
M A N N I N G

Florian Müller
Jay Brown
Jeff Potts

FOREWORDS BY Richard J. Howarth
 John Newton

Dottie
Text Box
SAMPLE CHAPTER

CMIS and Apache Chemistry in Action
by Florian Müller

Jay Brown
Jeff Potts

Chapter 1

 Copyright 2013 Manning Publications

v

brief contents
PART 1 UNDERSTANDING CMIS ... 1

1 ■ Introducing CMIS 3

2 ■ Exploring the CMIS domain model 19

3 ■ Creating, updating, and deleting objects with CMIS 39

4 ■ CMIS metadata: types and properties 58

5 ■ Query 83

PART 2 HANDS-ON CMIS CLIENT DEVELOPMENT................... 115

6 ■ Meet your new project: The Blend 117

7 ■ The Blend: read and query functionality 150

8 ■ The Blend: create, update, and delete functionality 193

9 ■ Using other client libraries 235

10 ■ Building mobile apps with CMIS 277

PART 3 ADVANCED TOPICS ... 313

11 ■ CMIS bindings 315

12 ■ Security and control 339

13 ■ Performance 354

14 ■ Building a CMIS server 368

3

Introducing CMIS

This chapter introduces the Content Management Interoperability Services (CMIS)
standard. After running through a high-level overview of the standard and learning
why it’s important, you’ll work on a simple hands-on example. By the end of the
chapter, you’ll have a reference server implementation running on your local
machine and you’ll know how to use Groovy to work with objects stored in a CMIS
server by using a handy tool from Apache Chemistry called CMIS Workbench.

1.1 What is CMIS?
We’re willing to bet that at some point in your career you’ve written more than a
few applications that used a relational database for data persistence. And we’ll fur-
ther wager that if any of those were written after, say, 1992, you probably weren’t
too concerned with which relational database your application was using. Sure, you

This chapter covers
 Presenting the CMIS standard

 Setting up your development environment

 Taking your first CMIS steps using Groovy and the CMIS
Workbench

 Understanding possible limitations before using CMIS for
your project

4 CHAPTER 1 Introducing CMIS

might have a preference, and the company using your application might have a stan-
dard database, but unless you were doing something out of the ordinary, it didn’t mat-
ter much.

 This database agnosticism on the part of developers is only possible because of the
standardization of SQL. Before that happened, applications were written for a specific
relational back end. Switching databases meant porting the code, which, at best, was a
costly exercise and, at worst, might be completely impractical. Before standardization,
developers had to write applications for a specific database, as shown in figure 1.1.

 This notion of writing applications that only work with a particular database seems
odd to modern-day developers who are used to tools like ODBC and JDBC that can
abstract away the details of a particular database implementation. But that’s the way it
was. And that’s the way it still is for many developers working in the world of content
management.

 Until recently, developers writing applications that needed to use Enterprise Con-
tent Management (ECM) systems for data persistence faced the same challenge as
those pre-SQL-standardization folks: Each ECM system had its own API. A software ven-
dor with expertise in accounts payable systems, for example, and a team of .NET devel-
opers were locked into a Microsoft-based repository. If a customer came along who
loved the vendor’s solution but didn’t want to run Microsoft, they had a tough choice
to make.

 That’s where CMIS comes in.
 CMIS is a vendor-neutral, language-independent specification for working with

ECM systems (sometimes called rich content repositories or more loosely, unstructured
repositories). If you’re new to the term repository (or repo, for short), think of it as a place
where data—mostly files, in this case—lives, like a file cabinet.

Before 1992

Compatible
databases

Incompatible databases
(all others)

Compatible databases
(ANSI-92 compliant)

Incompatible databases

Application

Some DB’s proprietary
query language

Application

Standardized SQL

Some
DB

After 1992

Figure 1.1 Before SQL
standardization,
developers wrote
applications against
specific databases.

5What is CMIS?

With CMIS, developers can create solutions that will work with multiple repositories,
as shown in figure 1.2. And customers can have less vendor lock-in and lower switch-
ing costs.

 The creation of the CMIS specification and its broad adoption is almost as signifi-
cant and game-changing to the content management industry as SQL standardization
and the adoption of that standard was to the relational database world. When enter-
prises choose repositories that are CMIS-compliant, they reap the following benefits.

 Content-centric applications, either custom built or bought off the shelf, are more
independent of the underlying repository because they can access repositories in a
standard way instead of through proprietary APIs. This reduces development costs and
lowers switching costs.

 Developers can ramp up quickly because they don’t have to learn a new API every
time they encounter a new type of repository. Once developers learn CMIS, they know
how to perform most of the fundamental operations they’ll need for a significant
number of industry-leading, CMIS-compliant repositories.

 Because CMIS is language-neutral, developers aren’t stuck with a particular plat-
form, language, or framework driven by the repository they happen to be using.
Instead, developers have the freedom to choose what makes the most sense for their
particular set of constraints.

 Enterprise applications can be more easily and cheaply integrated with content
repositories. Rather than developing expensive, one-off integrations, many enterprise
applications have CMIS connectors that allow them to store files in any CMIS-compliant
repository.

 OK, you’re convinced. CMIS is kind of a big deal in the Enterprise Content Man-
agement world. Let’s talk a little bit about how the CMIS specification is defined, look
at an example of what you could use CMIS to do, and see a list of places where CMIS
exists in the wild.

Before CMIS

Compatible
repositories

Incompatible repositories
(all others)

Compatible repositories
(CMIS-compliant)

Incompatible repositories

Application

Some repository’s proprietary
query language

Application

Some
repo

Some
repo

After CMIS

Figure 1.2 CMIS
standardizes the way
applications work with
rich content
repositories in much the
same way SQL did for
relational databases.

6 CHAPTER 1 Introducing CMIS

1.1.1 About the specification

CMIS is a standard, and the explanation of the standard is called a specification. The
CMIS specification describes the data model, services, and bindings (how a specific
wire protocol is hooked up to the services) that all CMIS-compliant servers must sup-
port. You’ll become intimately familiar with the data model, services, and bindings as
you work through the rest of this book.

 The CMIS specification is maintained using a collaborative, open process managed
by the Organization for the Advancement of Structured Information Standards
(OASIS). According to its website (www.oasis-open.org), “OASIS is a non-profit consor-
tium that drives the development, convergence, and adoption of open standards for
the global information society.” Using an organization like OASIS to manage the CMIS
specification ensures that anyone who’s interested can get involved in the specifica-
tion, either as an observer or as an active voting member.

 The group of people who work on the specification is called the Technical Committee
or TC, for short. What’s great is that the CMIS TC isn’t made up of only one or two
companies or individuals but is composed of more than 100 people from a wide range
of backgrounds and industries, including representation from the who’s who of con-
tent management vendors, large and small.

1.1.2 What does CMIS do?

OK, so CMIS is an open standard for working with content repositories. But what does
it do? Well, the standard doesn’t do anything. To make it interesting, you need an
implementation. More specifically, you need a CMIS-compliant server. When a content
repository is CMIS-compliant, that means that it provides a set of standard services for
working with the objects in that repository. You’ll explore each of those services in the
coming chapters, but the set includes things like creating documents and folders,
searching for objects using queries, navigating a repository, setting permissions, and
creating new versions of documents.

 Let’s discuss a real-world example. Suppose you work for a company whose content
lives in three different repositories: SharePoint, FileNet, and Alfresco. The sales team
comes to you and asks for a system that will build PowerPoint presentations on the fly
by pulling data from each of these repositories. The PowerPoint presentations need to
be based on a template that resides in SharePoint and will include, among other
things, images of the last three invoices. The invoice images reside in FileNet. The
final PowerPoint file is stored in Alfresco and accessed by the sales team using their
tablets. A high-level overview of this application is shown in figure 1.3.

 Before CMIS, your system would have to use at least three different APIs to make
this happen. With CMIS, your system can use a single API to talk to each of the three
repositories, including the mobile application.

7What is CMIS?

API call
(.NET)

Template Invoice images

Presentation builder application (Python)

Customer
presentation

API call
(SOAP)

API call
(REST)

API call
(C/Java)

Presentation builder
mobile app

SharePoint FileNet Alfresco

Figure 1.3 Most companies store
content in multiple ECM repositories.
Content-centric applications either
have to use multiple disparate APIs, or
take advantage of CMIS’s ability to
use each repository in a standard way.

Three different ECM systems in the same organization?
You may be wondering how real-world this example is—three ECM systems in the
same organization? In fact, it happens quite often. According to AIIM, the Association
for Information and Image Management, which is a major ECM industry organization,
“72% of larger organizations have three or more ECM, Document Management, or
Records Management systems” and “25% have five or more” (“State of the ECM
Industry,” AIIM, 2011).

How does a company find itself in this situation? It happens for many reasons. Some-
times these systems start out as departmental solutions. In large organizations
where there may not be an enterprise-wide ECM strategy, multiple departments
may—knowingly or unknowingly—implement different systems because they feel
their requirements are unique, they have timelines that don’t allow for coordination
with other departments, or any number of other reasons.

Similarly, companies often bring in multiple systems because they may fill niche
requirements (like digital asset management or records management) and one ven-
dor may be perceived as offering a better fit for those highly specific requirements.
But ECM vendors, particularly large ones, often use their niche solution as a foot in
the door—it’s a common strategy for ECM vendors with “suites” of products to sub-
sequently expand their footprint from their original niche solution to other product
offerings.

As each department or niche implementation sees success, the rollouts broaden
until what once were small, self-contained solutions may grow to house critical con-
tent for entire divisions. Once each ECM system has gotten so big, the business own-
ers are reluctant to consolidate because the risk may not justify the benefit. After all,
the business owners are happy—their requirements are being met.

As a result, it’s common to walk into a company with many different ECM systems.
If this is a problem you deal with, we hope the techniques you learn in this book will
save you time, money, and frustration.

8 CHAPTER 1 Introducing CMIS

1.1.3 Where is CMIS being adopted?

Standards that no one implements aren’t useful. So far, CMIS has avoided this fate.
Thanks to the early involvement of a number of large ECM vendors in developing the
specification, and the specification’s language neutrality, CMIS enjoys broad adoption.
If you’re currently using an ECM repository that’s updated to a fairly recent version, it’s
likely to be CMIS-compliant. Table 1.1 shows a list of common ECM vendors or open
source projects and when they started to support CMIS. This list is only a subset of the
CMIS-compliant servers available at the time of this writing. The CMIS page on Wikipe-
dia (http://en.wikipedia.org/wiki/Content_Management_Interoperability_Services)
contains a more exhaustive list. If you don’t see your favorite content server in the list,
ask your vendor.

As the previous table illustrates, a variety of CMIS-compliant servers are available. CMIS
gives you a single API that will work across all of these servers.

Table 1.1 Selection of ECM vendors, or open source projects, and their support for CMIS

Vendor Product
Release that first provided

CMIS 1.0 support

Alfresco Software Alfresco 3.3

Alfresco Software Alfresco Cloud March 2012

Apache Chemistry InMemory Repository 0.1

Apache Chemistry FileShare Repository 0.1

EMC Documentum 6.7

HP Autonomy Interwoven Worksite 8.5

IBM FileNet Content Manager 5.0

IBM Content Manager 8.4.3

IBM Content Manager On Demand 9.0

KnowledgeTree KnowledgeTree 3.7

Magnolia CMS 4.5

Microsoft SharePoint Server 2010

Nuxeo Platform 5.5

OpenText OpenText ECM ECM Suite 2010

SAP SAP NetWeaver Cloud Document Service July 2012

http://en.wikipedia.org/wiki/Content_Management_Interoperability_Services

9Setting up a CMIS test environment

1.2 Setting up a CMIS test environment
Alright, time to roll up your sleeves and set up a working CMIS development environ-
ment that you can take advantage of as you work through the rest of this book.

 We’ll give you a proper introduction to Apache Chemistry in part 2 of the book.
For now, it’s important to know that Apache Chemistry is a project at the Apache Soft-
ware Foundation that groups together a number of CMIS-related subprojects, includ-
ing client libraries, server frameworks, and development tools. It’s the de facto
standard reference implementation of the CMIS specification. One of the Apache
Chemistry subprojects is called OpenCMIS, and it’s made up of multiple components.
For the rest of this chapter, you’ll use two of those components: the OpenCMIS
InMemory Repository and the CMIS Workbench.

 The OpenCMIS InMemory Repository, as the name suggests, is a CMIS-compliant
repository that runs entirely in memory. It’s limited in what it can do, but it’ll serve
our needs quite nicely.

 The CMIS Workbench is a Java Swing application that we’ll use as a CMIS client to
work with objects in the CMIS server. The CMIS Workbench was created using the
OpenCMIS API and is typically used by developers who want a view into a CMIS reposi-
tory that is based purely on the CMIS specification. For example, suppose you’re work-
ing with Microsoft SharePoint, which has a variety of
ways to create, query, update, and delete content that
resides within it, and you want to integrate your
application with SharePoint using CMIS. You could
use the CMIS Workbench to test some queries or
inspect the data model. If you want to know if you
can do something purely through CMIS, one test is to
try to do it through the CMIS Workbench. If the CMIS
Workbench can do it, you know you’ll be able to do it
as part of your integration.

 One of the key features of the CMIS Workbench,
from both a “developer utility” perspective and a
“let’s learn about CMIS” perspective, is its interactive
Groovy console. The Groovy console is perfect for
taking your first steps with CMIS.

 When you’re finished setting up your environ-
ment, it’ll look like figure 1.4.

 We’ve made it easy to set up your local CMIS
development environment. Everything you need is in
the zip file that accompanies this book (see appendix
E for links to resources). Let’s unzip the components
you’ll need for the rest of part 1.

OpenCMIS
Workbench

Apache Tomcat Server

Desktop

Your computer

HTTP

OpenCMIS
InMemory

Repo

Figure 1.4 Your local CMIS
development setup includes two
components: the CMIS Workbench
and the OpenCMIS InMemory
Repository. This is all you’ll need for
the examples in part 1 of this book.

10 CHAPTER 1 Introducing CMIS

1.2.1 Requirements

For the rest of part 1, all you need is the CMIS Workbench and the OpenCMIS
InMemory Repository. These components both need a JDK (version 1.6 or higher will
do). Other than that, everything you need is in the zip.

 Before continuing, find a place to unzip the archive that accompanies this book.
We’ll call it $BOOK_HOME. Within $BOOK_HOME, create two directories: server and
workbench.

1.2.2 Installing the OpenCMIS InMemory Repository web application

Let’s install and start up the OpenCMIS InMemory Repository:

1 Change into the $BOOK_HOME/server directory and unzip inmemory-cmis-
server-pack.zip into the directory.

2 Run ./run.sh or run.bat, depending on your platform of choice.

This will start up InMemory Repository on your machine, and it will listen for connec-
tions on port 8081. If you’re already running something on port 8081, edit run.sh (or
run.bat) and change the port number. All of the directions in the book will assume
the InMemory repository is running on port 8081.

 After the server starts up, you should be able to point your browser to http://
localhost:8081/inmemory and see something that looks like figure 1.5.

 Now you have a working CMIS server running on your machine. The CMIS server
has some test data in it, but in order to work with it, you need a CMIS client. In part 1,
you’ll use a CMIS client that’s already been built. It’s a Java Swing desktop application
called CMIS Workbench. Setting it up is the subject of the next section.

Downloading and building your own CMIS tools
To save you time and make the setup easier, we’ve taken distributions from the
Apache Chemistry project and packaged them together with some sample configura-
tion and data that will be used throughout the book. When you’re ready to learn how
to download out-of-the-box versions of these components, or you want to know how
to build them from source, or you want to get the latest and greatest release of
OpenCMIS, refer to appendix A.

Figure 1.5 Apache Chemistry OpenCMIS InMemory Repository welcome page

11Setting up a CMIS test environment

1.2.3 Installing the CMIS Workbench

The CMIS Workbench is distributed as a standalone Java Swing application. Everything
you need to run it is in the package included with the book. To install it, follow these
steps:

1 Open a new window and switch to the $BOOK_HOME/workbench directory.
2 Unzip cmis-workbench.zip into the directory.
3 Run the appropriate batch file for your operating system. For example,

on Windows, run workbench.bat. On Mac and Unix/Linux systems,
run workbench.sh.

The Workbench will start up, and you should see an empty login dialog box, like the
one in shown in figure 1.6.

 Congratulations! You now have everything you need to explore a working CMIS
implementation.

Figure 1.6 An empty CMIS Workbench login dialog box

12 CHAPTER 1 Introducing CMIS

1.3 Writing your first CMIS code using Groovy
Your OpenCMIS InMemory Repository is running, and so is the first CMIS client you’ll
be working with, the CMIS Workbench. It’s time to get the two to work together.

1.3.1 Connecting to the repository

To talk to the OpenCMIS InMemory Repository, you need to choose a binding and you
need to know the server’s service URL, which depends on the binding you choose, as
you can see in figure 1.7.

 The binding is the method the CMIS client will use to talk to the server. You can
also think of it as the protocol it’ll use to communicate. In CMIS version 1.0, the two
choices for binding are Atom Publishing Protocol (AtomPub) and Web Services. CMIS
version 1.1 adds a third binding called the Browser binding. We’ll go through the
binding details in chapter 11. For now, we’ll use the AtomPub binding.

 The service URL is the entry point into the server. The CMIS client will learn all it
needs to know about the server it’s talking to by invoking the service URL and inspect-
ing the response it gets back. The service URL depends on the server you’re using, the
binding you’ve chosen, and how the server is deployed. In this case, the server is
deployed to a web application under the inmemory context, so the URL will begin
with http://localhost:8081/inmemory; and the AtomPub service URL is /atom, so the
full service URL is http://localhost:8081/inmemory/atom.

Figure 1.7 To connect to the repository, you must select a binding and specify the service URL.

13Writing your first CMIS code using Groovy

THE CMIS WORKBENCH CAN CONNECT TO ANY CMIS SERVER We’re using the
Apache Chemistry InMemory Repository throughout this book because it’s
freely available, easy to install, and compliant with the CMIS specification. But,
as the name implies, it stores all of its data in memory. That would never work
for most production scenarios. Real ECM repositories persist their data to a
more durable and scalable back end. Typically this is some combination of a
relational database and a filesystem. If you have access to an ECM repository
like Alfresco, FileNet, SharePoint, or the like, you can use the CMIS Work-
bench to work with data stored in those repositories. All you need to know is
your repository’s service URL.

1.3.2 Try it—browse the repository using the CMIS Workbench

You now know enough to be able to connect to the server. Follow these steps to use
the CMIS Workbench to connect to the server and browse the repository:

1 If the CMIS Workbench isn’t running, run it as previously discussed.
2 If the CMIS Workbench isn’t displaying the login dialog box, click Connection

in the upper-left corner.
3 Specify http://localhost:8081/inmemory/atom as the URL.
4 Take all the other defaults. Click Load Repositories.
5 The InMemory Repository only has one repository. You should see it in the

Repositories list. Click Login.

If everything is working correctly, you should see the login dialog box close and the
Workbench will display the contents of the repository, as shown in figure 1.8.

 Take a few minutes to explore the Workbench. You can’t hurt anything. Every time
you restart the InMemory Repository, it’ll revert to its original state.

Figure 1.8 Root folder of the OpenCMIS InMemory Repository

14 CHAPTER 1 Introducing CMIS

 Here are a few things to notice as you explore:

 As you click objects in the left-hand pane, the right-hand pane updates to pro-
vide details on what’s selected.

 The right-hand pane has tabs across the top that group different sets of infor-
mation about the selected object as well as actions you can take on the selected
object.

 The items in the menu bar let you do things like change the connection details,
inspect repository information, view the types defined on the server, and open a
Groovy console. That’s where we’re headed next.

1.3.3 Try it—run CMIS code in the CMIS Workbench Groovy console

Groovy is a dynamic language that’s easy for Java programmers to learn. It can run
anywhere Java can run. It’s different from Java in a few respects, such as the fact that
semicolons are optional in most cases, closures are supported, and regular expres-
sions are natively supported.

DON’T KNOW GROOVY? NO PROBLEM! Don’t worry if you don’t know Groovy.
We picked it for the examples in part 1 of this book because it’s easy to learn,
it looks similar to Java, it doesn’t require a compiler, and the CMIS Work-
bench features a Groovy console. You’ll probably easily grok what’s going on
as you work through the examples. But if you want to dive into Groovy, you
can learn more from the Groovy home page (http://groovy.codehaus.org/)
or from Groovy in Action, Second Edition (Manning, 2013).

The best way to get a feel for Groovy is to jump right in, so let’s do that. Follow these
steps to write a Groovy script that will display the repository’s name:

1 From the CMIS Workbench, click Console, and select Main Template in the
submenu.

2 A Groovy console window will be displayed with eight or nine lines of prepopu-
lated code. Delete those lines.

3 Add the following two lines of Groovy:
def info = session.getRepositoryInfo()
println "Repository Name: " + info.getName()

4 Click the Execute Groovy Script button, which is the little document with the
green arrow.

Your code should run without a hitch. The output of the program will be displayed in
the bottom half of the Groovy console. It should look something like figure 1.9.

 Let’s look at a few important things:

 You didn’t have to import anything.
 You didn’t have to retrieve a session. It was handed to you in a variable called

session that was already defined. The session variable represents a connec-
tion to the CMIS repository for the user you provided when you launched the

http://groovy.codehaus.org/

15Writing your first CMIS code using Groovy

Workbench. The object is an instance of org.apache.chemistry.opencmis
.client.runtime.SessionImpl.

 You could have omitted the “get” and the parenthesis from the no-argument
getters. For example, you could have said session.repositoryInfo and
info.name.

 Any time you feel you need some help with the API, you can click CMIS >
OpenCMIS Client API Javadoc, and the documentation will open in a browser
window.

 When you first click Console in the CMIS Workbench, you’ll see a list of Groovy
script templates. You the choose - Main Template - and then replace it with your
own code. When you have a chance, you might want to take a look at some of
the other sample Groovy scripts that are provided.

And that’s it. You’ve written your first CMIS code. We sense some disappointment,
though. “I don’t feel like I’ve experienced the true power of CMIS yet,” you say. OK,
overachiever. Earlier you learned that one of the beauties of CMIS is that, as a devel-
oper, once you learn CMIS you should be able to write code that works with any CMIS-
compliant repository. You’ve demonstrated your ability to use the OpenCMIS
InMemory Repository. How about an enterprise-grade repository from a completely
different vendor?

 It so happens that publicly available CMIS servers are waiting for folks like you who
are testing client libraries or exploring CMIS. One of them is run by a company called
Alfresco Software; its AtomPub service URL is http://cmis.alfresco.com/cmisatom.
Unlike the InMemory Repository, you’ll need credentials to authenticate with
Alfresco. You can use the administrator’s account, which is admin, and the password is
also admin. Fair warning: the response time will be significantly slower than what you
see with the local InMemory Repository.

Figure 1.9 Groovy console after
running code to retrieve the CMIS
server name

http://cmis.alfresco.com/cmisatom

16 CHAPTER 1 Introducing CMIS

SAVE YOUR SCRIPT To save some typing, do a File > Save on your current
Groovy script before clicking Connect to specify the Alfresco service URL and
credentials. Then, when you open the Groovy console, you can do a File >
Open to reopen your script.

Now you know how to install a reference CMIS server and a handy CMIS client. You’ve
had a glimpse of the power of CMIS as you used the same client to talk to two different
implementations.

1.4 CMIS considerations
In the next chapter, you’ll start to dive into the CMIS specification a little more deeply.
But before doing that, let’s discuss a few of the limitations of CMIS and how it com-
pares to other content management standards. This will help you decide if CMIS
might be right for your next project.

1.4.1 Understanding the limitations of CMIS

Like any industry-wide standard, CMIS has some limitations that may affect your ability
to use it for a particular project. Whether or not these limitations affect you depends
on your specific requirements.

LIMITED IN SCOPE

Enterprise Content Management systems vary broadly in their capabilities and func-
tionality. Some of the differences are significant, such as whether or not the system
has an embedded workflow engine, and others are minor, like whether or not the sys-
tem supports access control lists (ACLs). The CMIS specification is flexible enough to
accommodate differences between implementations: A repository doesn’t have to
support ACLs and can still be CMIS-compliant, for example. Or one repository might
support “unfiled” documents, but another might require that documents always live
in a folder.

 In cases where the differences between repositories are too significant to be cov-
ered by one standard definition of a repository, CMIS omits those areas from its scope.
Workflow is one example—you won’t see anything about workflow in this book, even
though workflow is a relatively common feature of ECM systems.

 As a developer, you may be able to meet all of the requirements of your application
by staying strictly with pure CMIS API calls. But there may be times when you’ll have to
supplement what CMIS provides with calls to your ECM system’s proprietary APIs.

OBJECT MODEL IS BASED ON DOCUMENTS AND FOLDERS

In the next chapter, you’ll see that two prominent domain objects covered by the spec-
ification are cmis:document and cmis:folder. That’s because the CMIS specification
assumes a general document management use case: you’re using CMIS to manage doc-
uments (files) organized in a hierarchy of folders.

17CMIS considerations

NO USER OR GROUP MANAGEMENT

A CMIS repository typically uses named user accounts to control who can authenticate
with the repository. But the CMIS specification provides nothing that helps you create
user accounts or organize users into groups.

 Does this mean your application can’t assign ACLs to documents and folders? No.
It means that if your application needs to create new users or modify groups of users,
CMIS isn’t going to help you to do that in a standard way. You’ll have to use your repos-
itory’s API or an LDAP directory to manage users and groups, if that’s something your
repository supports.

NO SUPPORT FOR DEFINING CONTENT TYPES UNTIL CMIS 1.1
You’ll learn about content types in chapter 4. For now, realize that content in a CMIS
repository belongs to a particular type, like document, folder, image, invoice, or web
page. It’s quite common for companies to define their own business-specific content
types by updating the repository’s data dictionary.

 The first version of the CMIS specification doesn’t provide for creating or updating
content types, even if the underlying repository supports this feature natively. This
may be a challenge if your application assumes that the types it needs are already con-
figured in the repository’s data dictionary. If they don’t already exist, you’ll have to
provide documentation or configuration scripts when you deliver your CMIS applica-
tion so that the system administrators can update the data dictionary with types to sup-
port your application.

 Luckily, this is addressed in CMIS 1.1. With CMIS 1.1, your CMIS application can
check to see if the required types have been configured, and if not, it can go ahead and
create them using code, to avoid the need for manual changes to the data dictionary.

1.4.2 Comparing CMIS to the Java Content Repository (JCR) API

If you’ve worked with content management repositories for a while, you may already
be familiar with the Java Content Repository (JCR) API, which is sometimes referred to
as Java Specification Request (JSR) 170. What’s the difference between CMIS and JCR?
Table 1.2 breaks it down.

Table 1.2 Comparing CMIS and JCR

JCR CMIS

Standards body Java Community Process OASIS

Date first ratified June 2005 April 2010

Vendor adoption Limited. Several vendors provide
JCR support in their repositories,
but Adobe is the primary driver of
the specification.

Many big-name ECM vendors
actively participate in the specifi-
cation and reference implementa-
tion, including EMC, IBM, Alfresco,
SAP, HP Autonomy Interwoven, Ora-
cle, Microsoft, and several others.

18 CHAPTER 1 Introducing CMIS

It’s important to note that CMIS and JCR aren’t completely mutually exclusive. A given
ECM repository might be compliant with both standards, which would mean develop-
ers would be free to choose which standard to use when working with that repository.
Work has also been completed recently to bridge the two standards. You could, for
example, write CMIS-compliant code that talks to a JCR repository.

1.5 Summary
You should now have a good idea of why the CMIS specification is so important to the
ECM industry. After seeing some real-world examples of how you can apply CMIS to
make your life easier as a content-centric application developer, you’ve probably
already started thinking about some of the advantages of working with CMIS to build
your applications:

 Content-centric applications can be more independent of the underlying con-
tent repository because they can access repositories in a standard way instead of
through proprietary APIs.

 Developers can ramp up quickly because CMIS reduces the need to learn a pro-
prietary API for every repository that’s involved in an application.

 Developers have the freedom to choose what platform, language, or framework
is the best fit for their particular constraints, without worrying whether or not
it’s supported by the repository they’re working with, because CMIS is language-
neutral.

 Expensive one-off integrations don’t have to be built—applications can take
advantage of standards-based connectors to CMIS-compliant repositories.

Beyond learning the why of CMIS, you rolled up your sleeves and put CMIS to work. You
now have a working CMIS development environment based on freely available compo-
nents from the Apache Chemistry project. You’ll use this setup for the rest of the
examples in part 1.

 Now that you have a working development environment, it’s time to start learning
how to navigate a CMIS repository and what kind of objects you’ll find in a CMIS repos-
itory once you connect to it. We’ll start with two of the fundamental building blocks—
folders and documents. On to chapter 2.

Primary language Java, although work is being done
to expand support to PHP.

Language-neutral. Any language
that can speak HTTP can work with
CMIS.

Reference implementation Apache Jackrabbit Apache Chemistry

Table 1.2 Comparing CMIS and JCR (continued)

JCR CMIS

Müller ● Brown ● Potts

C
ontent Management Interoperability Services (CMIS) is an
OASIS standard for accessing content management systems.
It specifi es a vendor- and language-neutral way to interact

with any compliant content repository. Apache Chemistry
provides complete reference implementations of the CMIS
standard with robust APIs for developers writing tools,
applications, and servers.

Th is book is a comprehensive guide to the CMIS standard
and related ECM concepts. In it, you’ll fi nd clear teaching and
instantly useful examples for building content-centric client and
server-side applications that run against any CMIS-compliant
repository. In fact, using the CMIS Workbench and the In-
Memory Repository from Apache Chemistry, you’ll have run-
ning code talking to a real CMIS server by the end of chapter 1.

What’s Inside
● Th e only CMIS book endorsed by OASIS
● Complete coverage of the CMIS 1.0 and 1.1 specifi cations
● Cookbook-style tutorials and real-world examples

Th is book requires some familiarity with content management
systems and a standard programming language like Java or C#.
No exposure to CMIS or Apache Chemistry is assumed.

Florian Müller, Jay Brown, and Jeff Potts are among the original
authors, contributors, and leaders of Apache Chemistry and the
OASIS CMIS specifi cation. Th ey continue to shape CMIS imple-
mentations at Alfresco, IBM, and SAP.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

manning.com/CMISandApacheChemistryinAction

$59.99 / Can $62.99 [INCLUDING eBOOK]

CMIS and Apache Chemistry IN ACTION

CONTENT MANAGEMENT/OPEN SOURCE

M A N N I N G

“Th e most complete,
authoritative work on

 CMIS you will fi nd.”
—From the Foreword by Richard J.

Howarth, IBM Soft ware Group

“Illustrates the breadth and
 possibilities of CMIS.”—From the Foreword by

John Newton, Alfresco and AIIM

“An excellent, in-depth
introduction to CMIS from

 the authors of the standard.”—Gregor Zurowski, Sotheby’s

“A thoughtful, thorough,
and entertaining

discussion about using
CMIS in practice. ”—Ryan McVeigh, Zia Consulting

SEE INSERT

