DELETE_OBJECT, the call should
succeed and the object will be deleted. The only decision you need to make is whether
you want to delete all versions of the object or only the version you call the delete
method on.

DELETED OBJECTS CAN’T BE RETRIEVED Once you delete an object, that object is
gone. You can’t get it back. Some repositories have the notion of soft deletes,
and there are systems, like many source code repositories, that allow you to
revert or undo a delete. But there is nothing in the CMIS specification that
provides for this type of functionality. Even in CMIS repositories that support
versioning, if you delete a specific version of an object, it’s gone forever. So be
careful with that delete method.

Deleting documents differs slightly from deleting folders. Let’s delete the contract
you created in the previous section, and then delete the folder it was sitting in.

3.3.2 Try it—delete an object

In section 3.2.4, you probably created a file called potts_contract.docx. If you didn’t,
and you want to work through this example, create a test document—it doesn’t matter
what it is because it isn’t going to be around for long. The next listing shows how to
delete it.

import org.apache.chemistry.opencmis.commons.enums.*
import org.apache.chemistry.opencmis.

commons.exceptions.CmisObjectNotFoundException;

def targetPath = "/my first folder/potts_contract.docx"
def someDoc
try {

Listing 3.10 Deleting a document

56 CHAPTER 3 Creating, updating, and deleting objects with CMIS

someDoc = session.
getObjectByPath(targetPath)

} catch (CmisObjectNotFoundException confe) {
println("Could not find document to delete: " + targetPath)
return

}

println("id:" + someDoc.id)
println("name:" + someDoc.name)

if (!someDoc.latestVersion) {
someDoc = someDoc.getObjectOfLatestVersion(false)

}

someDoc.delete(true)

If you go into the CMIS Workbench and refresh the folder, you should see that your
document is no longer in the repository.

 Now let’s delete the folder. If you’ve been following along, the folder named my
first folder isn’t yet empty. Like the document class, folder has a delete method. But if
you call delete on a non-empty folder, you’ll get an exception. If you want to delete a
folder and all of its descendents, call deleteTree instead of delete, as shown in this
listing.

import org.apache.chemistry.opencmis.commons.enums.*
import org.apache.chemistry.opencmis.

commons.exceptions.CmisObjectNotFoundException;

def targetPath = "/my first folder"
def someFolder
try {

someFolder = session.
getObjectByPath(targetPath)

} catch (CmisObjectNotFoundException confe) {
println("Could not find folder to delete: " + targetPath)
return

}

//someFolder.delete(true)
someFolder.deleteTree(true, UnfileObject.DELETE, true)

println("Deleted folder")

Note that when you call deleteTree, you must decide whether or not to delete all ver-
sions. You must also tell CMIS whether to delete or unfile the objects in the tree, if
unfiling is supported by the repository. The last argument passed to deleteTree indi-
cates what should happen if a failure occurs. In the preceding code, you pass in true

Listing 3.11 Deleting a folder

Throws
exception if

you try to get
an object by

path and that
object

doesn’t exist

Passes in true to delete
all versions of the
document, not only this
specific version

The delete method won’t
work, in this case, because
the folder isn’t empty.

Instead, deleteTree
will delete the
folder and all of its
descendents.

57Summary

so that if one object in the tree fails to get deleted, the delete operation continues
with the rest of the objects in the tree.

 After running this code, my first folder and everything in it will be completely
removed from the repository.

3.3.3 Things to think about when deleting objects

We should mention a few things you might want to think about when deciding how to
handle deletes in your CMIS application. We’ve already talked about delete versus
deleteTree when deleting folders, and the fact that you can delete either specific ver-
sions of an object or every version. Let’s look at two other points.

DELETE VERSUS UNFILE

Repositories that support unfiling will allow you to unfile rather than delete an object,
if that’s what you want to do. If you want to unfile a document, use the removeFrom-
Folder method instead of the delete method.

 Once a document is unfiled, you can’t navigate to it through the folder structure
because it no longer lives in a folder. The document can be retrieved by its object ID,
or by search, or, if you’re using the AtomPub binding, by asking the repository for its
unfiled documents collection.

DELETING THE CONTENT STREAM

You may want the object to stick around but to get rid of the content that’s associated
with the object. In that case you don’t have to delete the entire object—you can delete
only the content stream by calling deleteContentStream on the document object.

3.4 Summary
We’ve covered a lot of ground in this chapter. You can now create new folders and
documents, with or without content. You also saw a few different ways to update docu-
ments. You can update them in place by updating properties or the content stream
directly. But if you do that, the version history will be lost. One way to address that
problem is to check out documents before checking them back in as new versions.
This also prevents others from making changes to the same document at the same
time.

 Last, we talked about deletes. You learned that when folders are deleted, you can
either delete only the folder, if it’s empty, or you can delete the folder as well as all of
its descendents by using deleteTree instead of delete. When deleting an object with
a version history, you can delete every version of the object or you can delete objects
individually. For some repositories, you can choose to unfile an object to remove it
from a folder instead of deleting it completely.

 You can automate a lot of document processing in your organization, armed with
what you’ve learned in this chapter. But so far you’ve only worked with generic types:
folder and document. In reality, you’ll likely want to work with types that are specific
to your business requirements. Diving deeper into types, properties, and other
advanced metadata topics is the subject of the next chapter.

Müller ● Brown ● Potts

C
ontent Management Interoperability Services (CMIS) is an
OASIS standard for accessing content management systems.
It specifi es a vendor- and language-neutral way to interact

with any compliant content repository. Apache Chemistry
provides complete reference implementations of the CMIS
standard with robust APIs for developers writing tools,
applications, and servers.

Th is book is a comprehensive guide to the CMIS standard
and related ECM concepts. In it, you’ll fi nd clear teaching and
instantly useful examples for building content-centric client and
server-side applications that run against any CMIS-compliant
repository. In fact, using the CMIS Workbench and the In-
Memory Repository from Apache Chemistry, you’ll have run-
ning code talking to a real CMIS server by the end of chapter 1.

What’s Inside
● Th e only CMIS book endorsed by OASIS
● Complete coverage of the CMIS 1.0 and 1.1 specifi cations
● Cookbook-style tutorials and real-world examples

Th is book requires some familiarity with content management
systems and a standard programming language like Java or C#.
No exposure to CMIS or Apache Chemistry is assumed.

Florian Müller, Jay Brown, and Jeff Potts are among the original
authors, contributors, and leaders of Apache Chemistry and the
OASIS CMIS specifi cation. Th ey continue to shape CMIS imple-
mentations at Alfresco, IBM, and SAP.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

manning.com/CMISandApacheChemistryinAction

$59.99 / Can $62.99 [INCLUDING eBOOK]

CMIS and Apache Chemistry IN ACTION

CONTENT MANAGEMENT/OPEN SOURCE

M A N N I N G

“Th e most complete,
authoritative work on

 CMIS you will fi nd.”
—From the Foreword by Richard J.

Howarth, IBM Soft ware Group

“Illustrates the breadth and
 possibilities of CMIS.”—From the Foreword by

John Newton, Alfresco and AIIM

“An excellent, in-depth
introduction to CMIS from

 the authors of the standard.”—Gregor Zurowski, Sotheby’s

“A thoughtful, thorough,
and entertaining

discussion about using
CMIS in practice. ”—Ryan McVeigh, Zia Consulting

SEE INSERT

