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1 INTRODUCTION

1.1 Context of the project

This proof of concept aims to prove how big data techniques can be applied in the
research domain and to demonstrate the policy benefits that big data can bring.

Specifically, this proof of concept demonstrates the use of text mining techniques on
large amounts of unstructured research papers as a means to identify trending topics in
the health research field. This analysis can be used as an additional input prior to
launching calls for grants.

1.2 Objective

The purpose of this document is to describe the processes carried out during the
modelling phase of the CRISP-DM methodology. In this phase, segmentation
algorithms are used in order to create homogeneous segments and heterogeneous
segments among them.

oy
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2 MODELLING

2.1 Introduction

The publications within the scope of the analysis come from two different data sources:
PubMed and CORDIS.

Due to the amount of papers to be analysed and the specific language used in the text,
text-mining algorithms must be applied to perform the analysis.

There are several topic-discovery algorithms based on different points of view.
Algorithms called "correlated topic models" will be used for this PoC. The first step of
the modelling consists of identifying the best-fitting algorithm for the purpose of the
analysis.

. Topic proportions and
Topics Documents assignments
gene 6.84
atte ool Seeking Life’s Bare (Genetic) Necessities
aw L;_-u- SERIN HI‘\"“.‘ NEw Yous— ave vor all dlw far ogpen” pecialh
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_—
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Way B2 PR TN ST AN AT TRt DI
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Association algorithms can be used for simpler problems, where categories are not as
well defined. Is such cases, there are common keywords in several segments and
there are segments which do not have a representative sample to make the topic-
discovery algorithms converge.

2.2 Topic-discovery algorithms
The original developers of LDA and CTM wrote:

“In technical terms, a topic model is a generative probabilistic model that uses a small
number of distributions over a vocabulary to describe a document collection. When fit
from data, these distributions often correspond to intuitive notions of topicality”.

The input for both models is a TDM or a DTM (Term/Document matrix or
Document/Term matrix) so it assumed that the words in a document are exchangeable
and their order is not important for the document’'s summary (a bag-of-words
algorithm).

A resume of both iterative algorithms could be the execution of the following steps:
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An initial number of topics that it is expected to be is fixed. In mathematical
classification models, it is usually necessary to previously set the topics to
detect. The fixed number could be pondered or got from a previous analysis.
This number would be called N.

Every word is assigned to a temporary topic according to some function. This
function will be the Dirichlet distribution (a multivariate generalisation of Beta
distribution) in the LDA algorithm and the logistic normal distribution in the CTM
one. This assignment proceeds as follows:

a. For each topic and each document both distributions are used: Dir(a)
and Dir(f) with LDA, M, (1,%) and N, (y, X) with CTM. They would be
called T and D.

b. All the topics generated previously are distributed shaping geometrical
figures with a centroid. These ‘centroids’ are moved according to a
multinomial distribution whose parameters are T and D. They would be
called My and M,

Each topic is properly labelled because initially the algorithm gets numbered
topics.

The previous steps are repeated for multiple iterations. In each iteration, the
centroids move towards a convergence point. The iterations stop when the
centroids do not move anymore compared to the previous iteration (the
algorithm "converges"). The following graph shows the previous steps by
summing up the assignment algorithm with the previous notation:

OrO—@—0O

T M, M, D

doc top

In order to calculate the topics probability distribution in words and documents, some
information about several parameters must be estimated.

Due to the computational complexity of their maximum likelihood estimation, a Gibbs
sampling has been used (a Markov chain Monte Carlo algorithm) for obtaining them
within the LDA and a variant of the expectation-maximisation algorithm in the CTM.

221

Differences between LDA and CTM

In addition to the different distributions used in the calculation previously described,
there are other important differences between them:
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1
The CTM algorithm has been selected because when the abstracts have high 1
correlation this model brings better results than LDA. :

!

2.2.2 Oriented CTM model

According to one of the requirements of the PoC, the algorithm needs to provide as an
output the categories of the HRCS classification model - whose names are Blood,
Cancer, Cardiovascular, Congenital, Ear, Eye, Infection, Inflammatory, Injuries, Mental
Health, Metabolic, Musculoskeletal, Neurological, Oral and Gastro, Renal and
Urological, Reproduction, Respiratory, Skin, Stroke and finally Other.

Since the number of topics is quite large, this saturates the capacity of the algorithm,
which will not be able to identify all the categories in just one execution. For this
reason, an iterative CTM process is used.

The entire process is described with the following steps:

1. The content of the papers or abstracts, previously cleaned, is transformed
by using a dictionary. The dictionary contains the most relevant terms,
which will be used to fit the model oriented to HRCS categories. The
dictionary is attached in D03.02.Dictionaries v0.1.

2. A CTM model is built (with the entire sample in the first execution and a sub-
set of documents in the rest of the iterations).

3. All topics and their terms are reviewed in order to extract the groups that are

close to an HRCS category.

The documents assigned to accept and define categories are saved.

The process returns to step 2 with documents that have not been assigned

to a category - until all HRCS categories are recognised or all documents

have a category assigned.

o s

@ CTM Execution

Repeat the process with

the ‘unknown’ documents Documents assigned to

a valid category

Figure 1 - Iterative CTM model

Each iteration allows a certain amount of papers to be classified, thus the final
classification will be obtained by joining the result of all iterations.
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2.3 Associative algorithms

As there is a more complex scenario (small sample for some categories, common
keywords, not very specific keywords...) topic-discovery can not be used because they
will not converge, so a simpler algorithm must be used.

The quality for these algorithms is determined by the work done in dictionaries. The
most frequent terms are analysed and grouped into higher categories to try to increase
their relevance.

After this, an array is created with as many rows as there are documents, and as many
columns as there are categories. Each cell will contain a 1 if the document contains
more than 3* terms associated with that category and a O if the document does not.
This array defines which documents belong to each category (a document can belong
to multiple categories).

*Distribution analyses have been made to determine the number of terms associated to
a category that must appear in order to assign a 1 to the document.
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3 RESULTS

The CTM model is built with approximately 20.000 papers from the original source,
which were cleaned in the previous phase (delete stopwords, punctuation, meaningless
terms...). The model is subsequently applied to all of the papers (approximately 4,5
million).

Three iterations were necessary to build the oriented CTM model, explained in section
2.4. Oriented CTM model. 19 topics related to HRCS were detected, as explained in
Figure 1, and the 29 topics related to OCDE were derived from the list of the most
interesting keywords sent by DG RTD.

The following figures show some of the segments obtained through the CTM model in
the first iteration. Each blue circle (or cluster) represents the abstracts that are
classified under a topic and the terms with the highest frequency inside them.

For example, Topic 2 is the ‘Cardiovascular’ category because many terms are related
to the cardiovascular topic and Topic 4 is the ‘Reproduction’ category for the same
reason.

Intertopic Distance Map (via multidimensional scaling) Top-30 Most Relevant Terms for Topic 2 (7.7% of fokens)
0 2,000 4,000 5,000 8,000 10,000
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Figure 2 - CTM example: Relevant terms in Topic 2 ‘Cardiovascular’
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Intertopic Distance Map (via multidimensional scaling) Top-30 Most Relevant Terms for Tapic 4 (6.3% of tokens)
(] 2,000 4,000 5,000 8,000 10,000

% repreduction |
pregnancy NN
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13 nev [
N 12 reproduction_disease I
AN nov [
8 or [l
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steriization |
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Marginal topic distribution gynecologists |
Overallterm frequency

2% I Estimated term frequency wiithin the selected topic

Figure 3 - CTM example: Relevant terms in Topic 4 ‘Reproduction’

3.1 Topic summary HRCS categories

Besides the 19 predefined HRCS categories, there is always a cluster with a mix of
terms which are included in other clusters too. This is why this group is named ‘Other’.

The following table shows the abstracts count within each topic:

Abstracts Topic Name
277.042 Blood
795.875 Cancer
494.361 Cardiovascular
284.318 Congenital
59.034 Ear
174.664 Eye
367.885 Infection
253.396 Inflammatory
297.008 Injuries
312.730 Mental Health
325.472 Metabolic
311.330 Musculoskeletal
314.733 Neurological
357.896 Oral and Gastro
122.696 Renal and Urological
356.336 Reproduction
181.404 Respiratory
122.838 Skin
60.635 Stroke
654.472 Other

Figure 4 — Abstracts count HRCS categories
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The next subsections focus on analysing what we could find within each topic.

3.1.1 Topic ‘Blood’
The CTM model has classified 277.042 papers into ‘Blood’.

Repefitions
0 200,000 408,000 w000
MP
candiovascular
biood disease
cancer

]
|

inflammatory

WoamEn
oral and gastro
infaction

Figure 5 - Ten of the most frequent terms in 'Blood"

muscle
neurological disease  platelet lung
skin
enythrocyte  ora) and gastro disease
. vivo :
kidney congenital

virus

systemic  plood disease

renal and urological medicine
mental health Cancer

respiratory sex
thrombosis
metastasis anemia pancreas
cardiovascular disease I I I cardiovascular medicine
respiratory disease 00
Tk' i dna stroke
okine
o . heart
renal and urological ~ infection
syndrome
SEpSIs

leukemia
oral gastro treatment

Figure 6 - 'Blood" wordcloud
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3.1.2 Topic ‘Cancer’
The CTM model has classified 795.875 papers into ‘Cancer’.
Repetitions
0 500,000 1,000,000 1,500,000 2,000,000 2,500,000
mr
tumor
breast
renal and unological
blood
E dna
L
P oral and gastro
reproduction

Figure 7 - Ten of the most frequent terms in 'Cancer’

respiratory disease

dna reproduction
peripheral ( :a n Ce r radiotherapy
cardiovascular heart o
tyrosine  cancer medicine
blood disease histological
angiogenesis blood mouth tu maor epithelial
oraland gastro disease  matastasis necrosis
renal and urological infection  oral and gastro
~ renal apoptosis . colon
drug pop congenital men
woman
brain
respiratory  tumour nee
prognosis
eye

Figure 8 - "Cancer’ wordcloud
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3.1.3 Topic ‘Cardiovascular’

The CTM model has classified 494.361papers into ‘Cardiovascular’.
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Figure 9 - Ten of the most frequent terms in ‘Cardiovascular’
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Figure 10 - 'Cardiovascular' wordcloud
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3.1.4 Topic ‘Congenital’
The CTM model has classified 284.318 papers into ‘Congenital’.
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Figure 11 - Ten of the most frequent terms in *Congenital
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Figure 12 - 'Congenital® wordcloud

DIGIT.B4 D03.03.Text-Minig Models
everis Spain S.L.U




&5

an NTT DATA Company

3.1.5 Topic ‘Ear
The CTM model has classified 59.034 papers into ‘Ear’.
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Figure 13 - Ten of the most frequent terms in "Ear
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Figure 14 — ‘Ear" wordcloud
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3.1.6 Topic ‘Eye’
The CTM model has classified 174.664 papers into ‘Eye’.
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Figure 15 - Ten of the most frequent terms in 'Eye’
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Figure 16 - 'Eye" wordcloud
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3.1.7 Topic ‘Infection’

The CTM model has classified 367.885 papers into ‘Infection’.
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Figure 17 - Ten of the most frequent terms in "Infection’

neurological apoptosis
tuberculosis
drug . neurclogical disease
syndrome vivo
~ongenital skin oral and gastro disease
conae La
eye Cancer
respiratory disease stroke  peart influenza sepsis

intestine

renal

owine % mam ) AEASTION
mental health

oral and gastro woman diarrhea
fibrosis
dna
lung bone

. musculoskeletal
blood disease  Kidney

skin disease

Figure 18 - "Infection" wordcloud
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3.1.8 Topic ‘Inflammatory’

The CTM model has classified 253.396 papers into ‘Inflammatory’.
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Figure 19 - Ten of the most frequent terms in 'Inflammatory"
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Figure 20 - "Inflammatory® wordcloud
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3.1.9 Topic ‘Injuries’

The CTM model has classified 297.008 papers into ‘Injuries’.
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Figure 21 - Ten of the most frequent terms in *Injuries’
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Figure 22 - 'Injuries' wordcloud
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3.1.10 Topic ‘Mental Health’
The CTM model has classified 312.730 papers into ‘Mental Health’.

Repetitions
WMF
brain
neurclogical
congenital

Terms

Figure 23 - Ten of the most frequent terms in ‘Mental Health’
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Figure 24 - ‘Mental Health’ wordcloud
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3.1.11 Topic ‘Metabolic’
The CTM model has classified 325.472 papers into ‘Metabolic’.
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Figure 25- Ten of the most frequent terms in *‘Metabolic’
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Figure 26 — ‘Metabolic’ wordcloud
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3.1.12 Topic ‘Musculoskeletal’
The CTM model has classified 311.330 papers into ‘Musculoskeletal’.
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Figure 27- Ten of the most frequent terms in ‘Musculoskeletal’
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Figure 28- ‘Musculoskeletal’ wordcloud
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3.1.13 Topic ‘Neurological’

The CTM model has classified 314.733 papers into ‘Neurological’.
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Figure 29- Ten of the most frequent terms in ‘Neurological’
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Figure 30 - ‘Neurological’ wordcloud
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3.1.14 Topic ‘Oral and Gastro’
The CTM model has classified 357.896 papers into ‘Oral and Gastro’.
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Figure 31 - Ten of the most frequent terms in ‘Oral and Gastro’
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Figure 32 - ‘Oral and Gastro’ wordcloud
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3.1.15 Topic ‘Renal and Urological’
The CTM model has classified 122.696 papers into ‘Renal and Urological’.
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Figure 33- Ten of the most frequent terms in ‘Renal and Urological’
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Figure 34 - ‘Renal and Urological’ wordcloud
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3.1.16 Topic ‘Reproduction’
The CTM model has classified 356.336 papers into ‘Reproduction’.
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Figure 35 - Ten of the most frequent terms in ‘Reproduction’

Terms

respiratory disease ) )
neurological disease

oral and gastro

nbstetric
apoptosis
perinatal skin  brain
blood disease  mgntal health

oral and gastro disease  cyst renal neurological

drug
lung

woman
infection
reproduction disease stroke heart

tumor

renal and urological
syndrome

intrauterine

oral and gastro treatment _ metabolic _
hair cardiovascular paby anesthesia
hone  musculoskeletal
pancreas

cardiovascular disease

muscle

Figure 36 - ‘Reproduction’ wordcloud
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3.1.17 Topic ‘Respiratory’
The CTM model has classified 181.404 papers into ‘Respiratory’.
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Figure 37 - Ten of the most frequent terms in ‘Respiratory’
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Figure 38 - ‘Respiratory’ wordcloud
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3.1.18 Topic ‘Skin’
The CTM model has classified 122.838 papers into ‘Skin’.
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Figure 39 - Ten of the most frequent terms in ‘Skin’
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Figure 40 - ‘Skin’ wordcloud
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3.1.19 Topic ‘Stroke’
The CTM model has classified 60.635 papers into ‘Stroke"’.
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Figure 41 - Ten of the most frequent terms in ‘Stroke’
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Figure 42 - ‘Stroke’ wordcloud
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3.1.20 Topic ‘Other’
The CTM model has classified 654.472 papers into ‘Other’.
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Figure 43 - Ten of the most frequent terms in ‘Other’
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Figure 44 - ‘Other’ wordcloud
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3.2 Topic summary OCDE categories

Besides the 28 predefined OCDE categories, there is an additional cluster with a
mixture of terms which are also included in other clusters. This group is named ‘Other’.

The following table shows the abstracts count within each category:

Abstracts Topic Name ‘
83.841 Andrology
669.363 Cardiovascular
464.116 Clinical Neurology

6.884 Complementary Medicine
412.291 Endocrinology
746.563 Environmental Heath
664.104 Epidemiology
244.968 Genetics Heredity
275.816 Human Genetics
271.452 Immunology
188.715 Medical Devices
698.270 Neuroscience
200.591 Nuclear Medicine
78.418 Nutrition and Dietetics
164.697 Obstetrics
612.521 Oncology
183.676 Ophthalmology
294547 Paediatrics
144.246 Personalised Medicine
120.338 Pharmacology

6.926 Physiology
316.641 Psychiatry
419.709 Public Health
112.896 Regenerative Medicine
315.496 Rheumatology
236.828 Surgery
917.091 System Biology
121.354 Toxicology
728.403 Other

Figure 45 - Abstracts count OCDE categories

3.2.1 Topic ‘Andrology’
The CTM model has classified 83.841 papers into ‘Andrology’.
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Terms

Figure 46 - Ten of the most frequent terms in ‘Andrology’
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Figure 47 - ‘Andrology’ wordcloud

3.2.2 Topic ‘Cardiovascular’

The CTM model has classified 669.363 papers into ‘Cardiovascular’.
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Figure 48 - Ten of the most frequent terms in ‘Cardiovascular’
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Figure 49 - ‘Cardiovascular’ wordcloud

3.2.3 Topic ‘Clinical Neurology’
The CTM model has classified 464.116 papers into ‘Clinical Neurology'.
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Figure 50 - Ten of the most frequent terms in ‘Clinical Neurology’
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Figure 51 - ‘Clinical Neurology’ wordcloud

3.2.4 Topic ‘Complementary Medicine’

The CTM model has classified 6.884 papers into ‘Complementary Medicine’.
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Figure 52 - Ten of the most frequent terms in ‘Complementary Medicine’
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Figure 53 -Complementary Medicine’ wordcloud

3.2.5 Topic ‘Endocrinology’
The CTM model has classified 412.291 papers into ‘Endocrinology’.
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Figure 54 - Ten of the most frequent terms in ‘Endocrinology’
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Figure 55 - ‘Endocrinology’ wordcloud

3.2.6 Topic ‘Environmental Health’
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The CTM model has classified 746.563 papers into ‘Environmental Health’.
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Figure 56 - Ten of the most frequent terms in ‘Environmental Health’
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Figure 57 - ‘Environmental Health’ wordcloud

3.2.7 Topic ‘Epidemiology’
The CTM model has classified 664.104 papers into ‘Epidemiology’.
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Figure 58 - Ten of the most frequent terms in ‘Epidemiology’
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Figure 59 -‘Epidemiology’ wordcloud

3.2.8 Topic ‘Genetics Heredity’
The CTM model has classified 244.968 papers into ‘Genetics Heredity’.
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Figure 60 - Ten of the most frequent terms in ‘Genetics Heredity’
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Figure 61 - ‘Genetics Heredity’ wordcloud

3.2.9 Topic ‘Human Genetics’
The CTM model has classified 275.816 papers into ‘Human Genetics’.
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Figure 62 - Ten of the most frequent terms in ‘Human Genetics’
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Figure 63 -‘Human Genetics’ wordcloud

3.2.10 Topic ‘immunology’
The CTM model has classified 271.452 papers into ‘/mmunology’.
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Figure 64 - Ten of the most frequent terms in ‘Immunology’
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Figure 65 - ‘Immunology’ wordcloud

3.2.11 Topic ‘Medical Devices’
The CTM model has classified 188.715 papers into ‘Medical Devices’.
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Figure 66 - Ten of the most frequent terms in ‘Medical Devices’
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Figure 67 - ‘Medical Devices’ wordcloud

3.2.12 Topic ‘Neuroscience’
The CTM model has classified 698.270 papers into ‘Neuroscience’.
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Figure 68 - Ten of the most frequent terms in ‘Neuroscience’
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Figure 69 -‘Neuroscience’ wordcloud

3.2.13 Topic ‘Nuclear Medicine’

The CTM model has classified 200.591 papers into ‘Nuclear Medicine’.
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Figure 70 - Ten of the most frequent terms in ‘Nuclear Medicine’
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Figure 71 - ‘Nuclear Medicine’ wordcloud

3.2.14 Topic ‘Nutrition and Dietetics’
The CTM model has classified 78.418 papers into ‘Nutrition and Dietetics’.
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Figure 72 - Ten of the most frequent terms in ‘Nutrition and Dietetics’
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Figure 73 -*Nutrition and Dietetics’ wordcloud

3.2.15 Topic ‘Obstetrics’
The CTM model has classified 164.697 papers into ‘Obstetrics’.
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Figure 74 - Ten of the most frequent terms in ‘Obstetrics’
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Figure 75- “Obstetrics’ wordcloud

3.2.16 Topic ‘Oncology’
The CTM model has classified 612.521 papers into ‘Oncology’.
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Figure 76 - Ten of the most frequent terms in ‘Oncology’
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Figure 77 - ‘Oncology’ wordcloud

3.2.17 Topic ‘Ophthalmology’
The CTM model has classified 183.676 papers into ‘Ophthalmology’.
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Figure 78 - Ten of the most frequent terms in ‘Ophthalmology’

Figure 79 - 'Ophthalmology* wordcloud

3.2.18 Topic ‘Other’

There are no defined terms under this category.
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3.2.19 Topic ‘Paediatrics’
The CTM model has classified 294.547 papers into ‘Paediatrics’.
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Figure 80 - Ten of the most frequent terms in ‘Paediatrics’

paediatrics

Figure 81 - ¢ Paediatrics’ wordcloud

3.2.20 Topic ‘Personalised Medicine’
The CTM model has classified 144.246 papers into ‘Personalised Medicine’.
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Figure 82 - Ten of the most frequent terms in ‘Personalised Medicine’
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Figure 83 - ‘Personalised Medicine’ wordcloud

3.2.21 Topic ‘Pharmacology’
The CTM model has classified 120.338 papers into ‘Pharmacology’.
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Figure 84- Ten of the most frequent terms in ‘Pharmacology’

Terms

pharmacovigilance
o clinical phase clinical information

cosmetology
clinical pharmacology

stratification

pharmacokinetic

clinical data

[ .
drug therapy drug discover

Figure 85 - ‘Pharmacology’ wordcloud

3.2.22 Topic ‘Physiology’
The CTM model has classified 6.926 papers into ‘Physiology’.
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Figure 86- Ten of the most frequent terms in ‘Physiology’
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Figure 87 - ‘Physiology’ wordcloud

3.2.23 Topic ‘Psychiatry’

]

The CTM model has classified 316.641 papers into ‘Psychiatry’.
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Figure 88 - Ten of the most frequent terms in ‘Psychiatry’
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speech therapy

Figure 89 - ‘Psychiatry’ wordcloud

3.2.24 Topic ‘Public Health’
The CTM model has classified 419.709 papers into ‘Public Health’.
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Figure 90 - Ten of the most frequent terms in ‘Public Health’
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Figure 91 - ‘Public Health’ wordcloud

3.2.25 Topic ‘Regenerative Medicine’
The CTM model has classified 112.896 papers into ‘Regenerative Medicine’.
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Figure 92 - Ten of the most frequent terms in ‘Regenerative Medicine’

stem cell therapy
cell therapy

transplantation

tissue engineering

Figure 93- ‘Regenerative Medicine’ wordcloud

3.2.26 Topic ‘Rheumatology’
The CTM model has classified 315.496 papers into ‘Rheumatology’.
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Figure 94 - Ten of the most frequent terms in ‘Rheumatology’
rheumatology

Figure 95 - ‘Rheumatology’ wordcloud

3.2.27 Topic ‘Surgery’

;

The CTM model has classified 236.828 papers into ‘Surgery’.
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Figure 96 - Ten of the most frequent terms in ‘Surgery’
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Figure 97 - ‘Surgery’ wordcloud

3.2.28 Topic ‘System Biology’
The CTM model has classified 917.091 papers into ‘System Biology'.
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Figure 98 - Ten of the most frequent terms in ‘System Biology’
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Figure 99 - ‘System Biology’ wordcloud

3.2.29 Topic ‘Toxicology’
The CTM model has classified 121.354 papers into ‘Toxicology’.
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Figure 100 - Ten of the most frequent terms in ‘Toxicology’
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drug
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Figure 101 - “Toxicology’ wordcloud

3.3 Examples of abstracts classification

Finally, after the data cleaning process and the topic modelling, it is possible to see the
complete process: from the original abstract to its topic.

The figure below shows three examples of abstracts before and after the application of
the dictionaries and their final HRCS category assignment:
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iginal Abstract

Cholinesterase inhibitors (ChEls) are used for symptomatic
treatment of Alzheimer's disease. These drugs have
vagotropic and anti-inflammatory properties that could be of
interest also with respect to cardiovascular disease. This
study evaluated the use of ChEls and the later risk of
myocardial infarction and death. The cohort consisted of 7073
subjects (mean age 79 years) from the Swedish Dementia
Registry with the diagnoses of Alzheimer's dementia or
Alzheimer's mixed dementia since 2007. Cholinesterase
inhibitor use was linked to diagnosed myocardial infarctions
(Mis) and death using national registers. During a mean
follow-up period of 503 (range 0-2009) days, 831 subjects in
the cohort suffered Ml or died. After adjustment for
confounders, subjects who used ChEls had a 34% lower risk
for this composite endpoint during the follow-up than those
who did not [hazard ratio (HR) 0.66, 95% confidence interval
(Cl) 0.56-0.78]. Cholinesterase inhibitor use was also
associated with a lower risk of death (HR: 0.64, 95% CI: 0.54-
0.76) and MI (HR: 0.62, 95% CI: 0.40-0.95) when analysed
separately. Subjects taking the highest recommended ChEI
doses (donepezil 10 mg, rivastigmine >6 mg, galantamine 24
mg) had the lowest risk of MI (HR: 0.35, 95% CI: 0.19-0.64),
or death (HR: 0.54, 95% CI: 0.43-0.67) compared with those
who had never used ChEls. Cholinesterase inhibitor use was
associated with a reduced risk of Ml and death in a
nationwide cohort of subjects diagnosed with Alzheimer's
dementia. These associations were stronger with increasing
ChEl dose.

alzheimer inflammatory cardiovascular
myocardial dementia alzheimer dementia
alzheimer dementia myocardial donepezil
alzheimer dementia

n NTT DATA

Mental Health

The RET receptor tyrosine kinase is crucial for normal
development but also contributes to pathologies that reflect
both the loss and the gain of RET function. Activation of RET
occurs via oncogenic mutations in familial and sporadic
cancers - most notably, those of the thyroid and the lung.
RET has also recently been implicated in the progression of
breast and pancreatic tumours, among others, which makes it
an attractive target for small-molecule kinase inhibitors as
therapeutics. However, the complex roles of RET in
homeostasis and survival of neural lineages and in tumour-
associated inflammation might also suggest potential long-
term pitfalls of broadly targeting RET.

tyrosine oncogenic cancer thyroid lung
breast pancreatic tumour homeostasis
neural tumour

Cancer

As a result of collaborative efforts with international
organizations and the salt industry, many developing and
developed countries practice universal salt iodization (USI) or
have mandatory salt fortification programs. As a
consequence, the prevalence of iodine deficiency decreased
dramatically. The United States and Canada are among the
few developed countries that do not practice USI. Such an
undertaking would require evidence of deficiency among
vulnerable population groups, including pregnant women,
newborns, and developing infants. Government agencies in
the United States rely heavily on data from NHANES to
assess the iodine status of the general population and
pregnant women in particular. NHANES data suggest that
pregnant women in the United States remain mildly deficient.
This is important, because the developing fetus is dependent
on maternal iodine intake for normal brain development
throughout pregnancy. Professional societies have
recommended that pregnant and lactating women, or those
considering pregnancy, consume a supplement providing 150
v4g iodine daily. The United States and Canada collaborate
on the daily recommended intake and are also confronted
with the challenge of identifying the studies needed to
determine if USI is likely to be beneficial to vulnerable
population groups without exposing them to harm.

woman newborn woman woman fetus
maternal brain pregnancy woman
pregnancy

Reproduction

Figure 102 - Examples of topic assignment
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4 ANNEX

4.1 Original abstract — transformed abstract — topic

The following excel includes a single sheet within the topic assignment for each
cleaned abstract and its original text:

_[‘:
H Iﬁ
D03.03.Abstracts
classification_v1.0.xls
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