
Package ‘ReGenesees’
October 12, 2015

Type Package

Title R Evolved Generalized Software for Sampling Estimates and Errors
in Surveys

Description Design-Based and Model-Assisted analysis of complex sampling surveys.
Multistage, stratified, clustered, unequally weighted survey designs.
Horvitz-Thompson and Calibration Estimators. Variance Estimation for
nonlinear smooth estimators by Taylor-series linearization. Estimates,
standard errors, confidence intervals and design effects for: Totals,
Means, absolute and relative Frequency Distributions (marginal, conditional
and joint), Ratios, Multiple Regression Coefficients and Quantiles.
Automated Linearization of Complex Analytic Estimators. Design Covariance
and Correlation. Estimates, standard errors, confidence intervals and
design effects for user-defined analytic estimators. Estimates and
sampling errors for subpopulations. Generalized Variance Functions (GVF)
method for predicting variance estimates.

Version 1.7

Author Diego Zardetto

Maintainer Diego Zardetto <zardetto@istat.it>

License EUPL

Imports stats, MASS

Depends R (>= 2.14.0)

ByteCompile TRUE

R topics documented:
ReGenesees-package . 2
AF.gvf . 5
aux.estimates . 6
bounds.hint . 8
check.cal . 11
collapse.strata . 12
contrasts.RG . 17
Corr . 23
data.examples . 26
des.addvars . 28
des.merge . 29
drop.gvf.points . 32

1

2 ReGenesees-package

e.calibrate . 35
e.svydesign . 50
estimator.kind . 54
extractors . 56
fill.template . 58
find.lon.strata . 61
fit.gvf . 63
fpcdat . 68
g.range . 69
get.residuals . 70
getBest . 73
getR2 . 75
GVF.db . 77
gvf.input . 83
gvf.misc . 85
plot.gvf.fit . 89
pop.template . 92
population.check . 94
predictCV . 97
ReGenesees.options . 102
sbs . 104
svystat . 106
svystatB . 111
svystatL . 115
svystatQ . 120
svystatR . 123
svystatTM . 127
weights . 132
write.svystat . 134
Zapsmall . 135
%into% . 136

Index 140

ReGenesees-package ReGenesees: a Package for Design-Based and Model-Assisted Analy-
sis of Complex Sample Surveys

Description

ReGenesees is an R package for design-based and model-assisted analysis of complex sample sur-
veys. It handles multistage, stratified, clustered, unequally weighted survey designs. Sampling
variance estimation for nonlinear (smooth) estimators is obtained by Taylor-series linearization.
Sampling variance estimation for multistage designs can be obtained both under the Ultimate Clus-
ter approximation or by means of an actual multistage computation. Estimates, standard errors,
confidence intervals and design effects are provided for: Totals, Means, absolute and relative Fre-
quency Distributions (marginal, conditional and joint), Ratios, Multiple Regression Coefficients
and Quantiles (variance via the Woodruff method). ReGenesees also handles Complex Estimators,
i.e. any user-defined estimator that can be expressed as an analytic function of Horvitz-Thompson
or Calibration estimators of Totals or Means, by automatically linearizing them. The Design Co-
variance and Correlation between Complex Estimators is also provided. All analyses above can be
carried out for arbitrary subpopulations. In addition, ReGenesees offers a Generalized Variance

ReGenesees-package 3

Functions (GVF) infrastructure, i.e. facilities for defining, fitting, testing and plotting GVF models,
and to exploit them to predict variance estimates.

The ReGenesees package is the fundamental building block of a full-fledged R-based software sys-
tem: the ReGenesees System. The latter has a clear-cut two-layer architecture. The application
layer of the system is embedded into package ReGenesees. A second R package, called ReGene-
sees.GUI, implements the presentation layer of the system, namely a user-friendly Tcl/Tk GUI.

A Quick Reading Guide to the Reference Manual

This reference manual reports a documentation entry for each (user visible) function of package
ReGenesees. As you may have noticed by reading section ‘R topics documented’ (page 1 of the pdf
manual), these documentation entries are automatically sorted according to the alphabetic ordering
of the names of the functions. Such an ordering doesn’t provide any clue about where should a user
start reading, nor on the best way to proceed further.

In section ‘Table of Contents’, I tried to cluster the most important topics documented in the refer-
ence manual into few broad groups, based on both the statistical goals and on the software design
of the underlying functions.

Moreover, I provided a relevance code for each documented topic/function. The meaning of such
codes, along with the corresponding reading suggestions, are reported in the following table:

Relevance Codes Legend

CODE RELEVANCE READING SUGGESTION
*** Very Important......Read these topics as soon as possible. A clear

understanding of these functions is mandatory
in order to start using profitably the package.

** Important...........Read these topics once you have been experiencing
for a while with (at least some of) the 'Very
Important' functions.

* Useful..............These functions are ancillary (albeit in
different ways) to the 'Very Important' and
'Important' ones (and their usage is generally
simpler).

. Advanced............These topics are very relevant but, unfortunately
quite difficult. As they involve technical
details, you should postpone their reading until
you become familiar with the package.

Important Notice
It goes without saying that the ‘Examples’ sections at the end of each documented topic represent
a crucial part of this reference manual.

TABLE OF CONTENTS

Survey Design:

*** e.svydesign..........Specification of a Complex Survey Design
* weights..............Retrieve Sampling Units Weights
* find.lon.strata......Find Strata with Lonely PSUs

4 ReGenesees-package

** collapse.strata......Collapse Strata Technique for Eliminating
Lonely PSUs

* des.addvars..........Add Variables to Design Objects
* des.merge............Merge New Survey Data into Design Objects

Calibration:

** pop.template.........Template Data Frame for Known Population Totals
* population.check.....Compliance Test for Known Totals Data Frames
** fill.template........Fill the Known Totals Template for a

Calibration Task
* bounds.hint..........A Hint for Range Restricted Calibration

*** e.calibrate..........Calibration of Survey Weights
* check.cal............Calibration Convergence Check
* g.range..............Range of g-Weights
* get.residuals........Calibration Residuals of Interest Variables
. contrasts.RG.........Set, Reset or Switch Off Contrasts for

Calibration Models
. %into%...............Compress Nested Factors

Estimates and Sampling Errors:

*** svystatTM............Estimation of Totals and Means in
Subpopulations

*** svystatR.............Estimation of Ratios in Subpopulations
*** svystatB.............Estimation of Population Regression Coefficients
*** svystatQ.............Estimation of Quantiles in Subpopulations
*** svystatL.............Estimation of Complex Estimators in

Subpopulations
** aux.estimates........Quick Estimates of Auxiliary Variables Totals
** CoV, Corr............Design Covariance and Correlation of Complex

Estimators in Subpopulations
* write.svystat........Export Survey Statistics
* extractors...........Extractor Functions for Variability Statistics
. ReGenesees.options...Variance Estimation Options for the ReGenesees

Package

Generalized Variance Functions Method:

*** GVF.db...............Archive of Registered GVF Models
*** gvf.input............Prepare Input Data to Fit GVF Models
*** svystat..............Compute Many Estimates and Errors in Just a

Single Shot
*** fit.gvf..............Fit GVF Models
** plot.gvf.fit.........Diagnostic Plots for Fitted GVF Models
** drop.gvf.points......Drop Outliers and Refit a GVF Model
* getR2, AIC, BIC......Quality Measures on Fitted GVF Models
* getBest..............Identify the Best Fit GVF Model

*** predictCV............Predict CV Values via Fitted GVF Models
* gvf.misc.............Miscellanea: Methods for Fitted GVF Models
* estimator.kind.......Which Estimator Did Generate these

Survey Statistics?

Utilities:

* Zapsmall..............Zapsmall Data Frame Columns and Numeric Vectors

AF.gvf 5

Data Sets:

** example..............Artificial Household Survey Data
** fpcdat...............A Small But Not Trivial Artificial Sample

Data Set
** sbs..................Artificial Structural Business Statistics Data
** AF.gvf...............Example Data for GVF Model Fitting

The ordering of the above ‘Table of Contents’ reflects only loosely the procedural sequence in
which functions could be used. For instance, while you cannot apply function e.calibrate unless
you have previously built a design object by using e.svydesign, you can exploit, e.g., function
collapse.strata also after calibration. As a further example, all functions in group ‘Estimates and
Sampling Errors’ can be used on objects created by e.svydesign (yielding estimates and sampling
errors for functions of Horvitz-Thompson estimators), as well as on objects created by e.calibrate
(yielding estimates and sampling errors for functions of Calibration estimators).

AF.gvf Example Data for GVF Model Fitting

Description

File AF.gvf containes a set of summary statistics that can be used to illustrate ReGenesees facilities
for fitting Generalized Variance Functions models. These summary statistics have kind ‘Absolute
Frequency’ (see function estimator.kind), i.e. involve estimates and errors of counts.

Usage

data(AF.gvf)

Format

Each row of the ee.AF data frame represents an estimated absolute frequency along with its esti-
mated sampling error (expressed in terms of standard error, coefficient of variation and variance).
The data frame has 349 rows, and the following 5 columns:

name The name of the original estimate, factor with 349 levels.

Y The value of the original estimate (an absolute frequency), numeric.

SE The standard error of the original estimate, numeric.

CV The coefficient of variation of the original estimate, numeric.

VAR The variance of the original estimate, numeric.

Details

Object AF is a list storing estimates and errors of counts (namely, summary statistics of kind ‘Abso-
lute Frequency’) computed on survey design object exdes. The names of the slots of list AF indicate
the nature of the corresponding estimates, e.g. element AF[["sex.marstat"]] stores estimates and
errors of the joint absolute frequency distribution of variables sex and marstat (see ‘Examples’).

Object ee.AF is the gvf.input object built upon all such summary statistics, via function gvf.input
(see ‘Examples’).

6 aux.estimates

See Also

estimator.kind to assess what kind of estimates are stored inside a survey statistic object, GVF.db
to manage ReGenesees archive of registered GVF models, gvf.input and svystat to prepare the
input for GVF model fitting, fit.gvf to fit GVF models, plot.gvf.fit to get diagnostic plots
for fitted GVF models, drop.gvf.points to drop alleged outliers from a fitted GVF model and
simultaneously refit it, and predictCV to predict CV values via fitted GVF models.

Examples

data(AF.gvf)

Inspect object AF
class(AF)
length(AF)
names(AF)
AF$sex.marstat
class(AF$sex.marstat)

Inspect gvf.input object ee.AF
head(ee.AF)
str(ee.AF)
plot(ee.AF)

The design object used to compute ee.AF is the following:
exdes

How has object ee.AF been built?
foo <- gvf.input(exdes, stats = AF)
identical(ee.AF, foo)

aux.estimates Quick Estimates of Auxiliary Variables Totals

Description

Quickly estimates the totals of the auxiliary variables of a calibration model.

Usage

aux.estimates(design,
calmodel = if (inherits(template, "pop.totals"))

attr(template, "calmodel"),
partition = if (inherits(template, "pop.totals"))

attr(template, "partition") else FALSE,
template = NULL)

Arguments

design Object of class analytic (or inheriting from it) containing survey data and sam-
pling design metadata.

calmodel Formula defining the linear structure of the calibration model.

aux.estimates 7

partition Formula specifying the variables that define the "calibration domains" for the
model (see ’Details’); FALSE (the default) implies no calibration domains.

template An object of class pop.totals, be it a template or the actual known totals data
frame for the calibration task.

Details

The main purpose of function aux.estimates is to make easy the task of estimating the totals
of all the auxiliary variables involved in a calibration model (separately inside distinct calibration
domains, if specified). Even if such totals can be estimated also by repeatedly invoking function
svystatTM, this may reveal very tricky in practice, because real-world calibration tasks (e.g. in
the field of Official Statistics) can simultaneously involve hundreds of auxiliary variables. More-
over, total estimates provided by function svystatTM are always complemented by sampling errors,
whose estimation is very computationally demanding.

Function aux.estimates, on the contrary, only provides estimates of totals (i.e. without associated
sampling errors), thus being very quick to be executed. Moreover, aux.estimates is able to com-
pute, in just a single shot, all the totals of the auxiliary variables of a calibration model, no matter
how complex the model is. Lastly, as a third strong point, the totals estimated by aux.estimates
will be returned exactly in the same standard format in which the known population totals for the re-
lated calibration task need to be represented (see pop.template, population.check, fill.template).

It may be useful to point out that, besides having been designed to handle auxiliary variables in-
volved in calibration models, function aux.estimates could be also used for computing general
estimates of totals inside subpopulations in a very effective way (see ‘Examples’).

Value

An object of class pop.totals, thus inheriting from class data.frame storing the estimated totals
in a standard format.

Author(s)

Diego Zardetto

See Also

e.svydesign to bind survey data and sampling design metadata, svystatTM for calculating es-
timates and standard errors of totals, e.calibrate for calibrating weights, pop.template for
constructing known totals data frames in compliance with the standard required by e.calibrate,
population.check to check that the known totals data frame satisfies that standard, fill.template
to automatically fill the template when a sampling frame is available.

Examples

Load sbs data:
data(sbs)

Build a design object:
sbsdes<-e.svydesign(data=sbs,ids=~id,strata=~strata,weights=~weight,fpc=~fpc)

Now suppose you have to perform a calibration process which
exploits as auxiliary information:
i) the total number of employees (emp.num)

8 bounds.hint

by class of number of employees (emp.cl) crossed with nace.macro;
ii) the total number of enterprises (ent)
by region crossed with nace.macro;

Build a template for the known totals:
pop<-pop.template(sbsdes,

calmodel=~emp.num:emp.cl + region -1,
partition=~nace.macro)

Use the fill.template function to automatically compute
the totals from the universe (sbs.frame) and safely fill
the template:
pop<-fill.template(sbs.frame,template=pop)
pop

You can now use aux.estimates to verify how much difference
exists between the target totals and the initial HT estimates:
aux.HT<-aux.estimates(sbsdes,template=pop)
aux.HT

If you calibrate, ...
sbscal<-e.calibrate(sbsdes,pop)

... you can verify that CAL estimates exactly match the known totals:
aux.CAL<-aux.estimates(sbscal,template=pop)
aux.CAL

Recall that you can also use aux.estimates for computing
general estimates of totals inside subpopulations (even
not related to any calibration task).
E.g. estimate the total of value added inside areas:
aux.estimates(sbsdes,~va.imp2-1,~area)

...and compare to svystatTM (notice also
the increased execution time):
svystatTM(sbsdes,~va.imp2,~area)

bounds.hint A Hint for Range Restricted Calibration

Description

Suggests a sound bounds value for which e.calibrate is likely to converge.

Usage

bounds.hint(design, df.population,
calmodel = if (inherits(df.population, "pop.totals"))

attr(df.population, "calmodel"),
partition = if (inherits(df.population, "pop.totals"))

attr(df.population, "partition") else FALSE,
msg = TRUE)

bounds.hint 9

Arguments

design Object of class analytic (or inheriting from it) containing survey data and sam-
pling design metadata.

df.population Data frame containing the known population totals for the auxiliary variables.

calmodel Formula defining the linear structure of the calibration model.

partition Formula specifying the variables that define the "calibration domains" for the
model; FALSE (the default) implies no calibration domains.

msg Enables printing of a summary description of the result (the default is TRUE).

Details

The function bounds.hint returns a bounds value for which e.calibtrate is likely to converge.
This interval is just a sound hint, not an exact result (see ‘Note’).

The mandatory argument design identifies the analytic object on which the calibration problem
is defined.

The mandatory argument df.population identifies the known totals data frame.

The argument calmodel symbolically defines the calibration model you want to use: it identifies
the auxiliary variables and the constraints for the calibration problem. The design variables ref-
erenced by calmodel must be numeric or factor and must not contain any missing value (NA).
The argument can be omitted provided df.population is an object of class pop.totals (see
population.check).

The optional argument partition specifies the variables that define the calibration domains for
the model. The default value (FALSE) means either that there are not calibration domains or that
you want to solve the problem globally (even though it could be factorized). The design vari-
ables referenced by partition (if any) must be factor and must not contain any missing value
(NA). The argument can be omitted provided df.population is an object of class pop.totals (see
population.check).

The optional argument msg enables/disables printing of a summary description of the achieved
result.

Value

A numeric vector of length 2, representing the suggested value for the bounds argument of e.calibrate.
The attributes of that vector store additional information, which can lead to better understand why
a given calibration problem is (un)feasible (see ‘Examples’).

Note

Assessing the feasibility of an arbitrary calibration problem is not an easy task. The problem is even
more difficult whenever additional "range restrictions" are imposed. Indeed, even if one assumes
that the calibration constraints define a consistent system, one also has to choose the bounds such
that the feasible region is non-empty.

One can argue that there must exist a minimun-length interval I = [L,U] such that, if it is covered
by bounds, the specified calibration problem is feasible. Unfortunately in order to compute exactly
that minimun-length interval I one should solve a big linear programming problem [Vanderhoeft
01]. As an alternative, a trial and error procedure has been frequently proposed [Deville et al 1993;
Sautory 1993]: (i) start with a very large interval bounds.0; (ii) if convergence is achieved, shrink
it so as to obtain a new interval bounds.1; (iii) repeat until you get a sufficiently tight feasible
interval bounds.n. The drawback is that this procedure can cost a lot of computer time since, for
each choice of the bounds, the full calibration problem has to be solved.

10 bounds.hint

A rather easy task is, on the contrary, the one of finding at least a given specific interval I∗ =
[L∗, U∗] such that, if it is not covered by bounds, the current calibration problem is surely unfea-
sible. This means that any feasible bounds value must necessarily contain the I∗ interval. The
function bounds.hint: (i) first identifies such an I∗ interval (by computing the range of the ratios
between known population totals and corresponding direct Horvitz-Thompson estimates), (ii) then
builds a new interval Isugg with same midpoint and double length. The latter is the suggested value
for the bounds argument of e.calibrate. The return value of bounds.hint should be understood
as a useful starting guess for bounds, even though there is definitely no warranty that the calibration
algorithm will actually converge.

Author(s)

Diego Zardetto

References

Vanderhoeft, C. (2001) "Generalized Calibration at Statistic Belgium", Statistics Belgium Working
Paper n. 3, http://www.statbel.fgov.be/studies/paper03_en.asp.

Deville, J.C., Sarndal, C.E. and Sautory, O. (1993) "Generalized Raking Procedures in Survey Sam-
pling", Journal of the American Statistical Association, Vol. 88, No. 423, pp.1013-1020.

Sautory, O. (1993) "La macro CALMAR: Redressement d’un Echantillon par Calage sur Marges",
Document de travail de la Direction des Statistiques Demographiques et Sociales, no. F9310.

See Also

e.calibrate for calibrating weights, pop.template for constructing known totals data frames
in compliance with the standard required by e.calibrate, population.check to check that the
known totals data frame satisfies that standard, g.range to compute the range of the obtained g-
weights, and check.cal to check if calibration constraints have been fulfilled.

Examples

Creation of the object to be calibrated:
data(data.examples)
des<-e.svydesign(data=example,ids=~towcod+famcod,strata=~SUPERSTRATUM,

weights=~weight)

Calibration (iterative solution) on the marginal distribution
of age in 5 classes (age5c) inside provinces (procod)
(totals in pop06p). Get a hint for feasible bounds:
hint<-bounds.hint(des,pop06p,~age5c-1,~procod)

Let's verify if calibration converges with the suggested
value for the bounds argument (i.e. c(0.219, 1.786)):
descal06p<-e.calibrate(design=des,df.population=pop06p,

calmodel=~age5c-1,partition=~procod,calfun="logit",
bounds=hint,aggregate.stage=2)

Now let's verify that calibration fails, if bounds don't cover
the interval [0.611, 1.394]:
Not run:
descal06p<-e.calibrate(design=des,df.population=pop06p,

calmodel=~age5c-1,partition=~procod,calfun="logit",
bounds=c(0.62,1.50),aggregate.stage=2,force=FALSE)

http://www.statbel.fgov.be/studies/paper03_en.asp

check.cal 11

End(Not run)
The warning message raised by e.calibrate tells that
the population total of variable age5c5 (i.e. the fifth
age class frequency) was not matched.

By analysing ecal.status one understands that calibration
failed due to the sub-task identified by procod 30:
ecal.status

this is easily explained by inspecting the "bounds"
attribute of the bounds.hint output object:
attr(hint,"bounds")

indeed the specified lower bound (0.62) was too high
for procod 30, where instead a value ~0.61 was required.

Recall that you can always "force" a calibration task that
would not converge:
descal06p.forced<-e.calibrate(design=des,df.population=pop06p,

calmodel=~age5c-1,partition=~procod,calfun="logit",
bounds=c(0.62,1.50),aggregate.stage=2,force=TRUE)

Notice, also, that forced sub-tasks can be tracked down by
directly looking at ecal.status...
ecal.status

...or by using function check.cal:
check.cal(descal06p.forced)

check.cal Calibration Convergence Check

Description

Checks whether Calibration Constraints are fulfilled; if not, assesses constraints violation degree.

Usage

check.cal(cal.design)

Arguments

cal.design Object of class cal.analytic.

Details

The function verifies if all the imposed Calibration Constraints are actually fulfilled by object
cal.design. If it is not the case, the function evaluates the degree of violation of the constraints
and prints a summary of the mismatches between population totals and achieved estimates (see also
Section ’Calibration process diagnostics’ in the help page of e.calibrate).

Value

The main purpose of the function is to print on screen; anyway a list is invisibly returned, which
summarizes the results of the check.

12 collapse.strata

Author(s)

Diego Zardetto

See Also

e.calibrate for calibrating weights (in particular, Section ’Calibration process diagnostics’).

Examples

Load sbs data:
data(sbs)

Build a design object:
sbsdes<-e.svydesign(data=sbs,ids=~id,strata=~strata,weights=~weight,fpc=~fpc)

Example 1
Build template...

pop<-pop.template(sbsdes,~emp.num:emp.cl+ent-1,~region)
Fill template...

pop<-fill.template(sbs.frame,pop)
Calibrate...

sbscal<-e.calibrate(sbsdes,pop,sigma2=~emp.num)
Check calibration...

check.cal(sbscal)

Example 2
Build template...
pop<-pop.template(sbsdes,~emp.num+ent-1,~area)

Fill template...
pop<-fill.template(sbs.frame,pop)

Calibrate with tight bounds...
sbscal<-e.calibrate(sbsdes,pop,sigma2=~emp.num,bounds=c(0.8,1.2))

Check calibration...
check.cal(sbscal)

Now try to calibrate with suggested bounds...
hint <- bounds.hint(sbsdes,pop)
sbscal<-e.calibrate(sbsdes,pop,sigma2=~emp.num,bounds=hint)

Check calibration...
check.cal(sbscal)

collapse.strata Collapse Strata Technique for Eliminating Lonely PSUs

Description

Modifies a stratified design containing lonely PSUs by collapsing its design strata into superstrata.

Usage

collapse.strata(design, block.vars = NULL, sim.score = NULL)

collapse.strata 13

Arguments

design Object of class analytic (or inheriting from it) containing survey data and sam-
pling design metadata.

block.vars Formula specifying blocking variables: only strata belonging to the same block
will be aggregated (see ‘Details’). If NULL (the default option) no constraints
will be imposed.

sim.score Formula specifying a similarity score for strata: lonely strata will be paired
with the most similar stratum in each block (see ‘Details’). If NULL (the default
option) random pairs will be formed.

Details

Lonely PSUs (i.e. PSUs which are alone inside a not self-representing stratum) are a concern from
the viewpoint of variance estimation. As a general solution, the ReGenesees package can handle
the lonely PSUs problem by setting proper variance estimation options (see ReGenesees.options).
The collapse.strata function implements a widely used alternative: the so called collapsed strata
technique. The basic idea is to build artificial "superstrata" by aggregating strata containing lonely
PSUs to other strata, and then to use such superstrata for variance estimation (see e.g. [Wolter 85]
and [Rust, Kalton 87]).

The optional argument block.vars identifies "blocking variables" that can be used to constrain the
way lonely strata are collapsed to form superstrata. More specifically: first, blocking variables are
used to partition sample data in "blocks" via factor crossing, then, only lonely strata belonging to
the same block are aggregated. If block.vars=NULL (the default option), no constraint will act on
collapsing. The design variables referenced by block.vars (if any) should be of type factor.
Errors will be raised if (i) blocks cut across strata, or (ii) block.vars generate any non-aggregable
strata (i.e. lonely strata which are a singleton inside a block).

The optional argument sim.score can be used to specify a similarity score for strata aggregation.
This means that each lonely stratum will be collapsed with the stratum that has the most similar
value of variable sim.score inside the block. Thus the similarity of two strata is actually measured
by the (absolute value of the) difference among the corresponding sim.score values. Only one
design variable can be referenced by the sim.score formula: (i) it must be of type numeric, (ii)
it must be constant inside each stratum, and (iii) it should be positive (otherwise its abs() will be
silently used). Note that if no similarity score is specified (i.e. sim.score=NULL), the achieved
strata aggregation will depend on the ordering of input sample data in design.

The collapsing algorithm will, whenever possible, build superstrata by pairing a lonely stratum to
another not-yet-aggregated stratum. Therefore, in general, superstrata will contain only two design
strata. Rare exceptions can arise, e.g. due to constraints, with at most three design strata inside
a superstratum. The choice to collapse strata in pairs has been taken because it is known to be
appropriate for large-scale surveys with many strata (at least for national level estimates, see e.g.
[Rust, Kalton 87]).

The collapse.strata function handles correctly finite population corrections. If design has been
built by passing strata sampling fractions via the fpc argument, the function re-computes sampling
fractions inside superstrata by exploiting the achieved mapping of strata to superstrata and the fpc
slot of design.

Value

An object of the same class as design, without strata containing lonely PSUs.

14 collapse.strata

Strata Collapse Process Diagnostics

As already observed in the ’Details’ Section, there are three non trivial reasons why function
collapse.strata can run into errors: (1) the blocks cut across strata, (2) some blocks contain
a stratum needing to be aggregated while this stratum happens to be the only one inside the block,
(3) the similarity score for strata aggregation varies inside strata. In order to help the user to identify
such data anomalies, hence taking a step forward to eliminate them, every call to collapse.strata
generates, by side effect, a diagnostics data structure named clps.strata.status into the .GlobalEnv
(see ‘Examples’).
The clps.strata.status list has three components: the first reports the error message, the second
stores a vector identifying the data subsets that have been hit by the anomaly, the third reports the
call to collapse.strata that generated the list. For instance, when error condition (1) holds, the
second element of clps.strata.status identifies the strata that are cut by blocks; if, instead, error
condition (2) holds, the second element of the list identifies the blocks containing non-aggregable
strata.
It must be stressed that every call to collapse.strata generates the clps.strata.status list,
even when the strata collapsing process ends successfully. In such cases, the first element of the list
reports the number of lonely strata that have undergone aggregation, whereas the second is a useful
data frame (named clps.table) mapping collapsed strata to superstrata. To be more specific: each
row of clps.table identifies a stratum that has been mapped to a superstratum, while the columns
of clps.table give: (i) the block to which the stratum belongs, (ii) the stratum name, (iii) a flag
indicating if the stratum was lonely or not, (iv) the name of the superstratum to which it has been
mapped.

Methodological Warning

A warning must be emphasized: strata similarity score sim.score should be based on prior knowl-
edge and/or on expectations on true values of stratum means for the variable(s) to be estimated,
not on current sample data. Indeed, building sim.score by estimating stratum means with the cur-
rent sample can lead to severe underestimation of sampling variance, i.e. to too tight confidence
intervals.

Author(s)

Diego Zardetto

References

Wolter, K.M. (2007) "Introduction to Variance Estimation", Second Edition, Springer-Verlag, New
York.

Rust, K., Kalton, G. (1987) "Strategies for Collapsing Strata for Variance Estimation", Journal of
Official Statistics, Vol. 3, No. 1, pp. 69-81.

See Also

ReGenesees.options for a different way to handle the lonely PSUs problem (namely by setting
variance estimation options).

Examples

##
Explore alternative collapsing strategies.
##

collapse.strata 15

Build a survey design with lonely PSU strata:
data(data.examples)
exdes <- e.svydesign(data= example, ids= ~ towcod+famcod,

strata= ~ stratum, weights= ~ weight)
exdes

Explore 3 possible collapsing strategies:
1) Aggregate lonely strata by forming random pairs

exdes.clps1 <- collapse.strata(exdes)
exdes.clps1

2) Aggregate lonely strata in pairs under constraints:
i. aggregated strata must be both not self-representing
ii. aggregated strata must belong to the same province (which
is appropriate if e.g. provinces are planned estimation domains)

exdes.clps2 <- collapse.strata(exdes,~sr:procod)
exdes.clps2

3) A WRONG strategy: compute strata similarity score by using
sample estimates of the interest variable (y1) inside strata:

old.op <- options("RG.lonely.psu"="remove")
stat.score <- svystatTM(design= exdes, ~y1, by= ~ stratum)
options(old.op)
exdes2<-des.addvars(exdes,

sim.score=stat.score[match(stratum,stat.score$stratum),2])
exdes.clps3 <- collapse.strata(exdes2,~sr:procod,~sim.score)
exdes.clps3

Compute total estimates of y1 at the province level
for all 3 designs with collapsed strata:
stat.clps1 <- svystatTM(design= exdes.clps1, y= ~ y1, by= ~ procod,

estimator= "Total", vartype= "cvpct")
stat.clps2 <- svystatTM(design= exdes.clps2, y= ~ y1, by= ~ procod,

estimator= "Total", vartype= "cvpct")
stat.clps3 <- svystatTM(design= exdes.clps3, y= ~ y1, by= ~ procod,

estimator= "Total", vartype= "cvpct")

Compute the same estimates by using two alternatives
to handle lonely PSUs:

"adjust" option
old.op <- options("RG.lonely.psu"="adjust")
stat.adj <- svystatTM(design= exdes, y= ~ y1, by= ~ procod,

estimator= "Total", vartype= "cvpct")
options(old.op)
"average" option

old.op <- options("RG.lonely.psu"="average")
stat.ave <- svystatTM(design= exdes, y= ~ y1, by= ~ procod,

estimator= "Total", vartype= "cvpct")
options(old.op)

Lastly, compare achieved estimates for CV percentages:
stat.clps1
stat.clps2
stat.clps3
stat.adj
stat.ave

16 collapse.strata

Thus the qualitative features are as expected: the "adjust" option
tends to give conservative sampling variance estimates, the WRONG collapsing
strategy 3) tends to underestimate sampling variance, while other methods
give results in-between those extrema.

###
A simple way for defining the strata similarity scores.
###
Suppose that strata have been clustered in groups of similar
strata. You can, then, use the integer codes of the factor
variable identifying the clusters as a similarity score.
You can do as follows:

Load some data:
data(fpcdat)

Build a design object:
fpcdes<-e.svydesign(data=fpcdat,ids=~psu+ssu,strata=~stratum,weights=~w)
fpcdes

As we deliberately omitted to specify fpcs, this design
has 2 lonely strata out of 5:

find.lon.strata(fpcdes)

Now, suppose that factor variable pl.domain identifies clusters of
similar strata...

table(fpcdat$stratum,fpcdat$pl.domain)

...hence, the similarity score can be obtained simply...
fpcdes<-des.addvars(fpcdes,score=unclass(pl.domain))

...and readily be used to drive the strata collapsing:
fpcdes.clps<-collapse.strata(fpcdes,sim.score=~score)
fpcdes.clps
clps.strata.status

As we expected from the groups defined by pl.domain, lonely stratum S.2
has been paired to S.3, and lonely stratum S.5 to S.4.

Should we have omitted to specify a similarity score, we would have
obtained different superstrata:

fpcdes.clps2<-collapse.strata(fpcdes)
fpcdes.clps2
clps.strata.status

###
Few examples to inspect the clps.strata.status list generated
for diagnostics purposes.
###

1) Ill defined blocks: cutting across strata:
Not run:
clps.err1 <- collapse.strata(exdes,~sex)

End(Not run)

contrasts.RG 17

clps.strata.status

2) Ill defined blocks: generating non-aggregable strata
Not run:
clps.err2 <- collapse.strata(exdes,~regcod:stratum)

End(Not run)
clps.strata.status

3) Successful collapsing: explore strata to superstrata mapping
exdes.ok <- collapse.strata(exdes,~sr:regcod:procod)
clps.strata.status

contrasts.RG Set, Reset or Switch Off Contrasts for Calibration Models

Description

These functions control the way ReGenesees translates a symbolic calibration model (as specified
by the calmodel formula in e.calibrate, pop.template, fill.template, aux.estimates, . . .)
to its numeric encoding (i.e. the model-matrix used by the internal algorithms to perform actual
computations).

Usage

contrasts.RG()
contrasts.off()
contrasts.reset()
contr.off(n, base = 1, contrasts = TRUE, sparse = FALSE)

Arguments

n Formally as in function contr.treatment (see ‘Details’).

base Formally as in function contr.treatment (see ‘Details’).

contrasts Fictitious, but formally as in function contr.treatment. (see ‘Details’)

sparse Formally as in function contr.treatment. (see ‘Details’)

Details

All the calibration facilities in package ReGenesees transform symbolic calibration models (as
specified by the user via calmodel) into numeric model-matrices. Factor variables occurring in
calmodel play a special role in such transformations, as the encoding of a factor can (and, by
default, do) depend on the structure of the formula in which it occurs. The ReGenesees functions
documented below control the way factor levels are translated into auxiliary variables and mapped
to columns of population totals data frames. The underlying technical tools are contrasts handling
functions (see Section ’Technical Remarks and Warnings’ for further details).

Under the calibration perspective, ordered and unordered factors appearing in calmodel must be
treated the same way. This obvious constraint defines the ReGenesees default for contrasts han-
dling. Such a default is silently set when loading the package. Moreover, you can set it also by
calling contrasts.RG(). As can be understood by reading Section ’Technical Remarks and Warn-
ings’ below, the default setup can be seen as “efficient-but-slightly-risky”.

18 contrasts.RG

A call to contrasts.off() simply disables all contrasts and imposes a complete dummy coding
of factors. Under this setup, all levels of factors occurring in calmodel generate a distinct model-
matrix column, even if some of these columns can be linearly dependent. To be very concise, the
contrasts.off() setup can be seen as “safe-but-less-efficient” as compared to the default one
(read Section ’Technical Remarks and Warnings’ for more details).

Function contr.off is not meant to be called directly by users: it serves only the purpose of
enabling the contrasts.off() setup.

A call to contrasts.reset() restores R factory-fresh defaults for contrasts (which do distinguish
ordered and unordered factors). Users may want to use this function after having completed a
ReGenesees session, e.g. before switching to other R functions relying on contrasts (such as lm,
glm, . . .).

Technical Remarks and Warnings

“[...] the corner cases of model.matrix and friends is some of the more impenetrable code in the R
sources.”
Peter Dalgaard

Contrasts handling functions tell R how to encode the model-matrix associated to a given model-
formula on specific data (see, e.g., contr.treatment, contrasts, model.matrix, formula, and
references therein). More specifically, contrasts control the way factor-terms and interaction-terms
occurring in formulae get actually represented in the model matrix. For instance, R (by default)
avoids the complete dummy coding of a factor whenever it is able to understand, on the basis of
the structure of the model-formula, that some of the factor levels would generate linearly dependent
(i.e. redundant) columns in the model-matrix (see Section ’Examples’).

The usage of contrasts to build smaller, full-rank calibration model-matrices would be a good op-
portunity for ReGenesees, provided it comes without any information loss. Indeed, smaller model-
matrices mean less population totals to be provided by users, and higher efficiency in computations.

Unfortunately, few controversial cases have been signalled in which R ability to "simplify" a model-
matrix on the basis of the structure of the related model-formula seems to lead to strange, unex-
pected results (see, e.g., this R-help thread). No matter whether such R behaviour is or not an actual
bug with respect to its impact on R linear model fitting or ANOVA facilities, it surely represents
a concern for ReGenesees with respect to calibration (see Section ’Examples’). The risk is the
following: there could be rare cases in which exploiting R contrasts handling functions inside Re-
Genesees ends up with a wrong (i.e. incomplete) population totals template, and (eventually) with
wrong calibration results.

Though one could adopt several ad-hoc countermeasures to sterilize the risk described above while
still taking advantage of contrasts (see Section ’Examples’), the choice of completely disabling con-
trasts via contrasts.off() would result in a 100% safety guarantee. If computational efficiency
is not a serious concern for you, switching off contrasts may determine the best ReGenesees setup
for your analyses.

Author(s)

Diego Zardetto

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical models. Chapter 2 of Statistical Models in S eds
J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

http://tolstoy.newcastle.edu.au/R/e17/help/12/01/2497.html
http://tolstoy.newcastle.edu.au/R/e17/help/12/01/2375.html

contrasts.RG 19

"Why does the order of terms in a formula translate into different models/model matrices?", R-help
thread.

See Also

e.calibrate, pop.template, fill.template, and aux.estimates for the meaning and the us-
age of calmodel in ReGenesees. formula, model.matrix, contrasts, and contr.treatment to
understand the role of contrasts in R.

Examples

######################
Easy things first:
######################

1) When ReGenesees is loaded, its standard way of handling contrasts
(i.e. no ordered-unordered factor distinction) is silently set:

options("contrasts")

2) To switch off contrasts (i.e. apply always dummy coding to factors),
simply type:

contrasts.off()

3) To restore R factory-fresh defaults for contrasts, simply type:
contrasts.reset()

4) To switch on again standard ReGenesees contrasts, simply type:
contrasts.RG()

###
A simple calibration example to understand the effects of
switching off contrasts.
###

Load sbs data:
data(sbs)

Create a design object:
sbsdes<-e.svydesign(data=sbs,ids=~id,strata=~strata,weights=~weight,fpc=~fpc)

Suppose you want to calibrate on the marginals of 'region' (a factor
with 3 levels: "North", "Center", and "South") and 'dom3' (a factor
with 4 levels: "A", "B", "C", and "D").
Let's see how things go under the 'contrast on' (default) and 'contrasts off'
setups:

##
1) ReGenesees default: contrasts ON.
##
As you see contrasts are ON:
options("contrasts")

Build and fill the population totals template:
temp1<-pop.template(data=sbsdes,calmodel=~region+dom3-1)
pop1<-fill.template(universe=sbs.frame,template=temp1)

http://tolstoy.newcastle.edu.au/R/e17/help/12/01/2375.html

20 contrasts.RG

Now inspect the obtained known totals data.frame:
pop1

As you see: (i) it has only 6 columns, and (ii) the "A" level of
factor 'dom3' is missing. This is because contrasts are ON, so that
R is able to understand that only 6 out of the 3 + 4 marginal counts
are actually independent. Indeed, the "A" counts...
sum(sbs.frame$dom3=="A")

...are actually redundant, since they can be deduced by pop1:
sum(pop1[,1:3])-sum(pop1[,4:6])

Now calibrate:
cal1<-e.calibrate(sbsdes,pop1)

##
2) Switch OFF contrasts: dummy coding for all!
##
To switch off contrasts simply call:
contrasts.off()

Build and fill the population totals template:
temp2<-pop.template(data=sbsdes,calmodel=~region+dom3-1)
pop2<-fill.template(universe=sbs.frame,template=temp2)

Now inspect the obtained known totals data.frame:
pop2

As you see: (1) it has now 7 columns, and (2) the "A" level of factor
'dom3' has been resurrected. This is because contrasts are OFF,
so that each level of factors in calmodel are coded to dummies.

Now calibrate. Since only 6 out of 7 dummy auxiliary variables are
actually independent, the model.matrix computed by e.calibrate will not be
full-rank. As a consequence, e.calibrate would use the Moore-Penrose
generalized inverse (in practice, this could depend on the machine R
is running on):
cal2<-e.calibrate(sbsdes,pop2)

Compare the calibration weights generated under setups 1) and 2):
all.equal(weights(cal2),weights(cal1))

Lastly set back contrasts to ReGenesees default:
contrasts.RG()

###
Weird results, risks and countermeasures.
("When the going gets tough...")
###

Suppose you want to calibrate on: (A) the joint distribution of 'region' (a
factor with 3 levels: "North", "Center", and "South") and 'nace.macro' (a
factor with 4 levels: "Agriculture", "Industry", "Commerce", and "Services")
and, at the same time, on (B) the total number of employees ('emp.num', a
numeric variable) by 'nace.macro'.

contrasts.RG 21

#
You rightly expect that 3*4 + 4 = 16 population totals are needed for such a
calibration task. Indeed, knowing the enterprise counts for the 3*4 cells of
the joint distribution (A) doesn't tell anything on the number of employees
working in the 4 nace macrosectors (B), and vice-versa.
#
Moreover, you might expect that calibration models:

(i) calmodel = ~region:nace.macro + emp.num:nace.macro - 1
(ii) calmodel = ~emp.num:nace.macro + region:nace.macro - 1

#
should produce the same results.
Unfortunately, WHEN CONTRASTS ARE ON, this is not the case: only model (i)
leads to the expected, right results. Let's see.

###
A strange result when contrasts are ON:
the order of terms in calmodel matters!
###
As you see contrasts are ON:
options("contrasts")

Start with (i) calmodel = ~region:nace.macro + emp.num:nace.macro - 1
Build and fill the population totals template:
temp1<-pop.template(data=sbsdes,~region:nace.macro+emp.num:nace.macro-1)
pop1<-fill.template(universe=sbs.frame,template=temp1)

Now inspect the obtained known totals data.frame:
pop1

and verify it stores the right, expected number of totals (i.e. 16):
dim(pop1)

Now calibrate:
cal1<-e.calibrate(sbsdes,pop1)

Now compare with (ii) calmodel = ~emp.num:nace.macro + region:nace.macro - 1
Build and fill the population totals template:
temp2<-pop.template(data=sbsdes,~emp.num:nace.macro+region:nace.macro-1)
pop2<-fill.template(universe=sbs.frame,template=temp2)

First check if it stores the right, expected number of totals (i.e. 16):
dim(pop2)

Apparently 4 totals are missing; let's inspect the known totals data.frame
to understand which ones:
pop2

Thus we are missing the 4 'nace.macro' totals for 'region' level "North".
Everything goes as if R contrasts functions mistakenly treated the term
emp.num:nace.macro as a factor-factor interaction (i.e. a 2 way joint
distribution), which would have justified to eliminate the 4 missing totals
as redundant.

Notice that calibrating on pop2 would generate wrong results...
cal2<-e.calibrate(sbsdes,pop2)

22 contrasts.RG

...indeed the 4 estimates of 'nace.macro' for 'region' level "North" are not
actually calibrated (look at the magnitude of SE estimates):
svystatTM(cal2,~region,~nace.macro)

##
A possible countermeasure (still working with contrasts ON).
##
Empirical evidence tells that the weird case above is extremely rare
and that it manifests whenever a numeric (say X) and a factor (say F) both
interact with the same factor (say D), i.e. calmodel=~(X+F):D-1.
#
The risky order-dependent nature of such models can be sterilized (while
still taking advantage of contrasts-driven simplifications for large,
complex calibrations) by using a numeric variable with values 1 for
all sample units.
#
For instance, one could use variable 'ent' in the sbs data.frame, to
handle the (A) part of the calibration constraints. Indeed you may easily
verify that both the calmodel formulae below:
(i) calmodel = ~ent:region:nace.macro + emp.num:nace.macro - 1
(ii) calmodel = ~emp.num:nace.macro + ent:region:nace.macro - 1
#
produce exactly the same, right results.

##
THE ULTIMATE, 100% SAFE, COUNTERMEASURE: switch contrasts OFF!
##
No contrasts means no model-matrix simplifications at all, hence
also no unwanted, wrong simplifications. Let's see:

To switch off contrasts simply call:
contrasts.off()

Compare again, with contrasts OFF, the calibration models:
(i) calmodel = ~region:nace.macro + emp.num:nace.macro - 1
(ii) calmodel = ~emp.num:nace.macro + region:nace.macro - 1

Build and fill the population totals templates:
temp1<-pop.template(data=sbsdes,~region:nace.macro+emp.num:nace.macro-1)
pop1<-fill.template(universe=sbs.frame,template=temp1)
pop1

temp2<-pop.template(data=sbsdes,~emp.num:nace.macro+region:nace.macro-1)
pop2<-fill.template(universe=sbs.frame,template=temp2)
pop2

Verify they store the same, right number of totals (i.e. 16):
dim(pop1)
dim(pop2)

Verify they lead to right calibrated objects...
cal1<-e.calibrate(sbsdes,pop1)
cal2<-e.calibrate(sbsdes,pop2)

...with the same calibrated weights:

Corr 23

all.equal(weights(cal2),weights(cal1))

Lastly set back contrasts to ReGenesees default:
contrasts.RG()

Corr Design Covariance and Correlation of Complex Estimators in Sub-
populations

Description

Estimates the covariance and the correlation of Complex Estimators in subpopulations. A Complex
Estimator can be any analytic function of (Horvitz-Thompson or Calibration) estimators of Totals
and Means.

Usage

CoV(design, expr1, expr2,
by = NULL, na.rm = FALSE)

Corr(design, expr1, expr2,
by = NULL, na.rm = FALSE)

Arguments

design Object of class analytic (or inheriting from it) containing survey data and sam-
pling design metadata.

expr1 R expression defining the first Complex Estimator (see ‘Details’).

expr2 R expression defining the second Complex Estimator (see ‘Details’).

by Formula specifying the variables that define the "estimation domains". If NULL
(the default option) estimates refer to the whole population.

na.rm Should missing values (if any) be removed from the variables of interest? The
default is FALSE (see ‘Details’).

Details

This function allows to estimate the covariance and the correlation of two arbitrary Complex Esti-
mators. Estimates are calculated using the Taylor linearization technique.

The mandatory arguments expr1 and expr2 identify the Complex Estimators: both must be of class
expression. For further details on the syntax and the semantics of such expressions, see svystatL.

The optional argument by specifies the variables that define the "estimation domains", that is the
subpopulations for which the estimates are to be calculated. If by=NULL (the default option), the
estimates produced by CoV (Corr) refer to the whole population. Estimation domains must be
defined by a formula: for example the statement by=~B1:B2 selects as estimation domains the
subpopulations determined by crossing the modalities of variables B1 and B2. Notice that a formula
like by=~B1+B2 will be automatically translated into the factor-crossing formula by=~B1:B2: if you
need to compute estimates for domains B1 and B2 separately, you have to call CoV (Corr) twice.
The design variables referenced by by (if any) should be of type factor, otherwise they will be
coerced.

Missing values (NA) in interest variables should be avoided. If na.rm=FALSE (the default) they gen-
erate NAs in estimates (or even an error, if design is calibrated). If na.rm=TRUE, observations

24 Corr

containing NAs are dropped, and estimates gets computed on non missing values only. This implic-
itly assumes that missing values hit interest variables completely at random: should this be not the
case, computed estimates would be biased.

Value

An object inheriting from the data.frame class, whose detailed structure depends on input param-
eters’ values.

Author(s)

Diego Zardetto

References

Sarndal, C.E., Swensson, B., Wretman, J. (1992) "Model Assisted Survey Sampling", Springer Ver-
lag.

See Also

Estimators of Totals and Means svystatTM, Ratios between Totals svystatR, Multiple Regres-
sion Coefficients svystatB, Quantiles svystatQ, and Complex Analytic Functions of Totals and/or
Means svystatL.

Examples

##
Some checks and some simple examples
to illustrate the syntax.
##
Load survey data:
data(data.examples)

Creation of a design object:
des<-e.svydesign(data=example,ids=~towcod+famcod,strata=~SUPERSTRATUM,

weights=~weight)

Let's start with some natural checks:
The covariance of any estimator with itself is its variance
(use mean income as an example):

CoV(des,expression(income/ones),expression(income/ones))
VAR(svystatL(des,expression(income/ones)))
VAR(svystatTM(des,~income,estimator="Mean"))

The correlation of any estimator with itself is 1
(use mean income as an example):

Corr(des,expression(income/ones),expression(income/ones))

Switch to non trivial examples:
Correlation of mean income with population size:

Corr(des,expression(income/ones),expression(ones))

Correlation of mean income with total income:
at population level:
Corr(des,expression(income/ones),expression(income))
for regions:

Corr 25

Corr(des,expression(income/ones),expression(income),by=~regcod)

Correlation of a product of two totals and a ratio of two totals:
at population level:
Corr(des,expression(y1*y2),expression(x1/x2))
for provinces:
Corr(des,expression(income/ones),expression(income),by=~procod)

##
A more meaningful and complex example: correlation
between Geometric, Harmonic and Arithmetic Means.
##
Creation of another design object:
data(sbs)
sbsdes<-e.svydesign(data=sbs,ids=~id,strata=~strata,weights=~weight,

fpc=~fpc)

Let's use variable emp.num, which is ok as it is always strictly positive:
Add a convenience variable for estimating the harmonic mean (see ?svystatL
for details) and prepare the formal estimator expression:

sbsdes<-des.addvars(sbsdes,emp.num.m1=1/emp.num)
h<-expression(ones/emp.num.m1)

Add a convenience variable for estimating the geometric mean (see ?svystatL
for details) and prepare the formal estimator expression:

sbsdes<-des.addvars(sbsdes,log.emp.num=log(emp.num))
g<-expression(exp(log.emp.num/ones))

prepare the formal estimator expression for the arithmetic mean:
m<-expression(emp.num/ones)

Now compute correlations:
Harmonic with Arithmetic:

Corr(sbsdes,h,m)

Geometric with Arithmetic:
Corr(sbsdes,g,m)

Harmonic with Geometric:
Corr(sbsdes,h,g)

Hence, while correlations g-m and g-h are high, correlation h-m is low.

##
Another example: is a ratio estimator of a total
expected to be more efficient than an HT one?
##

Let's recall that the ratio estimator of a total is
expected to be more efficient than HT, if the
correlation of numerator and denominator exceeds
half of the ratio between the CVs of denominator
and numerator.

26 data.examples

Compute the HT estimate of the total of value added (variable va.imp2):
VA<-svystatTM(sbsdes,~va.imp2)
VA

Compute the HT estimate of the total of emp.num:
EMP<-svystatTM(sbsdes,~emp.num)
EMP

Now estimate the correlation of the numerator
and denominator totals:
corr <- Corr(sbsdes,expression(va.imp2),expression(emp.num))
corr

and compare it with (1/2)*(CV(den)/CV(num))
stopifnot(corr > 0.5*cv(EMP)/cv(VA))

As the comparison holds TRUE, we expect an efficiency gain
of the ratio estimator of the total compared to HT.
Let's check...:

Compute the ratio estimate of the total of value added using
as auxiliary variable the number of emloyees, whose total
is 984394:
sum(sbs.frame$emp.num)
VA.ratio<-svystatL(sbsdes,expression(984394*va.imp2/emp.num))
VA.ratio

Compare standard errors sizes:
SE(VA.ratio)
SE(VA)
stopifnot(SE(VA.ratio) < SE(VA))

...as expected.

data.examples Artificial Household Survey Data

Description

Example data frames and functions. Allow to run R code contained in the ’Examples’ section of
the ReGenesees package help pages.

Usage

data(data.examples)

Format

The main data frame, named example, contains (artificial) data from a two stage stratified cluster
sampling design. The sample is made up of 3000 final units, for which the following 21 variables
were observed:

towcod Code identifying "variance PSUs": towns (PSUs) in not-self-representing (NSR) strata,
families (SSUs) in self-representing (SR) strata, numeric

data.examples 27

famcod Code identifying families (SSUs), numeric
key Key identifying final units (individuals), numeric
weight Initial weights, numeric
stratum Stratification variable, factor with levels 801 802 803 901 902 903 904 905 906 907

908 1001 1002 1003 1004 1005 1006 1007 1008 1009 1101 1102 1103 1104 3001 3002 3003
3004 3005 3006 3007 3008 3009 3010 3011 3012 3101 3102 3103 3104 3105 3106 3107
3108 3201 3202 3203 3204 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411
5412 5413 5414 5415 5416 5501 5502 5503 5504 9301 9302 9303 9304 9305 9306 9307
9308 9309 9310 9311 9312

SUPERSTRATUM Collapsed strata variable (eliminates lonely PSUs), factor with levels 1 2 3 4 5 6
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

sr Strata type, integer with values 0 (NSR strata) and 1 (SR strata)
regcod Code identifying regions, factor with levels 6 7 10

procod Code identifying provinces, factor with levels 8 9 10 11 30 31 32 54 55 93

x1 Indicator variable (integer), numeric
x2 Indicator variable (integer), numeric
x3 Indicator variable (integer), numeric
y1 Indicator variable (integer), numeric
y2 Indicator variable (integer), numeric
y3 Indicator variable (integer), numeric
age5c Age variable with 5 classes, factor with levels 1 2 3 4 5

age10c Age variable with 10 classes, factor with levels 1 2 3 4 5 6 7 8 9 10

sex Sex variable, factor with levels f m

marstat Marital status variable, factor with levels married unmarried widowed

z A continuous quantitative variable, numeric
income Income variable, numeric

Details

Objects pop01, . . . , pop07pp contain known population totals for various calibration models. Ob-
ject pairs with names differing in the ’p’ suffix (such as pop03 and pop03p) refer to the same
calibration problem but pertain to different solution methods (global and iterative respectively, see
e.calibrate). The two-component numeric vector bounds expresses a possible choice for the
allowed range for the ratios between calibrated weights and direct weights in the aforementioned
calibration problems.

Warning

Data in the example data frame are artificial. The structure of example intentionally resambles
the one of typical household survey data, but the values it stores are unreliable. The only purpose of
such data is that they can be fruitfully exploited to illustrate the syntax and the working mechanism
of the functions provided by the ReGenesees package.

Examples

data(data.examples)
head(example)
str(example)

28 des.addvars

des.addvars Add Variables to Design Objects

Description

Modifies an analytic object by adding new variables to it.

Usage

des.addvars(design, ...)

Arguments

design Object of class analytic (or inheriting from it) containing survey data and sam-
pling design metadata.

... tag = expr arguments defining columns to be added to design.

Details

This function adds to the data frame contained in design the new variables defined by the tag = expr
arguments. A tag can be specified either by means of an identifier or by a character string; expr
can be any expression that it makes sense to evaluate in the design environment.

For each argument tag = expr bound to the formal argument ... the added column will have
name given by the tag value and values obtained by evaluating the expr expression on design.
Any input expression not supplied with a tag will be ignored and will therefore have no effect on
the des.addvars return value.

Variables to be added to the input object have to be new: namely it is not possible to use des.addvars
to modify the values in a pre-existing design column. This an intentional feature meant to safe-
guard the integrity of the relations between survey data and sampling design metadata stored in
design.

Value

An object of the same class of design, containing new variables but supplied with exactly the same
metadata.

Author(s)

Diego Zardetto

See Also

e.svydesign to bind survey data and sampling design metadata, e.calibrate for calibrating
weights.

des.merge 29

Examples

data(data.examples)

Creation of an analytic object:
des<-e.svydesign(data=example,ids=~towcod+famcod,strata=~SUPERSTRATUM,

weights=~weight)

Adding the new 'ones' variable to estimate the number
of final units in the population:
des<-des.addvars(des,ones=1)
svystatTM(des,~ones)

Recoding a qualitative variable:
des<-des.addvars(des,agerange=factor(ifelse(age5c==1,

"young","not-young")))
svystatTM(des,~agerange,estimator="Mean")
svystatTM(des,~income,~agerange,estimator="Mean",conf.int=TRUE)

Algebraic operations on numeric variables:
des<-des.addvars(des,z2=z^2)
svystatTM(des,~z2,estimator="Mean")

A more interesting example: estimating the
percentage of population with income below
the poverty threshold (defined as 0.6 times
the median income for the whole population):
Median.Income <- coef(svystatQ(des, ~income,probs=0.5))
Median.Income
des <- des.addvars(des,

status = factor(
ifelse(income < (0.6 * Median.Income),
"poor","not-poor")

)
)

svystatTM(des,~status,estimator="Mean")
Mean income for poor and not-poor:
svystatTM(des,~income,~status,estimator="Mean")

des.merge Merge New Survey Data into Design Objects

Description

Modifies an analytic object by joining the original survey data with a new data frame via a common
key.

Usage

des.merge(design, data, key)

Arguments

design Object of class analytic (or inheriting from it) containing survey data and sam-
pling design metadata.

30 des.merge

data Data frame containing a key variable, plus new variables to be merged to design
data.

key Formula identifying the common key variable to be used for merging.

Details

This function updates the survey variables contained into design (i.e. design$variables), by
merging the original data with those contained into the data data frame. The merge operation
exploits a single variable key, which must be common to both design and data.

The function preserves both the original ordering of the survey data stored into design, as well as
all the original sampling design metadata.

The variable referenced by key must be a valid unique key for both design and data: it must not
contain duplicated values, nor NAs. Moreover, the values of key in design and data must be in
1:1 correspondence. These requirements are meant to ensure that the new survey data (that is the
merged ones) will have exactly the same number of rows as the old survey data stored into design.

Should design and data contain further common variables besides the key, only their original
design version will be retained. Thus, des.merge cannot modify any pre-existing design columns.
This an intentional feature intended to safeguard the integrity of the relations between survey data
and sampling design metadata stored in design.

Value

An object of the same class of design, containing additional survey data but supplied with exactly
the same metadata.

Practical Purpose

In the field of Official Statistics, it is not unfrequent that calibration weights must be computed even
several months before the target variables of the survey are made available for estimation. Such a
time lag follows from the fact that target variables tipically undergo much more thorough editing
and imputation procedures than auxiliary variables.

In such production scenarios, function des.merge allows to tackle the task of computing estimates
and errors for the fresh-released target variables without any need of repeating the calibration step.
Indeed, by using the function, one can join the data contained into an already calibrated design
object with new data made available only after the calibration step. The merge operation is made
easy and safe, and preserves all the original calibration metadata (e.g. those needed for variance
estimation).

Author(s)

Diego Zardetto

See Also

e.svydesign to bind survey data and sampling design metadata, e.calibrate for calibrating
weights, des.addvars to add new variables to design objects.

Examples

data(data.examples)

Create a design object:

des.merge 31

des<-e.svydesign(data=example,ids=~towcod+famcod,strata=~SUPERSTRATUM,
weights=~weight)

Create a calibrated design object as well (e.g. using population totals
stored inside pop03p):
cal<-e.calibrate(design=des,df.population=pop03p,

calmodel=~marstat-1,partition=~sex,calfun="logit",
bounds=bounds)

Lastly create a new data frame to be merged into des and cal:
set.seed(12345) # RNG seed fixed for reproducibility
new.data<-example[,c("income","key")]
new.data$income <- 1000 + new.data$income # altered income values
new.data$NEW.f<-factor(sample(c("A","B"),nrow(new.data),rep=TRUE))
new.data$NEW.n<-rnorm(nrow(new.data),10,2)
new.data <- new.data[sample(1:nrow(new.data)),] # rows ordering changed
head(new.data)

###
Example 1: merge new data into a non calibrated design.
###

Merge new data inside des (note the warning on income):
des2<-des.merge(design=des,data=new.data,key=~key)

Compare visually:
before:
head(des$variables)
after:
head(des2$variables)

New data can be used as usual:
svystatTM(des2,~NEW.n,~NEW.f,vartype="cvpct")

Old data are unaffected, as it must be:
svystatTM(des,~income,estimator="Mean",vartype="cvpct")
svystatTM(des2,~income,estimator="Mean",vartype="cvpct")

###
Example 2: merge new data into a calibrated design.
###

Merge new data inside cal (note the warning on income):
cal2<-des.merge(design=cal,data=new.data,key=~key)

Compare visually:
before:
head(cal$variables)
after:
head(cal2$variables)

New data can be used as usual:
svystatTM(cal2,~NEW.n,~NEW.f,vartype="cvpct")

Old data are unaffected, as it must be:
svystatTM(cal,~income,estimator="Mean",vartype="cvpct")
svystatTM(cal2,~income,estimator="Mean",vartype="cvpct")

32 drop.gvf.points

drop.gvf.points Drop Outliers and Refit a GVF Model

Description

This function drops observations (alleged outliers) from a fitted GVF model and simultaneously
re-fits the model.

Usage

drop.gvf.points(x, method = c("pick", "cut"), which.plot = 1:2,
res.type = c("standard", "student"), res.cut = 3,
id.n = 3, labels.id = names(residuals(x)),
cex.id = 0.75, label.pos = c(4, 2),
cex.caption = 1, col = NULL, drop.col = "red",
...)

Arguments

x An object containing a single fitted GVF model (i.e. of class gvf.fit or gvf.fit.gr).

method character specifying the method for identifying observations to be dropped
(see ‘Details’); it may be either 'pick' (the default) or 'cut'.

which.plot integer controlling the nature of the plot(s) that are used to identify and/or
visualize the observations to be dropped: 1 means ‘Observed vs Fitted’, 2 means
‘Residuals vs Fitted’ (see ‘Details’).

res.type character specifying what kind of residuals must be used.

res.cut A positive value: observations to be dropped will be those with residuals whose
absolute value exceeds 'res.cut'. Only meaningful if method is 'cut'.

id.n Number of points to be initially labelled in each plot, starting with the most
extreme. Only meaningful if method is 'pick'.

labels.id Vector of labels, from which the labels for extreme points will be chosen. NULL
uses observation numbers.

cex.id Magnification of point labels.

label.pos Positioning of labels, for the left half and right half of the graph(s) respectively.

cex.caption Controls the size of caption.

col Color to be used for the points in the plot(s).

drop.col Color to be used to visualize and annotate the points to be dropped in the plot(s).

... Other parameters to be passed through to plotting functions.

Details

This function drops observations (alleged outliers) from a single fitted GVF model and simulta-
neously re-fits the model. As a side effect, the function prints on screen the induced change for
selected quality measures (see, e.g., getR2).

If method = "pick", observations to be dropped are identified interactively by clicking on points
of a plot (see ‘Note’). Argumemt which.plot determines the nature of the plot: value 1 is for
‘Observed vs Fitted’, value 2 is for ‘Residuals vs Fitted’. In the latter case, argument res.type

drop.gvf.points 33

specifies what kind of residuals have to be plotted. Argument id.n specifies how many points have
to be labelled initially, starting with the most extreme in terms of the selected residuals: this applies
to both kinds of plots.

If method = "cut", observations to be dropped are those with residuals whose absolute value
exceeds the value of argument res.cut. Again, argument res.type specifies what kind of residuals
have to be used (and plotted). The points which have been cut will be highlighted on a plot, whose
nature is again specified by argument which.plot. If which.plot = 1:2, dropped points will be
visualized on both the ‘Observed vs Fitted’ and the ‘Residuals vs Fitted’ graphs simultaneously.

Argument drop.col controls the color to be used to visualize and annotate in the plot(s) the points
to be dropped. All the other arguments have the same meaning as in function plot.lm.

Value

An object of the same class as x (i.e. either gvf.fit or gvf.fit.gr), containing the original GVF
model re-fitted after dropping (alleged) outliers.

Note

For method = "pick", function drop.gvf.points is only supported on those screen devices for
which function identify is supported. The identification process can be terminated either by right-
clicking the mouse and selecting ’Stop’ from the menu, or from the ’Stop’ menu on the graphics
window.

Author(s)

Diego Zardetto

See Also

GVF.db to manage ReGenesees archive of registered GVF models, gvf.input and svystat to pre-
pare the input for GVF model fitting, fit.gvf to fit GVF models, plot.gvf.fit to get diagnostic
plots for fitted GVF models, and predictCV to predict CV values via fitted GVF models.

Examples

Load example data:
data(AF.gvf)

Inspect available estimates and errors of counts:
str(ee.AF)

List available registered GVF models:
GVF.db

Fit example data to registered GVF model number one:
m <- fit.gvf(ee.AF, model=1)
m
summary(m)

##
Method 'pick': identify outlier observations to be dropped
interactively by clicking on points of a plot.
##

34 drop.gvf.points

Using the 'Observed vs Fitted' plot (the default):
Not run:
m1 <- drop.gvf.points(m)
m1
summary(m1)

End(Not run)

Using the 'Residuals vs Fitted' plot with standardized
residuals (the default) and increasing id.n to get more
labelled points to guide your choices:

Not run:
m1 <- drop.gvf.points(m, which.plot = 2, id.n = 10)
m1
summary(m1)

End(Not run)

The same as above, but with studentized residuals and
playing with colors:

Not run:
m1 <- drop.gvf.points(m, which.plot = 2, id.n = 10, res.type = "student",

col = "blue", drop.col = "green", pch = 20)
m1
summary(m1)

End(Not run)

###
Method 'cut': identify outlier observations to be dropped
by specifying a threshold for the absolute values of the
residuals.
###
Using default threshold on standardized residuals and visualizing
dropped observations on both 'Observed vs Fitted' and 'Residuals
vs Fitted' plots:

m1 <- drop.gvf.points(m, method ="cut")
m1
summary(m1)

Using a custom threshold on studentized residuals and visualizing
dropped observations on the 'Observed vs Fitted' plot:

m1 <- drop.gvf.points(m, method ="cut", res.type = "student",
res.cut = 2.5, which.plot = 1)

m1
summary(m1)

The same as above, but visualizing dropped observations on the
'Residuals vs Fitted' plot:

m1 <- drop.gvf.points(m, method ="cut", res.type = "student",
res.cut = 2.5, which.plot = 2)

m1
summary(m1)

You can obviously "cut"/"pick" alleged outliers again from an already
"cut"/"picked" fitted GVF model:

e.calibrate 35

m2 <- drop.gvf.points(m1, method ="cut", res.type = "student",
res.cut = 2.5, col = "blue", pch = 20)

m2
summary(m2)

###
Identifying outlier observations to be dropped from "grouped"
GVF fitted models (i.e. x has class 'gvf.fit.gr').
###
Recall we have at our disposal the following survey design object
defined on household data:

exdes

Now use function svystat to prepare "grouped" estimates and errors
of counts to be fitted separately (here groups are regions):

ee <- svystat(exdes, y=~ind, by=~age5c:marstat:sex, combo=3, group=~regcod)
ee
plot(ee)

Fit registered GVF model number one separately inside groups:
m <- fit.gvf(ee, model=1)
m
summary(m)

Now drop alleged outliers separately inside groups:

###
Method 'pick': work interactively group by group.
###

Not run:
m1 <- drop.gvf.points(m, which.plot = 2, res.type = "student", col = "blue",

pch = 20)
m1
summary(m1)

End(Not run)

###
Method 'cut': apply the same threshold to all groups.
###
m1 <- drop.gvf.points(m, method ="cut", res.type = "student", res.cut = 2)
m1
summary(m1)

e.calibrate Calibration of Survey Weights

Description

Adds to an analytic object the calibrated weights column.

36 e.calibrate

Usage

e.calibrate(design, df.population,
calmodel = if (inherits(df.population, "pop.totals"))

attr(df.population, "calmodel"),
partition = if (inherits(df.population, "pop.totals"))

attr(df.population, "partition") else FALSE,
calfun = c("linear", "raking", "logit"),
bounds = c(-Inf, Inf), aggregate.stage = NULL,
sigma2 = NULL, maxit = 50, epsilon = 1e-07, force = TRUE)

Arguments

design Object of class analytic (or inheriting from it) containing survey data and sam-
pling design metadata.

df.population Data frame containing the known population totals for the auxiliary variables.

calmodel Formula defining the linear structure of the calibration model.

partition Formula specifying the variables that define the "calibration domains" for the
model (see ’Details’); FALSE (the default) implies no calibration domains.

calfun character specifying the distance function for the calibration process; the de-
fault is 'linear'.

bounds Allowed range for the ratios between calibrated and initial weights; the default
is c(-Inf,Inf).

aggregate.stage

An integer: if specified, causes the calibrated weights to be constant within
sampling units at this stage.

sigma2 Formula specifying a possible heteroskedasticity effect in the calibration model;
NULL (the default) implies homoskedasticity.

maxit Maximum number of iterations for the Newton-Raphson algorithm; the default
is 50.

epsilon Tolerance for the absolute relative differences between the population totals
and the corresponding estimates based on the calibrated weights; the default
is 10^-7.

force If TRUE, whenever the calibration algorithm does not converge, forces the func-
tion to return a value (see ‘Details’ and ‘Calibration process diagnostics’); the
default is TRUE.

Details

This function creates an object of class cal.analytic. A cal.analytic object makes it possible
to compute estimates and standard errors of calibration estimators [Deville, Sarndal 92] [Deville,
Sarndal, Sautory 93].

The mandatory argument calmodel symbolically defines the calibration model you intend using,
that is - in the language of the Generalized Regression Estimator - the assisting linear regression
model underlying the calibration problem. More specifically, the calmodel formula identifies the
auxiliary variables and the constraints for the calibration problem, with a notation inspired by
[Wilkinson, Rogers 73]. For example, calmodel=~(X+Z):C+(A+B):D-1 defines the calibration
problem in which constraints are imposed: (i) on the totals of auxiliary (quantitative) variables X
and Z within the subpopulations identified by the (qualitative) classification variable C and, at the
same time, (ii) on the absolute frequency of the (qualitative) variables A and B within the subpopu-
lations identified by the (qualitative) classification variable D.

e.calibrate 37

The design variables referenced by calmodel must be numeric or factor and must not contain
any missing value (NA).

Problems for which one or more qualitative variables can be "factorized" in the formula that spec-
ifies the calibration model, are particularly interesting. These variables split the population into
non-overlapping subpopulations known as "calibration domains" for the model. An example is
provided by the statement calmodel=~(A+B+X+Z-1):D in which the variable that identifies the cal-
ibration domains is D; similarly, the formula calmodel=~(A+B+X+Z-1):D1:D2 identifies as calibra-
tion domains the subpopulations determined by crossing the modalities of D1 and D2. The interest
in models of this kind lies in the fact that the global calibration problem they describe can, actually,
be broken down into local subproblems, one per calibration domain, which can be solved separately
[Vanderhoeft 01]. Thus, for example, the global problem defined by calmodel=~(A+B+X+Z-1):D
is equivalent to the sequence of problems defined by the "reduced model" calmodel=~A+B+X+Z-1
in each of the domains identified by the modalities of D. The opportunity to separately solve the
subproblems related to different calibration domains achieves a significant reduction in computa-
tion complexity: the gain increases with increasing survey data size and (most importantly) with
increasing auxiliary variables number.

The optional argument partition makes it possible to choose, in cases in which the calibration
problem can be factorized, whether to solve the problem globally or iteratively (that is, separately
for each calibration domain). The global solution (which is the default option) can be selected invok-
ing the e.calibrate function with partition=FALSE. To request the iterative solution - a strongly
recommended option when dealing with a lot of auxiliary variables and big data sizes - it is neces-
sary to specify via partition the variables defining the calibration domains for the model. If a for-
mula is passed through the partition argument (for example: partition=~D1:D2), the program
checks that calmodel actually describes a "reduced model" (for example: calmodel=~A+B+X+Z-1),
that is it does not reference any of the partition variables; if this is not the case, the program stops
and prints an error message. Notice that a formula like partition=~D1+D2 will be automatically
translated into the factor-crossing formula partition=~D1:D2.
The design variables referenced by partition (if any) must be factor and must not contain any
missing value (NA).

The mandatory argument df.population is used to specify the known totals of the auxiliary vari-
ables referenced by calmodel within the subpopulations (if any) identified by partition. These
known totals must be stored in a data frame whose structure (i) depends on the values of calmodel
and partition and (ii) must conform to a standard. In order to facilitate understanding of and
compliance with this standard, the ReGenesees package provides the user with three functions:
pop.template, population.check, and fill.template. The pop.template function is able to
guide the user in constructing the known totals data frame for a specific calibration problem, the
fill.template function can be exploited to automatically fill the template when a sampling frame
is available, while the population.check function allows to check whether a known totals data
frame conforms to the standard required by e.calibrate. In any case, if the df.population
data frame does not comply with the standard, the e.calibrate function stops and prints an error
message: the meaning of the message should help the user diagnose the cause of the problem.

The calfun argument identifies the distance function to be used in the calibration process. Three
built-in functions are provided: "linear", "raking", and "logit" (see [Deville, Sarndal, Sautory
93]). The default is "linear", which corresponds to the euclidean metric and yields the General-
ized Regression Estimator (provided that no range restrictions are imposed on the g-weights). The
"raking" distance corresponds to the "multiplicative method" of [Deville, Sarndal, Sautory 93].

The bounds argument allows to add "range constraints" to the calibration problem. To be precise,
the interval defined by bounds will contain the values of the ratios between final (calibrated) and
initial (direct) weights. The default value is c(-Inf,Inf), i.e. no range constraints are imposed.
These constraints are optional unless the "logit" function is selected: in the latter case the range
defined by bounds has to be finite (see, again, [Deville, Sarndal, Sautory 93]).

38 e.calibrate

The value passed by the aggregate.stage argument must be an integer between 1 and the number
of sampling stages of design. If specified, causes the calibrated weights to be constant within sam-
pling units selected at the aggregate.stage stage (actually this is only allowed if the initial weights
had already this property, as it is sometimes the case in multistage cluster sampling). If not spec-
ified, the calibrated weights may differ even for sampling units with identical initial weights. The
same holds if some final units belonging to the same cluster selected at the stage aggregate.stage
fall in distinct calibration domains (i.e. if the domains defined by partition "cut across" the
aggregate.stage-stage clusters).

The argument sigma2 can be used to take into account a possible heteroskedasticity effect in the
(assisting linear regression model underlying the) calibration problem. In such cases, sigma2 must
identify some variable to which the variances of the error terms are believed to be proportional.
Notice that sigma2 can also be interpreted from a "purely calibration-based" point of view: it
corresponds to the 1/qk unit-weights appearing inside the distance measures of [Deville, Sarndal
92] [Deville, Sarndal, Sautory 93]. The final effect is, on average, that calibrated weights associated
to higher values of sigma2 tend to stay closer to their corresponding initial weights. The sigma2
formula can reference just a single design variable: such variable must be numeric, strictly positive
and must not contain NAs. If aggregate.stage is specified, sigma2 must obviously be constant
inside aggregate.stage-stage clusters (otherwise the function stops and prints an error message).

The maxit argument sets the maximum number of iteration for the Newton-Raphson algorithm that
is used to solve the calibration problem (the only exception being unbounded linear calibration,
i.e. calfun='linear' and bounds=c(-Inf, Inf), which is actually handled by directly solving a
linear problem). The default value of maxit is 50.

The epsilon argument determines the convergence criterion for the optimization algorithm: it fixes
the maximum allowed absolute value for the relative differences between the population totals and
the corresponding estimates based on the calibrated weights. The default value is 10^-7.

The calibrated weights computed by e.calibrate must ensure that the calibration estimators of
the auxiliary variables exactly match the corresponding known population totals. It is, however,
possible (more likely when range constraints are imposed) that, for a specific calibration problem
and for given values of epsilon and maxit, the solving algorithm does not converge. In this
case, if force = FALSE, e.calibrate stops and prints an error message. If - on the contrary -
force = TRUE, the function is forced to return the best approximation achieved for the calibrated
weights, nevertheless signaling the calibration failure by a warning (see also Section ’Calibration
process diagnostics’).

Value

An object of class cal.analytic. The data frame it contains includes (in addition to the data
already stored in design) the calibrated weights columns. The name of this column is obtained by
pasting the name of the initial weights column with the string ".cal".

Calibration Process Diagnostics

When, dealing with a factorizable calibration problem, the user selects the iterative solution, the
global calibration problem gets split into as many sub-problems as the number of subpopulations
defined by partition. In turn, each one of these calibration sub-problems can end without con-
vergence on any one of the involved auxiliary variables. A calibration process with such a complex
structure needs some ad hoc tool for error diagnostics. For this purpose, every call to e.calibrate
creates, by side effect, a dedicated data structure named ecal.status into the .GlobalEnv.
ecal.status is a list with up to three components: the first, "call", identifies the call to e.calibrate
that generated the list, the second, return.code, is a matrix each element of which identifies the
return code of a specific calibration sub-problem. The meaning of the return codes is as follows:

e.calibrate 39

CODE MEANING
-1........not yet tackled sub-problem;
0........solved sub-problem (convergence achieved);
1........unsolved sub-problem (no convergence): output forced.

Recall that the latter return code (1) may only occur if force = TRUE.
If any return.code equal to 1 exists, the ecal.status list gains a third component named "fail.diagnostics"
which is itself a list; its components correspond to sub-problems for which convergence was not
achieved, and store useful information about the auxiliary variables for which calibration constraints
are violated. Therefore, users can exploit ecal.status to identify sub-problems and variables from
which errors stemmed, hence taking a step forward to eliminate them.
Notice, lastly, that the ecal.status list will also be persistently bound to the e.calibrate return
object, stored inside a dedicated attribute. For the inspection of such diagnostics information the
check.cal function is available.

Note

The cal.analytic class is a specialization of the analytic class; this means that an object created
by e.calibrate inherits from the analytic class and you can use on it every method defined on the
latter class. For instance, a calibrated design can be passed again to e.calibrate, thus undergoing
further calibration steps.

Author(s)

Diego Zardetto

References

Deville, J.C., Sarndal, C.E. (1992) "Calibration Estimators in Survey Sampling", Journal of the
American Statistical Association, Vol. 87, No. 418, pp. 376-382.

Deville, J.C., Sarndal, C.E., Sautory, O. (1993) "Generalized Raking Procedures in Survey Sam-
pling", Journal of the American Statistical Association, Vol. 88, No. 423, pp. 1013-1020.

Wilkinson, G.N., Rogers, C.E. (1973) "Symbolic Description of Factorial Models for Analysis of
Variance", Journal of the Royal Statistical Society, series C (Applied Statistics), Vol. 22, pp. 181-
191.

Vanderhoeft, C. (2001) "Generalized Calibration at Statistic Belgium", Statistics Belgium Working
Paper n. 3, http://www.statbel.fgov.be/studies/paper03_en.asp.

Sarndal, C.E., Lundstrom, S. (2005) Estimation in surveys with nonresponse. John Wiley & Sons.

Scannapieco, M., Zardetto, D., Barcaroli, G. (2007) "La Calibrazione dei Dati con R: una Speri-
mentazione sull’Indagine Forze di Lavoro ed un Confronto con GENESEES/SAS", Contributi Istat n.
4., http://www.istat.it/dati/pubbsci/contributi/Contributi/contr_2007/2007_4.pdf.

See Also

e.svydesign to bind survey data and sampling design metadata, svystatTM, svystatR, svystatB,
svystatQ and svystatL for calculating estimates and standard errors, pop.template for con-
structing known totals data frames in compliance with the standard required by e.calibrate,
population.check to check that the known totals data frame satisfies that standard, fill.template
to automatically fill the template when a sampling frame is available, bounds.hint to obtain a
hint for range restricted calibration, g.range to asses the variation of weights after calibration and
check.cal to check if calibration constraints have been fulfilled.

http://www.statbel.fgov.be/studies/paper03_en.asp
http://www.istat.it/dati/pubbsci/contributi/Contributi/contr_2007/2007_4.pdf

40 e.calibrate

Examples

##
Calibration of a design object according to different calibration
models (the known totals data frames pop01, ..., pop05p and the
bounds vector are all contained in the data.examples file).
For the examples relating to calibration models that can be
factorized both a global and an iterative solution are given.
##

Load household data:
data(data.examples)

Creation of the object to be calibrated:
des<-e.svydesign(data=example,ids=~towcod+famcod,strata=~SUPERSTRATUM,

weights=~weight)

1) Calibration on the total number of units in the population
(totals in pop01):
descal01<-e.calibrate(design=des,df.population=pop01,calmodel=~1,

calfun="logit",bounds=bounds,aggregate.stage=2)

Printing descal01 immediately recalls that it is a
"calibrated" object:
descal01

Checking the result (first add the new 'ones' variable
to estimate the number of final units in the population):
descal01<-des.addvars(descal01,ones=1)
svystatTM(descal01, ~ones)

2) Calibration on the marginal distributions of sex and marstat
(totals in pop02):
descal02<-e.calibrate(design=des,df.population=pop02,

calmodel=~sex+marstat-1,calfun="logit",bounds=bounds,
aggregate.stage=2)

Checking the result:
svystatTM(descal02,~sex+marstat)

3) Calibration (global solution) on the joint distribution of sex
and marstat (totals in pop03):
descal03<-e.calibrate(design=des,df.population=pop03,

calmodel=~marstat:sex-1,calfun="logit",bounds=bounds)

Checking the result:
svystatTM(descal03,~sex,~marstat) # or: svystatTM(descal03,~marstat,~sex)

which, obviously, is not respected by descal02 (notice the size of SE):
svystatTM(descal02,~sex,~marstat)

3.1) Again a calibration on the joint distribution of sex and marstat
but, this time, with the iterative solution (partition=~sex,

e.calibrate 41

totals in pop03p):
descal03p<-e.calibrate(design=des,df.population=pop03p,

calmodel=~marstat-1,partition=~sex,calfun="logit",
bounds=bounds)

Checking the result:
svystatTM(descal03p,~sex,~marstat)

4) Calibration (global solution) on the totals for the quantitative
variables x1, x2 and x3 in the subpopulations defined by the
regcod variable (totals in pop04):
descal04<-e.calibrate(design=des,df.population=pop04,

calmodel=~(x1+x2+x3-1):regcod,calfun="logit",
bounds=bounds,aggregate.stage=2)

Checking the result:
svystatTM(descal04,~x1+x2+x3,~regcod)

4.1) Same problem with the iterative solution (partition=~regcod,
totals in pop04p):
descal04p<-e.calibrate(design=des,df.population=pop04p,

calmodel=~x1+x2+x3-1,partition=~regcod,calfun="logit",
bounds=bounds,aggregate.stage=2)

Checking the result:
svystatTM(descal04p,~x1+x2+x3,~regcod)

5) Calibration (global solution) on the total for the quantitative
variable x1 and on the marginal distribution of the qualitative
variable age5c, in the subpopulations defined by crossing sex
and marstat (totals in pop05):
descal05<-e.calibrate(design=des,df.population=pop05,

calmodel=~(age5c+x1-1):sex:marstat,calfun="logit",
bounds=bounds)

Checking the result:
svystatTM(descal05,~age5c+x1,~sex:marstat)

5.1) Same problem with the iterative solution (partition=~sex:marstat,
totals in pop05p):
descal05p<-e.calibrate(design=des,df.population=pop05p,

calmodel=~age5c+x1-1,partition=~sex:marstat,
calfun="logit",bounds=bounds)

Checking the result:
svystatTM(descal05p,~age5c+x1,~sex:marstat)

Notice that 3.1 and 5.1) 5.2) do not impose the aggregate.stage=2
condition. This condition cannot, in fact, be fulfilled because
in both cases the domains defined by partition "cut across"
the des second stage clusters (households). To compare the results,
the same choice was also made for 3) and 5).

42 e.calibrate

5.2) Just a single example to inspect the ecal.status list generated
for diagnostics purposes.
Let's shrink the bounds in order to prevent perfect convergence
(recall that force=TRUE by default):
approx.cal<-e.calibrate(design=des,df.population=pop05p,

calmodel=~age5c+x1-1,partition=~sex:marstat,
calfun="logit",bounds=c(0.95,1.05))

...now use check.cal function to assess the amount of calibration
constraints violation:
check.cal(approx.cal)

...or (equivalently) inspect directly ecal.status:
ecal.status

###
Some examples illustrating how calibration
can be exploited to reduce nonresponse bias
(see, e.g. [Sarndal, Lundstrom 05]).
###

Load sbs data:
data(sbs)

#######################
Full-response case.
#######################

Create a full-response design object:
sbsdes<-e.svydesign(data=sbs,ids=~id,strata=~strata,weights=~weight,fpc=~fpc)

Now estimate the average value added and its 95% confidence interval:
mean.VA<-svystatTM(design=sbsdes,y=~va.imp2,estimator="Mean",vartype= "cvpct",

conf.int=TRUE,conf.lev=0.95)
mean.VA

Compare the obtained estimate with the true population parameter:
MEAN.VA<-mean(sbs.frame$va.imp2)
MEAN.VA

We get a small overestimation of about 4%...
100*(coef(mean.VA)-MEAN.VA)/MEAN.VA

which, anyway, doesn't indicate a significant bias for the
full-response sample, because the 95% confidence interval
covers the true value.

##
Nonresponse case: assume a response propensity
which increases with enterprise size.
##

Set bigger response probabilities for bigger firms,
e.g. exploiting available information about the

e.calibrate 43

number of employees (emp.cl):
levels(sbs$emp.cl)
p.resp <- c(.4,.6,.8,.95,.99)

Tie response probabilities to sample observations:
pr<-p.resp[unclass(sbs$emp.cl)]

Now, randomly select a subsample of responding units from sbs:
set.seed(12345) # (fix the RNG seed for reproducibility)
rand<-runif(1:nrow(sbs))
sbs.nr<-sbs[rand<pr,]

This implies an overall response rate of about 73%:
nrow(sbs.nr)/nrow(sbs)

Treat the non-response sample as it was complete: this should
lead to biased estimates of value added, as the latter is
positively correlated with firms size...
sbsdes.nr<-e.svydesign(data=sbs.nr,ids=~id,strata=~strata,weights=~weight)

#...indeed:
old.op <- options("RG.lonely.psu"="adjust") # (prevent lonely-PSUs troubles)
mean.VA.nr<-svystatTM(design=sbsdes.nr,y=~va.imp2,estimator="Mean",

vartype= "cvpct",conf.int=TRUE,conf.lev=0.95)
mean.VA.nr

and, comparing with the true population average, we see a
significant overestimation effect, with the 95% confidence
interval not even covering the parameter:
MEAN.VA

Nonresponse bias can be effectively reduced by calibrating
on variables explaining the response propensity: e.g., in
the present example, on the population distribution of emp.cl:

Prepare the known totals template...
N.emp.cl<-pop.template(data=sbs.nr,calmodel=~emp.cl-1)
N.emp.cl

Fill it by using the sampling frame...
N.emp.cl<-fill.template(sbs.frame,N.emp.cl)
N.emp.cl

Lastly calibrate:
Get a hint on the calibration bounds:
hint<-bounds.hint(sbsdes.nr,N.emp.cl)
sbscal.nr<-e.calibrate(design=sbsdes.nr,df.population=N.emp.cl,

bounds=hint)
sbscal.nr

Now estimate the average value added on the calibrated design:
mean.VA.cal.nr<-svystatTM(design=sbscal.nr,y=~va.imp2,estimator="Mean",

vartype= "cvpct",conf.int=TRUE,conf.lev=0.95)

options(old.op) # (reset variance estimation options)

As expected, we see a significant bias reduction:
MEAN.VA

44 e.calibrate

mean.VA.nr
mean.VA.cal.nr

Even if the 95% confidence interval still doesn't cover the
true value, by calibration we passed from an initial overestimation
of about 33% to a 7% one:
100*(coef(mean.VA.nr)-MEAN.VA)/MEAN.VA
100*(coef(mean.VA.cal.nr)-MEAN.VA)/MEAN.VA

###
A multi-step calibration example showing that
a calibrated object can be calibrated again
(this can be sometimes useful in practice):
Step 1: calibrate to reduce nonresponse bias;
Step 2: calibrate again to gain efficiency.
###

Suppose you already performed a first calibration step,
as shown in the example above, with the aim of softening
nonresponse bias:
sbscal.nr

Now you may want to calibrate again in order to reduce
estimators variance, by using further available auxiliary
information, e.g. the total number of employees (emp.num)
and enterprises (ent) inside the domains obtained
by crossing nace.macro and region:

Build the second step population totals template:
pop2<-pop.template(sbscal.nr,

calmodel=~emp.num+ent-1,
partition=~nace.macro:region)

Use the fill.template function to (i) automatically compute
the totals from the universe (sbs.frame) and (ii) safely fill
the template:
pop2<-fill.template(universe=sbs.frame,template=pop2)

Now perform the second calibration step:
Get a hint on the calibration bounds:
hint2<-bounds.hint(sbscal.nr,pop2)
sbscal.nr2<-e.calibrate(design=sbscal.nr,df.population=pop2,

bounds=hint2)

Notice that printing sbscal.nr2 you immediately understand
that it is a "twice-calibrated" object:
sbscal.nr2

Notice also that, even if the second calibration step causes
sbscal.nr2 to be no more exactly calibrated with respect to
emp.cl (look at the cvpct values)...
old.op <- options("RG.lonely.psu"="adjust") # (prevent lonely-PSUs troubles)
svystatTM(design=sbscal.nr2,y=~emp.cl,vartype="cvpct")

...the nonresponse bias has not been resurrected (i.e. it gets stuck
to its previous 7%):

e.calibrate 45

mean.VA.cal.nr2<-svystatTM(design=sbscal.nr2,y=~va.imp2,estimator="Mean",
vartype= "cvpct",conf.int=TRUE,conf.lev=0.95)

options(old.op) # (reset variance estimation options)

mean.VA.cal.nr2
100*(coef(mean.VA.cal.nr2)-MEAN.VA)/MEAN.VA

##
Provided the auxiliary variables are chosen in a smart way
a single calibration step can simultaneously succeed in:
(i) softening nonresponse bias;
(ii) reducing estimators variance.
##

Let's come back to the original design with nonresponse:
sbsdes.nr

Now, let's try to calibrate simultaneously on (see examples above):
(i) the population distribution of emp.cl;
(ii) the total number of employees (emp.num) and enterprises (ent)
inside the domains obtained by crossing nace.macro and region:

Build the population totals template (notice that we are now forced
to a global calibration, as we are assuming to ignore emp.cl counts
inside domains obtained by crossing nace.macro and region):
pop1<-pop.template(sbs.nr,

calmodel=~emp.cl+(emp.num+ent):nace.macro:region-1)

Use the fill.template function to (i) automatically compute
the totals from the universe (sbs.frame) and (ii) safely fill
the template:
pop1<-fill.template(universe=sbs.frame,template=pop1)

Now perform the single calibration step:
Get a hint on the calibration bounds:
hint1<-bounds.hint(sbsdes.nr,pop1)
sbscal.nr1<-e.calibrate(design=sbsdes.nr,df.population=pop1,

bounds=hint1)

sbscal.nr1

Now:
(i) verify the nonresponse bias reduction effect:

old.op <- options("RG.lonely.psu"="adjust") #(prevent lonely-PSUs troubles)
mean.VA.cal.nr1<-svystatTM(design=sbscal.nr1,y=~va.imp2,estimator="Mean",

vartype= "cvpct",conf.int=TRUE,conf.lev=0.95)
options(old.op)

mean.VA.cal.nr1
100*(coef(mean.VA.cal.nr1)-MEAN.VA)/MEAN.VA

thus we are back to ~7%, as for the previous 2-step calibration example.

(ii) compare cvpct with the previous 2-step calibration example:
mean.VA.cal.nr1

46 e.calibrate

mean.VA.cal.nr2

hence, both bias reduction and efficiency are almost the same in 2-step and
single step calibration (auxiliary information being equal): the choice
will often depend on practical considerations (e.g. convergence, computation
time).

##
Example with heteroskedastic assisting linear model: shows how to obtain
the ratio estimator of a total by calibration.
##

Load sbs data:
data(sbs)

Create the design object to be calibrated:
sbsdes<-e.svydesign(data=sbs,ids=~id,strata=~strata,weights=~weight,fpc=~fpc)

Suppose you have to calibrate on the total amount of employees:
Prepare the template:
pop<-pop.template(data=sbsdes,calmodel=~emp.num-1)
pop

Fill it by using the sampling frame (sbs.frame)...
pop<-fill.template(sbs.frame,pop)
pop

... thus the total number of employees is 984394.
Now calibrate assuming that error terms variances are proportional
to emp.num:
sbscal<-e.calibrate(design=sbsdes,df.population=pop,sigma2=~emp.num)

Now compute the calibration estimator of the total
of value added (i.e. variable va.imp2)...
VA.tot.cal<-svystatTM(design=sbscal,y=~va.imp2)
VA.tot.cal

#... and observe that this is identical to the ratio estimator of the total...
VA.ratio<-svystatL(design=sbsdes, expression(984394*va.imp2/emp.num))
VA.ratio

...as it must be.

Recall that, for the calibration problem above, one must expect, by virtue of
simple theoretical arguments, that the g-weights are constant and equal to the
ratio between the known total of emp.num (984394) and its HT estimate.
This propertly is exactly satisfied by our numerical results, see below:
984394/coef(svystatTM(sbsdes, ~emp.num))
g.range(sbscal)

...as it must be.

###
A second example of calibration with heteroskedastic assisting linear
model. Shows that calibrated weights associated to higher values of

e.calibrate 47

sigma2 tend to stay closer to their corresponding initial weights.
###

Perform a calibration process which exploits as auxiliary
information the total number of employees (emp.num)
and enterprises (ent) inside the domains obtained by:
i) crossing nace2 and region;
ii) crossing emp.cl, region and nace.macro;

Build the population totals template:
pop<-pop.template(sbsdes,

calmodel=~(emp.num+ent):(nace2+emp.cl:nace.macro)-1,
partition=~region)

Use the fill.template function to (i) automatically compute
the totals from the universe (sbs.frame) and (ii) safely fill
the template:
pop<-fill.template(universe=sbs.frame,template=pop)

Now calibrate:
1) First, without any heteroskedasticy effect
sbscal1<-e.calibrate(sbsdes,pop,calfun="linear",bounds = c(0.01, 3),

sigma2=NULL)

2) Then, with heteroskedastic effect proportional to emp.num:
sbscal2<-e.calibrate(sbsdes,pop,calfun="linear",bounds = c(0.01, 3),

sigma2=~emp.num)

Compute the g-weights for both the calibrated objects:
g1<-weights(sbscal1)/weights(sbsdes)
g2<-weights(sbscal2)/weights(sbsdes)

Now visually compare the absolute deviations from 1 of the g-weights
as a function of emp.num:
plot(log10(sbs$emp.num),abs(g1-1), col="blue", pch=19, cex=0.5)
points(log10(sbs$emp.num),abs(g2-1), col="red", pch=19, cex=0.5)

#...as emp.num grows red points clearly tend to stay closer to
the horizontal axis than blue ones, as expected.

##
Calibrating simultaneously on unit-level and cluster-level
auxiliary informations: an household survey example.
##

Load household data:
data(data.examples)

Define the survey design:
exdes<-e.svydesign(data=example,ids=~towcod+famcod,strata=~stratum,

weights=~weight)

Collapse strata to eliminate lonely PSUs:
exdes<-collapse.strata(design=exdes,block.vars=~sr:procod)

Now add new convenience variables to the design object:

48 e.calibrate

'houdensity': to estimate households counts
'ones': to estimate individuals counts

exdes<-des.addvars(exdes,
houdensity=ave(famcod,famcod,FUN = function(x) 1/length(x)),
ones=1)

Let's see how it's possible to calibrate *simultaneously* on:
1. the number of *individuals* crossclassified by sex, 5 age classes,
and province;
2. the number of *households* by region.

First, for the purpose of running the example, let's generate some
artificial population totals. We have only to get HT estimates for
the auxiliary variables and perturb them randomly:

Get HT estimates of auxiliary variables:
xx<-aux.estimates(design=exdes,calmodel=~houdensity+sex:age5c:procod-1,

partition=~regcod)

Add a random uniform perturbation to these numbers:
set.seed(12345) # Fix the RNG seed for reproducibility
xx[,-1]<-round(xx[,-1]*runif(prod(dim(xx[,-1])),0.8,1.2))

Now we have at hand our artificial population totals, and
we can proceed with the calibration task:
excal<-e.calibrate(design=exdes,df.population=xx,calfun= "linear",

bounds=c(0,3),aggregate.stage=2)

To perceive the effect of calibration, let's e.g. compare the HT and
calibrated estimates of the average number of individuals per household
at population level:
svystatR(exdes,~ones,~houdensity,vartype="cvpct")
svystatR(excal,~ones,~houdensity,vartype="cvpct")

##
Calibrating on different patterns of
"incomplete" auxiliary information.
##

Usually calibration constraints involve "complete auxiliary information",
i.e. totals which are known either:
(i) for the target population as a whole (e.g. total number of
employees working in italian active enterprises at a given date);
or:
(ii) for each subpopulation belonging to a complete partition of
the target population (e.g. number of male and female people
residing in Italy at a given date).
#
Anyway, it may happen sometimes that the available auxiliary information
is actually "incomplete", i.e. one doesn't know all the totals for all the
subpopulations in a partition, but rather only for some of them. As an
example, suppose marital status has categories "married", "unmarried",
and "widowed" and that one only knows the number of "unmarried" people.
#
In what follows I show how you can use ReGenesees to handle a calibration
task on "incomplete" auxiliary information.

e.calibrate 49

#####################
A simple example.
#####################

Load household data:
data(data.examples)

Define the survey design:
des<-e.svydesign(data=example,ids=~towcod+famcod,strata=~SUPERSTRATUM,

weights=~weight)

Suppose you only know the number of "unmarried" people (let's say 398240)
but you ignore "married" and "widowed" totals, and you want to calibrate
on this incomplete information.

First, add to the survey design a new numeric variable with value 1
for unmarried people and 0 otherwise:
des<-des.addvars(des,unmarried=as.numeric(marstat=="unmarried"))

Second, prepare a template to store the known "unmarried" people count:
pop<-pop.template(des,calmodel=~unmarried-1)

Third, fill the template with the known total:
pop[1,1]<-398240

Fourth, calibrate:
descal<-e.calibrate(des,pop)

Now test that only "unmarried" estimated total has 0 percent CV:
Zapsmall(svystatTM(descal,~marstat,vartype="cvpct"))

...as it must be.

###############################
A more complicated example.
###############################

Load sbs data:
data(sbs)

Define the survey design:
sbsdes<-e.svydesign(data=sbs,ids=~id,strata=~strata,weights=~weight,fpc=~fpc)

Suppose you want to calibrate on the following "incomplete" known totals:
1. enterprises counts by nace.macro
2. enterprises counts by dom3 ONLY inside nace.macro 'Industry'
3. total of y by emp.cl ONLY inside nace.macro 'Commerce'

First, add to the survey design new variables identifying the domains
where "incomplete" totals 2. and 3. are known:
2. -> nace.macro = 'Industry'
sbsdes<-des.addvars(sbsdes,Industry=as.numeric(nace.macro=="Industry"))
3. -> nace.macro = 'Commerce'
sbsdes<-des.addvars(sbsdes,Commerce=as.numeric(nace.macro=="Commerce"))

Do the same for the sampling frame:

50 e.svydesign

2. -> nace.macro = 'Industry'
sbs.frame$Industry=as.numeric(sbs.frame$nace.macro=="Industry")
3. -> nace.macro = 'Commerce'
sbs.frame$Commerce=as.numeric(sbs.frame$nace.macro=="Commerce")

Second, prepare a template to store the totals listed in 1., 2. and 3.;
to this purpose one can e.g. compute HT estimates of the involved auxiliary
variables:
Xht<-aux.estimates(design=sbsdes,

calmodel=~nace.macro+Industry:dom3+Commerce:y:emp.cl-1)
Xht

Third, use the structure above to compute actual population totals
from the sampling frame:
pop <- fill.template(universe=sbs.frame,template=Xht)
pop

Fourth, calibrate:
sbscal <- e.calibrate(design=sbsdes,df.population=pop)

Test1: nace.macro counts have 0 CVs:
test1<-svystatTM(design=sbscal,y=~nace.macro,vartype="cvpct")
test1

Test2: only 'Industry' macrosector has 0 CVs for dom3 counts:
test2<-svystatTM(design=sbscal,y=~dom3,by=~nace.macro,vartype="cvpct")
Zapsmall(test2)

Test3: only 'Commerce' macrosector has 0 CVs for y total by emp.cl:
test3<-svystatTM(design=sbscal,y=~y,by=~emp.cl:nace.macro,vartype="cvpct")
Zapsmall(test3)

e.svydesign Specification of a Complex Survey Design

Description

Binds survey data and sampling design metadata.

Usage

e.svydesign(data, ids, strata = NULL, weights,
fpc = NULL, self.rep.str = NULL, check.data = TRUE)

Arguments

data Data frame of survey data.

ids Formula identifying clusters selected at subsequent sampling stages (PSUs, SSUs,
. . .).

strata Formula identifying the stratification variable; NULL (the default) implies no
stratification.

weights Formula identifying the initial weights for the sampling units.

e.svydesign 51

fpc Formula identifying finite population corrections at subsequent sampling stages
(see ‘Details’).

self.rep.str Formula identifying self-representing strata (SR), if any; NULL (the default)
means no SR strata (see ‘Details’).

check.data Check out the correct nesting of data clusters? The default is TRUE.

Details

This function has the purpose of binding in an effective and persistent way the survey data to the
metadata describing the adopted sampling design. Both kinds of information are stored in a complex
object of class analytic, which extends the survey.design2 class from the survey package. The
sampling design metadata are then used to enable and guide processing and analyses provided by
other functions in the ReGenesees package (such as e.calibrate, svystatTM, . . .).

The data, ids and weights arguments are mandatory, while strata, fpc, self.rep.str and
check.data arguments are optional. The data variables that are referenced by ids, weights and,
if specified, by strata, fpc, self.rep.str must not contain any missing value (NA). Should empty
levels be present in any factor variable belonging to data, they would be dropped.

The ids argument specifies the cluster identifiers. It is possible to specify a multi-stage sampling
design by simply using a formula which involves the identifiers of clusters selected at subsequent
sampling stages. For example, ids=~id.PSU + id.SSU declares a two-stage sampling in which the
first stage units are identified by the id.PSU variable and second stage ones by the id.SSU variable.

The strata argument identifies the stratification variable. The data variable referenced by strata
(if specified) must be a factor. By default the sample is assumed to be non-stratified.

The weights argument identifies the initial (or direct) weights for the units included in the sam-
ple. The data variable referenced by weights must be numeric. Direct weights must be strictly
positive.

The fpc formula serves the purpose of specifying the finite population corrections at subsequent
sampling stages. By default fpc=NULL, which implies with-replacement sampling.
If the survey has only one stage, then the fpcs can be given either as the total population size in each
stratum or as the fraction of the total population that has been sampled. In either case the relevant
population size must be expressed in terms of sampling units (be they elementary units or clusters).
That is, sampling 100 units from a population stratum of size 500 can be specified as 500 or as
100/500=0.2. Thus, passing to fpc a column of zeros, means again with-replacement sampling.
For multistage sampling the population size (or the sampling fraction) for each sampling stage
should also be specified in fpc. For instance, when ids=~id.PSU + id.SSU the fpc formula
should look like fpc=~fpc.PSU + fpc.SSU, with variable fpc.PSU giving the population sizes (or
sampling fractions) in each stratum for the first stage units, while variable fpc.SSU gives population
sizes (or sampling fractions) for the second stage units in each sampled PSU. Notice that if you
choose to pass to fpc population totals (rather than sampling rates) at a given stage, then you must
do the same for all stages (and vice versa).
If fpc is specified but for fewer stages than ids, sampling is assumed to be complete for subsequent
stages. The function will check that fpcs values at each sampling stage do not vary within strata.

When dealing with a two-stage (multistage) stratified sampling design that includes self-representing
(SR) strata (i.e. strata containing only PSUs selected with probability 1), the only (leading) contri-
bution to the variance of SR strata arises from the second stage units ("variance PSUs").
When options("RG.ultimate.cluster") is FALSE (which is the default for ReGenesees), vari-
ance estimation for SR strata is correctly handled provided the survey fpcs have been properly
specified. In particular, if fpc=~fpc.PSU + fpc.SSU and one specifies fpcs in terms of sampling
fractions, then, inside SR strata, fpc.PSU must be always equal to one. When, on the contrary, the
"Ultimate Cluster Approximation" holds (i.e. options("RG.ultimate.cluster") has been set to
TRUE) the SR strata give no contribution at all to the sampling variance.

52 e.svydesign

A compromise solution (adopted by former existing survey software) is the one of retaining, for
both SR and not-SR strata, only the leading contribution to the sampling variance. This means
that only the SSUs are relevant for SR strata, whereby only the PSUs matter in not-SR strata.
This compromise solution can be achieved by using the self.rep.str argument. If this argument
is actually specified (as a formula referencing the data variable that identifies the SR strata), a
warning is generated in order to remind the user that a compromise solution for variance estimation
will be adopted on that design. Notice that, when choosing the self.rep.str option, the user must
ensure that the variable referenced by self.rep.str is logical (with value TRUE for SR strata and
FALSE otherwise) or numeric (with value 1 for SR strata and 0 otherwise) or factor (with levels
"1" for SR strata and "0" otherwise).

The optional argument check.data allows to check out the correct nesting of data clusters (PSUs,
SSUs, . . .). If check.data=TRUE the function checks that every unit selected at stage k+1 is associ-
ated to one and only one unit selected at stage k. For a stratified design the function checks also the
correct nesting of clusters within strata.

Value

An object of class analytic. The print method for that class gives a concise description of
the sampling design. Objects of class analytic persistently store input survey data inside their
variables component. Weights can be accessed by using the weights function.

PPS Sampling Designs

Probability proportional to size sampling with replacement does not pose any problem: one must
simply specify fpc=NULL and pass the right weights. This holds also for multistage designs, where
PSUs are selected with replacement with PPS inside strata. Moreover, when the PSUs are sampled
with replacement, the only contribution to the variance arises from the estimated PSU totals, and
one can simply ignore any available information about subsequent sampling stages.

For unequal probability sampling without replacement, on the contrary, in order to get correct vari-
ance estimates, one should know the second-order inclusion probabilities under the sampling design
at hand. Unluckily, these probabilities cannot generally be computed, thus one has to resort to some
viable approximation. The easier one rests on pretending that PSUs were sampled with replacement,
even if this is not actually the case. It is worth stressing that this approach will result in conservative
estimates. Moreover, the variance overestimation is expected to be negligible as long as the actual
sampling fractions of PSUs are close to zero. Notice that this "with replacement" approximation
can be achieved by either not specifying fpc, or by passing to the PSUs term of fpc a column of
zeros.

Note

The analytic class is a specialization of the survey.design2 class from the survey package; this
means that an object created by e.svydesign inherits from the survey.design2 class and you can
use on it every method defined on the latter class.

Author(s)

Diego Zardetto.

References

Sarndal, C.E., Swensson, B., Wretman, J. (1992) "Model Assisted Survey Sampling", Springer Ver-
lag.

e.svydesign 53

Lumley, T. (2006) "survey: analysis of complex survey samples", http://cran.at.r-project.
org/web/packages/survey/index.html.

See Also

svystatTM, svystatR, svystatB, svystatQ, svystatL for calculating estimates and standard er-
rors, e.calibrate for calibrating weights, ReGenesees.options for setting/changing variance
estimation options, collapse.strata for the suggested way of handling lonely PSUs, weights to
extract weights.

Examples

##
The following examples illustrate how to create objects
(of class 'analytic') defining different sampling designs.
Note: sometimes the same survey data will be used to
define more than one design: this serves only the purpose
of illustrating e.svydesign syntax.
##

data(data.examples)
Two-stage stratified cluster sampling design (notice that
the design contains lonely PSUs):
des<-e.svydesign(data=example,ids=~towcod+famcod,strata=~stratum,

weights=~weight)
des

Use the 'variables' slot to extract survey data, e.g.:
head(des$variables)

Use the weights() function to extract weights, e.g.:
summary(weights(des))

Again the same design, but using collapsed strata (SUPERSTRATUM variable)
to remove lonely PSUs:
des<-e.svydesign(data=example,ids=~towcod+famcod,strata=~SUPERSTRATUM,

weights=~weight)
des

Two stage cluster sampling (no stratification):
des<-e.svydesign(data=example,ids=~towcod+famcod,weights=~weight)
des

Stratified unit sampling design:
des<-e.svydesign(data=example,ids=~key,strata=~SUPERSTRATUM,

weights=~weight)
des

data(sbs)
One-stage stratified unit sampling without replacement
(notice the presence of the fpc argument):
des<-e.svydesign(data=sbs,ids=~id,strata=~strata,weights=~weight,

fpc=~fpc)
des

Same design as above but ignoring the finite population corrections:

http://cran.at.r-project.org/web/packages/survey/index.html
http://cran.at.r-project.org/web/packages/survey/index.html

54 estimator.kind

des<-e.svydesign(data=sbs,ids=~id,strata=~strata,weights=~weight)
des

data(fpcdat)
Two-stage stratified cluster sampling without replacement
(notice that the fpcs are specified for both stages):
des<-e.svydesign(data=fpcdat,ids=~psu+ssu,strata=~stratum,weights=~w,

fpc=~fpc1+fpc2)
des

Same design as above but assuming complete sampling for the
second stage units (notice fpcs have been passed only for the
first stage):
des<-e.svydesign(data=fpcdat,ids=~psu+ssu,strata=~stratum,weights=~w,

fpc=~fpc1)
des

Again a two-stage stratified cluster sampling without replacement but
specified in such a way as to retain, in the estimation phase, only
the leading contribution to the sampling variance (i.e. the one arising
from SSUs in SR strata and PSUs in not-SR strata). Notice that the
self.rep.str argument is used:
des<-e.svydesign(data=fpcdat,ids=~psu+ssu,strata=~stratum,weights=~w,

fpc=~fpc1+fpc2, self.rep.str=~sr)
des

estimator.kind Which Estimator Did Generate these Survey Statistics?

Description

Identifies what kind of Estimator has been used to compute a (set of) survey static(s).

Usage

estimator.kind(stat, design)

Arguments

stat An object containing survey statistics.

design Object of class analytic (or inheriting from it) containing survey data and sam-
pling design metadata.

Details

Given a survey statistic object stat and a survey design object design from which stat is supposed
to have been derived, this function returns the “precise kind” of the corresponding Estimator, as a
textual description.

Argument stat can be any object which have been returned by calling a survey statistics function
(e.g. svystatTM, svystatR, svystatB, svystatQ, svystatL, svystat) on survey design object
design. Should stat be a survey statistic derived from a design object other than design, the
function would raise an error.

estimator.kind 55

Note that function estimator.kind is smart enough to recognize that estimates of totals/means of
dummy variables are actually estimates of absolute/relative frequencies, despite such variables are
of class numeric (see Section ’Examples’).

Value

A character string describing the Estimator kind.
Currently, possible return values (i.e. estimator kinds) are the following:

(1) 'Total'
(2) 'Absolute Frequency'
(3) 'Mix of Totals and Absolute Frequencies'
(4) 'Mean'
(5) 'Relative Frequency'
(6) 'Mix of Means and Relative Frequencies'
(7) 'Ratio'
(8) 'Regression Coefficient'
(9) 'Quantile'

(10) 'Complex Estimator'

Author(s)

Diego Zardetto

See Also

gvf.input and svystat to prepare the input for GVF model fitting, fit.gvf to fit GVF models,
and GVF.db to manage ReGenesees archive of registered GVF models.

Examples

Create a design object:
data(sbs)
des<-e.svydesign(data=sbs,ids=~id,strata=~strata,weights=~weight,

fpc=~fpc)

Compute some statistics and ask the corresponding estimator kind:
stat<-svystatTM(des,~emp.num)
stat
estimator.kind(stat,des)

stat<-svystatTM(des,~emp.num,estimator="Mean")
stat
estimator.kind(stat,des)

stat<-svystatTM(des,~emp.num+emp.cl)
stat
estimator.kind(stat,des)

stat<-svystatR(des,num=~va.imp2,den=~emp.num,by=~region)
stat
estimator.kind(stat,des)

stat<-svystatQ(des,y=~va.imp2,ties="rounded")

56 extractors

stat
estimator.kind(stat,des)

Using protean function svystat to get grouped summary statistics:
stat<-svystat(des,kind="R",num=~va.imp2,den=~emp.num,by=~emp.cl:nace.macro,

group=~region,forGVF=FALSE)
stat
estimator.kind(stat,des)

Behaviour with dummy variables:
1. convenience variable 'ent' (whose values are always 1, so that its
estimated total actually estimates haw many enterprises are there in the
target population)
class(des$variables$ent)
range(des$variables$ent)

The estimated total is correctly recognized as a count
stat<-svystatTM(des,~ent)
stat
estimator.kind(stat,des)

2. an actual dummy variable (built on the fly) which indicates if the
enterprise has more than 29 employess or not:
des<-des.addvars(des,emp.gt.29=as.numeric(emp.num > 29))
class(des$variables$emp.gt.29)
range(des$variables$emp.gt.29)
The estimated total is correctly recognized as an absolute frequency
stat<-svystatTM(des,~emp.gt.29)
stat
estimator.kind(stat,des)
The estimated mean is correctly recognized as a relative frequency
stat<-svystatTM(des,~emp.gt.29,estimator="Mean")
stat
estimator.kind(stat,des)

extractors Extractor Functions for Variability Statistics

Description

These functions extract standard errors (SE), variances (VAR), coefficients of variation (cv) and de-
sign effects (deff) from an object which has been returned by a survey statistic function (e.g.
svystatTM, svystatR, svystatB, svystatQ, svystatL, svystat, . . .).

Usage

SE(object, ...)
VAR(object, ...)
cv(object, ...)
deff(object, ...)

extractors 57

Arguments

object An object containing survey statistics.

... Arguments for future expansion.

Details

With the exception of deff, all extractor functions can be used on any object returned by a survey
statistic function: the correct answer will be obtained whatever the call that generated the object.
For getting the design effect, object must have been built with option deff = TRUE.

Value

A data structure (typically hineriting from classes matrix or data.frame) storing the requested
informations.

Note

Package ReGenesees provides extensions of methods coef and confint (originally from package
stats) that can be used to extract estimates and confidence intervals respectively.

Author(s)

Diego Zardetto

See Also

Function coef to extract estimates and function confint to extract confidence intervals. Estimators
of Totals and Means svystatTM, Ratios between Totals svystatR, Multiple Regression Coefficients
svystatB, Quantiles svystatQ, Complex Analytic Functions of Totals and/or Means svystatL,
and all of the above svystat.

Examples

Creation of a design object:
data(sbs)
des<-e.svydesign(data=sbs,ids=~id,strata=~strata,weights=~weight,

fpc=~fpc)

Estimation of the average value added at the
nation level (by default one gets the SE):
VA.avg <- svystatTM(des,~va.imp2,estimator="Mean")
VA.avg

Extractions of some variance statistics from the
object above:
1) SE
SE(VA.avg)
2) CV
cv(VA.avg)
3) VAR
VAR(VA.avg)

Design effects have to be requested in advance,
i.e. the following invocation produces an error:
Not run:

58 fill.template

deff(VA.avg)

End(Not run)
...while the following works:
VA.avg <- svystatTM(des,~va.imp2,estimator="Mean",deff=TRUE)
deff(VA.avg)

Further examples:
extract the statistic:
coef(VA.avg)
extract the confidence interval at 90%
confidence level (the default would be 95%):
confint(VA.avg, conf.lev=0.9)

fill.template Fill the Known Totals Template for a Calibration Task

Description

Given a template prepared to store the totals of the auxiliary variables for a specific calibration task,
computes the actual values of such totals from a sampling frame.

Usage

fill.template(universe, template, mem.frac = 10)

Arguments

universe Data frame containing the complete list of the units belonging to the target pop-
ulation, along with the corresponding values of the auxiliary variables (the sam-
pling frame).

template The template for the calibration task, an object of class pop.totals.

mem.frac A numeric and non-negative value (the default is 10). It triggers a memory-
efficient algorithm when universe is really huge (see ‘Details’ and ‘Performance’).

Details

Recall that a template object returned by function pop.template has a structure that complies
with the standard required by e.calibrate, but is empty, in the sense that all the known totals it
must be able to store are missing (NA). Whenever these totals are available to the user as such, that
is in the form of already computed aggregated values (e.g. because they come from an external
source, like a Population Census), the ReGenesees package cannot help the user to correctly fill the
template. Stated more explicitly: the user himself has to bear the responsibility of putting the right
values in the right slots of the prepared template data frame.

A lucky alternative arises when a "sampling frame" (that is a data frame containing the complete
list of the units belonging to the target population, along with the corresponding values of the
auxiliary variables) is available. In such cases, indeed, the fill.template function is able to: (i)
automatically compute the totals of the auxiliary variables from the universe data frame, (ii) safely
arrange and format these values according to the template structure.

Notice that fill.template will perform a complete coherence check between universe and
template. If this check fails, the program stops and prints an error message: the meaning of the

fill.template 59

message should help the user diagnose the cause of the problem. Should empty levels be present in
any factor variable belonging to universe, they would be dropped.

Argument mem.frac (whose value must be numeric and non-negative) triggers a memory-efficient
algorithm when universe is really huge. The only sound reason to ever change the value of this
argument from its default (mem.frac=10) is that an invocation of fill.template caused a memory-
failure (i.e. a messages beginning cannot allocate vector of size ...) on your machine. In
such a case, increasing the value of mem.frac (e.g. mem.frac=20) will provide a better chance of
succeeding (for more details, see ‘Performance’ section below).

Value

An object of class pop.totals storing the actual values of the population totals for the specified
calibration task, ready to be safely passed to e.calibrate.

Performance

Real-world calibration tasks (e.g. in the field of Official Statistics) can simultaneously involve
hundreds of auxiliary variables and refer to target populations of several million units. In such cir-
cumstances, the naive aggregation of the calibration model.matrix of universe may turn out to
be too memory-demanding (at least in ordinary PC environments) and determine a memory-failure
error.
The alternative implemented in fill.template is to: (i) split universe in chunks, (ii) compute
partial sums of auxiliary variables chunk-by-chunk, (iii) update template by adding progressively
such partial sums. This alternative is triggered by parameter mem.frac, which also implicitly con-
trols the number of chunks. The function estimates the memory that would be used to store the full
model.matrix of universe and compares it to the maximum memory allocable on the machine (as
returned by memory.limit): if the resulting ratio is bigger than 1/mem.frac, the memory-efficient
algorithm starts; the number of chunks in which universe will then be split is determined in such
a way that the memory needed to store the model.matrix of each chunk does not exceed a fraction
1/mem.frac of the maximum allocable memory.
Whenever fill.template switches to the memory-efficient "chunking" algorithm, a warning mes-
sage will signal it and will specify as well the number of chunks that are being processed.

Author(s)

Diego Zardetto

See Also

e.calibrate for calibrating weights, pop.template for the definition of the class pop.totals
and to build a "template" data frame for known population totals, and %into% for the compression
operator for nested factors.

Examples

Load sbs data:
data(sbs)

Build a design object:
sbsdes<-e.svydesign(data=sbs,ids=~id,strata=~strata,weights=~weight,fpc=~fpc)

###########################
A simple example first.

60 fill.template

###########################

Suppose you want to calibrate on the enterprise counts inside areas
1) Build the population totals template:

pop<-pop.template(sbsdes, calmodel=~area-1)

Note: given the dimension of the obtained template...
dim(pop)

...the number of known totals to be stored is 24 (one for each area).

2) Use the fill.template function to (i) automatically compute
such 24 totals from the universe (sbs.frame) and (ii) safely fill
the template:

pop<-fill.template(universe=sbs.frame,template=pop)
pop

3) Lastly calibrate, e.g. with the unbounded linear distance and
heteroskedastic effects proportional to emp.num:

sbscal<-e.calibrate(sbsdes,pop,sigma2=~emp.num,bounds=c(-Inf,Inf))

##
A more involved (two-sided) example.
##

Now suppose you have to perform a calibration process which
exploits as auxiliary information the total number of employees (emp.num)
and enterprises (ent) inside the domains obtained by:
i) crossing nace2 and region;
ii) crossing emp.cl, region and nace.macro;

Due to the fact that nace2 is nested into nace.macro,
the calibration model can be efficiently factorized as follows:
1) Add to the design object and universe the new compressed
factor variable involving nested factors, namely:

sbsdes<-des.addvars(sbsdes,nace2.in.nace.macro=nace2 %into% nace.macro)
sbs.frame$nace2.in.nace.macro<-sbs.frame$nace2 %into% sbs.frame$nace.macro

2) Build the template exploiting the new variable:
pop<-pop.template(sbsdes,

calmodel=~(emp.num+ent):(nace2.in.nace.macro + emp.cl)-1,
partition=~nace.macro:region)

Note: given the dimension of the obtained template...
dim(pop)

...the number of known totals to be stored is 792.

3) Use the fill.template function to (i) automatically compute
such 792 totals from the universe (sbs.frame) and (ii) safely fill
the template:

pop<-fill.template(universe=sbs.frame,template=pop)

Note: out of the 792 known totals in pop, only non-zero entries are actually
relevant

find.lon.strata 61

4) Lastly calibrate, e.g. with the unbounded linear distance and
heteroskedastic effects proportional to emp.num:

sbscal<-e.calibrate(sbsdes,pop,sigma2=~emp.num,bounds=c(-Inf,Inf))

Note: a global calibration task would have led to identical calibrated
weights, but in a more memory-hungry and time-consuming way, as you can
verify:

1) Build template:
pop.g<-pop.template(sbsdes,

calmodel=~(emp.num+ent):(nace2:region + emp.cl:nace.macro:region)-1)
dim(pop.g)

2) Fill template:
pop.g <- fill.template(sbs.frame,pop.g)

3) Calibrate globally:
Not run:
sbscal.g<-e.calibrate(sbsdes,pop.g,sigma2=~emp.num,bounds=c(-1E6,1E6))

4) Compare calibrated weights (factorized vs. global solution):
range(weights(sbscal)/weights(sbscal.g))

... they are equal.

End(Not run)

###
Just a single example of the memory-efficient algorithm
triggered by argument 'mem.frac'.
###
Not run:
First artificially increase the size of the sampling frame (e.g.
up to 5 million rows):

sbs.frame.HUGE<-sbs.frame[sample(1:nrow(sbs.frame),5000000,rep=TRUE),]
dim(sbs.frame.HUGE)

Build the template:
pop<-pop.template(sbsdes,

calmodel=~(emp.num+ent):(nace2.in.nace.macro + emp.cl)-1,
partition=~nace.macro:region)

dim(pop)

Fill the template by using the HUGE universe:
pop<-fill.template(universe=sbs.frame.HUGE,template=pop)

End(Not run)

find.lon.strata Find Strata with Lonely PSUs

Description

Checks whether a stratified design object contains lonely PSUs: if this is the case, returns the lonely
strata levels.

62 find.lon.strata

Usage

find.lon.strata(design)

Arguments

design Object of class analytic (or inheriting from it) containing survey data and sam-
pling design metadata.

Details

Lonely PSUs (i.e. PSUs which are alone inside a not self-representing stratum) are a concern from
the viewpoint of variance estimation. The suggested ReGenesees facility to handle the lonely PSUs
problem is the strata aggregation technique provided in function collapse.strata (for further
alternatives, see also ReGenesees.options).

Function find.lon.strata (originally a private function intended to be called only by collapse.strata)
is a simple diagnostic tool whose purpose is to identify the levels of the strata containing lonely
PSUs (lonely strata for short).

Value

The lonely strata levels, if design actually contains lonely PSUs; invisible(NULL) otherwise.

Author(s)

Diego Zardetto

See Also

collapse.strata for the suggested way of handling lonely PSUs, ReGenesees.options for a
different way to face the same problem (namely by setting variance estimation options), and fpcdat
for useful data examples.

Examples

Load sbs data:
data(fpcdat)

A negative example first:

Build a design object:
fpcdes<-e.svydesign(data=fpcdat,ids=~psu+ssu,strata=~stratum,weights=~w,

fpc=~fpc1+fpc2)
fpcdes

Find lonely strata:
find.lon.strata(fpcdes)

Recall that the difference between certainty PSUs (those sampled with
probability 1, contained inside self-representing strata) and lonely PSUs
rests on the fpc information passed to e.svydesign, e.g.:

Build a new design object with the same data, now IGNORING fpcs:
fpcdes.nofpc<-e.svydesign(data=fpcdat,ids=~psu+ssu,strata=~stratum,

weights=~w)

fit.gvf 63

fpcdes.nofpc

Find lonely strata:
find.lon.strata(fpcdes.nofpc)

A trivial check: collapsing strata eliminates lonely PSUs

Apply the collapse strata technique:
fpcdes.nofpc.clps<-collapse.strata(fpcdes.nofpc)

fpcdes.nofpc.clps
clps.strata.status

Find lonely strata:
find.lon.strata(fpcdes.nofpc.clps)

...as it must be.

fit.gvf Fit GVF Models

Description

This function fits one or more GVF models to a set of survey statistics.

Usage

fit.gvf(gvf.input, model = NULL, weights = NULL)

S3 method for class 'gvf.fit'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
S3 method for class 'gvf.fits'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
S3 method for class 'gvf.fit.gr'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
S3 method for class 'gvf.fits.gr'
print(x, digits = max(3L, getOption("digits") - 3L), ...)

S3 method for class 'gvf.fits'
x[...]
S3 method for class 'gvf.fits'
x[[...]]

S3 method for class 'gvf.fit'
summary(object, correlation = FALSE, symbolic.cor = FALSE, ...)
S3 method for class 'gvf.fits'
summary(object, correlation = FALSE, symbolic.cor = FALSE, ...)
S3 method for class 'gvf.fit.gr'
summary(object, correlation = FALSE, symbolic.cor = FALSE, ...)
S3 method for class 'gvf.fits.gr'
summary(object, correlation = FALSE, symbolic.cor = FALSE, ...)

64 fit.gvf

Arguments

gvf.input An object of class gvf.input (or gvf.input.gr), containing the data to fit.

model The GVF model(s) to be fitted (see ‘Details’). NULL (the default) requires to fit
all the registered GVF models currently available in GVF.db.

weights Formula specifying the weights to be used for fitting (via weighted least squares),
if any. NULL (the default) means that ordinary least squares will be used. See
also ’Details’.

x An object of class gvf.fits, storing fitted GVF models.

digits Minimal number of significant digits, see print.default.

object Any output of fit.gvf, storing one (more than one) fitted GVF model(s).

correlation Should the correlation matrix of the estimated parameters be returned and printed?
Logical, with default FALSE.

symbolic.cor Should the correlations be printed in symbolic form (see symnum) rather than as
numbers. Logical, with default FALSE.

... Further arguments passed to or from other methods.

Details

Function fit.gvf fits one or more GVF models to a set of survey statistics. The rationale for fitting
multiple models to the same data is primarily for comparison purposes: the user is expected to
eventually choose his preferred model, in order to obtain sampling errors predictions.

Argument gvf.input specifies the set of (pre computed) estimates and errors to which GVF models
are to be fitted, as prepared by functions gvf.input and/or svystat.

One or more GVF models can be fitted simultaneously to the same data, depending on the way
argument model is passed.

Argument model can be either:

(1) NULL (the default) meaning all the registered models currently available in GVF.db;

(2) any sub-vector of GVF.db$Model.id, i.e. an integer vector identifying an arbitrary selection of
registered models;

(3) an arbitrary (single) formula, i.e. any custom, user-defined GVF model.

When model is passed via options (1) or (2), function fit.gvf can take advantage of any additional
information available inside GVF.db, e.g. to warn the user in case a GVF model is not deemed to be
appropriate for the kind of estimates contained into gvf.input (see ‘Examples’).

Argument weights enables fitting the specified GVF model(s) via weighted least squares. By de-
fault weights = NULL and ordinary least squares are used. The weights must be passed by a formula
referencing variables belonging to gvf.input. For instance, to weight observations according to
reciprocals of squared CVs, one can use weights = ~I(CV^-2).

Value

An object containing one or more fitted GVF models, depending on the way argument model was
passed.

Let’s first focus on input objects of class gvf.input.
If model specifies a single GVF model, the output object will be of class gvf.fit and inherit from
class lm.
If model specifies many GVF models, the output object will be of class gvf.fits and inherit from

fit.gvf 65

class list. Hence, it will be possible to subset gvf.fits objects via methods [and [[. Note,
moreover, that each component (in the sense of class list) of a gvf.fits object will be of class
gvf.fit.

When, instead, the input object has class gvf.input.gr, i.e. it stores "grouped" estimates and
errors, model fitting is performed separately for different groups. Therefore, applying fit.gvf al-
ways results in many fitted GVF models.
If model specifies a single GVF model, the output object will be of class gvf.fit.gr and inherit
from class list. Each slot of the list will contain the same GVF model fitted to a specific group.
If model specifies many GVF models, the output object will be of class gvf.fits.gr and again
inherit from class list. Each slot of the list will now contain a second list storing different GVF
models fitted to a specific group.

Author(s)

Diego Zardetto

See Also

estimator.kind to assess what kind of estimates are stored inside a survey statistic object, GVF.db
to manage ReGenesees archive of registered GVF models, gvf.input and svystat to prepare the
input for GVF model fitting, fit.gvf to fit GVF models, plot.gvf.fit to get diagnostic plots
for fitted GVF models, drop.gvf.points to drop alleged outliers from a fitted GVF model and
simultaneously refit it, and predictCV to predict CV values via fitted GVF models.

Examples

Load example data:
data(AF.gvf)

Now we have at our disposal a set of estimates and errors
of Absolute Frequencies:
str(ee.AF)

And the available registered GVF models are listed below:
GVF.db

###
How to specify the GVF model(s) to fit?
###

(A) How to specify a *single* GVF model

(A.1) Select one registered model using its 'Model.id' as reported in
the GVF.db archive
Let's fit, for instance, the GVF model with Model.id = 1:
m <- fit.gvf(ee.AF, model = 1)

Inspect the result:
class(m)
m
summary(m)

Now let's fit GVF model with Model.id = 4

66 fit.gvf

m <- fit.gvf(ee.AF, model = 4)
Beware of the NOTE reported when printing or summarizing this fitted model:
m
summary(m)

(A.2) Specify the GVF model to fit by providing its formula directly, e.g.
because it is not available in GVF.db (yet):
m <- fit.gvf(ee.AF, model = CV ~ I(1/Y^2) + I(1/Y) + Y + I(Y^2))
m
summary(m)

(B) How to specify a *many* GVF models simultaneously

(B.1) Use a subset of column 'Model.id' of GVF.db
Let's, for instance, fit all the available GVF models which are appropriate
to Frequencies, as reported in column 'Estimator.kind' of GVF.db
mm <- fit.gvf(ee.AF, model = 1:3)

Inspect the result:
class(mm)
length(mm)
mm
summary(mm)

Note that you can subset the output fitted models as a list:
mm.31 <- mm[c(3,1)]
class(mm.31)
mm.31

and:
mm.2 <- mm[[2]]
class(mm.2)
mm.2

(B.2) Not specifying any GVF model, or specifying model = NULL, causes
all the available models in GVF.db to be fitted simultaneously:
mm <- fit.gvf(ee.AF)

Inspect the result:
class(mm)
length(mm)
mm
summary(mm)

###
How to fit GVF model(s) via *weighted* least squares?
###
Weights can be specified by a formula. Of course, the 'weights' formula must
reference variables belonging to gvf.input.

Let's use the built-in GVF model with Model.id = 1 and weight observations
according to reciprocals of squared CVs:
mw <- fit.gvf(ee.AF, model = 1, weights = ~I(CV^-2))

fit.gvf 67

mw

Compute ordinary least squares fit:
m <- fit.gvf(ee.AF, model = 1)
m

Compare the results:
summary(mw)
summary(m)

###
Fitting GVF model(s) to "grouped" estimates and errors: a quick ride.
###
Recall we have at our disposal the following survey design object
defined on household data:
exdes

Now use function svystat to prepare "grouped" estimates and errors
of counts to be fitted separately (here groups are regions):
ee.g <- svystat(exdes, y=~ind, by=~age5c:marstat:sex, combo=3, group=~regcod)
class(ee.g)
ee.g

Fit a *single* registered GVF model separately inside groups
m.g <- fit.gvf(ee.g, model = 1)

Inspect the result:
class(m.g)
length(m.g)
m.g
summary(m.g)

Can subset the result as a list, e.g. to get the fitted model of region '7':
m.g7 <- m.g[["7"]]
class(m.g7)
summary(m.g7)

Fit *many* registered GVF models separately inside groups
mm.g <- fit.gvf(ee.g, model = 1:3)

Inspect the result:
class(mm.g)
length(mm.g)
mm.g
summary(mm.g)

Still can subset the result as a list, but now each component is a list
itself. To get the fitted models of region '7', simply:
mm.g7 <- mm.g[["7"]]
class(mm.g7)
summary(mm.g7)

And to isolate GVF fitted model number 2 for region '7', simply:
mm.g7.2 <- mm.g7[[2]]
class(mm.g7.2)

68 fpcdat

summary(mm.g7.2)

fpcdat A Small But Not Trivial Artificial Sample Data Set

Description

A small dataset mimicking sample data selected with a 2-stage, stratified, cluster sampling without
replacement. Allows to run R code contained in the ’Examples’ section of the ReGenesees package
help pages.

Usage

data(fpcdat)

Format

A data frame with 28 observations on the following 12 variables.

psu Identifier of the primary sampling units, numeric

ssu Identifier of the second stage sampling units, numeric

stratum Stratification Variable, a factor with 5 levels: S.1, S.2, S.3, S.4, S.5

sr Strata type, integer with values 0 (NSR strata) and 1 (SR strata)

fpc1 First stage finite population corrections, given as population sizes (in terms of psu clusters)
inside strata, numeric

fpc2 Second stage finite population corrections, given as population sizes (in terms of ssu clusters)
inside the corresponding sampled psu, numeric

x A numeric variable

y A numeric variable

dom1 A variable defining unplanned estimation domains, factor with 3 levels: A, B, C

dom2 A variable defining unplanned estimation domains, factor with 6 levels: a, b, c, d, e, f

w Direct weights, numeric

z A numeric variable

pl.domain A variable defining planned estimation domains, factor with 3 levels: pd.1, pd.2,
pd.3

Details

Though very small, the fpcdat dataset concentrates a lot of interesting features. The sampling
design is a complex one, with both self-representing (SR) and not-self-representing (NSR) strata.
Sampling fractions are deliberately not negligible, in order to stress the effects of finite population
corrections on variance estimation. Moreover, being the observations so few, performing computa-
tions on the fpcdat dataset allows to check and understand easily all the effects of setting/changing
the global variance estimation options of the ReGenesees package (see e.g. ReGenesees.options).

See Also

ReGenesees.options for setting/changing variance estimation options.

g.range 69

Examples

data(fpcdat)
head(fpcdat)
str(fpcdat)

g.range Range of g-Weights

Description

Computes the range of the ratios between calibrated weights and initial weights (g-weights).

Usage

g.range(cal.design)

Arguments

cal.design Object of class cal.analytic.

Details

This function computes the smallest interval which contains the ratios between calibrated weights
and initial weights.

Value

A numeric vector of length 2.

Note

If cal.design has undergone k subsequent calibration steps (with k >= 2), the function will return
the range of the ratios between the output weights of calibration steps k and k - 1.

Author(s)

Diego Zardetto

See Also

weights to extract the weights from a design object, e.calibrate for calibrating weights and
bounds.hint to obtain a hint for calibration problems where range restrictions are imposed on the
g-weights.

70 get.residuals

Examples

Creation of the object to be calibrated:
data(data.examples)
des<-e.svydesign(data=example,ids=~towcod+famcod,strata=~SUPERSTRATUM,

weights=~weight)

Calibration (iterative solution) on the marginal distribution
of age in 5 classes (age5c) inside provinces (procod)
(totals in pop06p) with bounds=c(0.5, 1.5):
descal06p<-e.calibrate(design=des,df.population=pop06p,

calmodel=~age5c-1,partition=~procod,calfun="logit",
bounds=c(0.5, 1.5),aggregate.stage=2)

Now let's verify the actual range of the obtained g-weights:
g.range(descal06p)

which indeed is covered by c(0.5, 1.5), as required.

Now calibrate once again, this time on the joint distribution of sex
and marstat (totals in pop03) with the global solution:
descal2<-e.calibrate(design=descal06p,df.population=pop03,

calmodel=~marstat:sex-1,calfun="linear",bounds=bounds)

Notice that the print method correctly takes the calibration chain
into account:
descal2

The range of the g-weights for the twice calibrated object is:
g.range(descal2)

#... which is equal to:
range(weights(descal2)/weights(descal06p))

#... and must not be confused with:
range(weights(descal2)/weights(des))

get.residuals Calibration Residuals of Interest Variables

Description

Computes (scaled) residuals of a set of interest variables w.r.t. the calibration model adopted to
build a calibrated object.

Usage

get.residuals(cal.design, y, scale = c("no", "w", "d", "g"))

Arguments

cal.design Object of class cal.analytic.
y Formula defining the variables of interest.
scale character specifying how to scale the residuals, can be one of: 'no' (the de-

fault), 'w', 'd', 'g' (see ‘Details’).

get.residuals 71

Details

This function has been designed mainly for programmers willing to build upon ReGenesees: typical
users are not expected to feel much need of it.

The residuals of an interest variable w.r.t. the linear model defined by the auxiliary variables used
for calibration play a central role in estimating the variance of Calibration Estimators. Notice that if
object cal.design has been generated by running a partitioned calibration task (see e.calibrate),
the residuals will be correctly computed using the different estimated regression coefficients per-
taining to the different domains belonging to the partition.

The mandatory argument y behaves exactly the same way as it does in function svystatTM.

The scale argument allows to scale the computed residuals by multiplying them by different fac-
tors. By default scale="no", that is unscaled residuals are returned. Value "w" returns the resid-
uals times the calibrated weights; value "d" returns the residuals times the initial weights; finally,
value "g" returns the residuals times the g-weights (i.e. the ratios between calibrated and initial
weights). Notice that the semantics of argument scale are slightly modified when the input object
cal.design as been obtained by a multi-step calibration procedure (see Section ’Note’ below).

Value

A matrix of residuals.

Note

If cal.design has undergone k subsequent calibration steps (with k >= 1), the function will return
the residuals computed w.r.t. the linear assisting model underlying the last (i.e. k-th) calibration
step. If k >= 2, the scale parameter will be interpreted as follows:

SCALE MEANING
"no"........no scale;
"w"........last calibration weight (i.e. at step k);
"d"........second to last calibration weight (i.e. at step k - 1);
"g"........ratio between last and second to last calibration weights.

Author(s)

Diego Zardetto

See Also

weights to extract the weights from a design object, e.calibrate for calibrating weights and
g.range to get the range of the g-weights.

Examples

##
Just some checks on the consistency of the numerical results
obtained by ReGenesees with well known theoretical properties.
##

Load sbs data:
data(sbs)

Create a design object to be calibrated:
sbsdes<-e.svydesign(data=sbs,ids=~id,strata=~strata,weights=~weight,fpc=~fpc)

72 get.residuals

################
Property 1
################
If the calibration model has (implicitly or explicitly) an intercept
the weighted sum of residuals must be zero.

Suppose you calibrate on enterprise counts inside areas, i.e. a calibration
model WITH intercept (though implicitly):
calmodel= ~ area - 1

First, build and fill the known totals template:
pop<-pop.template(sbsdes, calmodel= ~ area - 1)
pop<-fill.template(pop, universe=sbs.frame)

Then, calibrate:
sbscal<-e.calibrate(sbsdes, pop)

Now, get the residuals of any variable (e.g. y and emp.num) scaled with the
direct weights:
de <- get.residuals(sbscal, ~ y + emp.num, scale="d")

Lastly, compute the column sums...
colSums(de)

#...which is (numerically) zero, as it must be.

################
Property 2
################
If the calibration model does not have (implicitly or explicitly) an
intercept term the weighted sum of residuals is generally different from zero.

Suppose you calibrate on employees counts inside areas, i.e. a calibration
model WITH intercept (though implicitly):
calmodel= ~ emp.num:area - 1

First, build and fill the known totals template:
pop<-pop.template(sbsdes, calmodel= ~ emp.num:area - 1)
pop<-fill.template(pop, universe=sbs.frame)

Then, calibrate:
sbscal<-e.calibrate(sbsdes, pop)

Now, get the residuals of any variable (e.g. y and region) scaled with the
direct weights:
de <- get.residuals(sbscal, ~ y + region, scale="d")

Lastly, compute the column sums...
colSums(de)

#...which is far from zero, as expected.

################
Property 3

getBest 73

################
In the Taylor linearization approach, estimating the variance of a
Calibration Estimator amounts to estimating the variance of the HT total
of its linearized variable (i.e. the g-scaled residual), under the sampling
design at hand.

Suppose you calibrate on the total number of employees and enterprises
inside the domains obtained by:
i) crossing nace.macro and region;
ii) crossing emp.cl and region;

First, build and fill the population totals template:
pop<-pop.template(sbsdes,

calmodel=~(emp.num+ent):(nace.macro+emp.cl)-1,
partition=~region)

pop<-fill.template(universe=sbs.frame,template=pop)

Then, calibrate:
sbscal<-e.calibrate(sbsdes,pop)

Now, compute the linearized variable of the Calibration Estimator of the
total of any variable (e.g. va.imp2):
z_va.imp2 <- get.residuals(sbscal, ~ va.imp2, scale="g")

Now, treat z_va.imp2 as an ordinary variable and compute the standard error
of its HT total:
sbsdes<-des.addvars(sbsdes, z_va.imp2 = z_va.imp2)
SE(svystatTM(sbsdes, ~z_va.imp2))

Lastly, compute directly the standard error of the Calibration Estimator...
SE(svystatTM(sbscal, ~va.imp2))

#...and they are identical, as it must be.

Obviously the same result would hold for domain estimates (e.g. the total
of va.imp2 for the "Agriculture" nace.macro).

Compute the linearized variable of the Calibration Estimator of the domain
total:
z_va.imp2.Agr <- get.residuals(sbscal, ~ I(va.imp2*(nace.macro=="Agriculture")),

scale="g")

Now, treat z_va.imp2.Agr as an ordinary variable and compute the standard
error of its HT total:
sbsdes<-des.addvars(sbsdes, z_va.imp2.Agr = z_va.imp2.Agr)
SE(svystatTM(sbsdes, ~z_va.imp2.Agr))

Lastly, compute directly the standard error of the Calibration Estimator
by domain...
SE(svystatTM(sbscal, ~va.imp2, ~nace.macro))

#...and the "Agriculture" SEs are identical, as it must be.

getBest Identify the Best Fit GVF Model

74 getBest

Description

Given a set of competing fitted GVF models, this function selects the best model according to a
given criterion.

Usage

getBest(object,
criterion = c("R2", "adj.R2", "AIC", "BIC"), ...)

Arguments

object Typically, an object containing many fitted GVF models (i.e. of class gvf.fits
or gvf.fits.gr).

criterion The quality criterion to be used for model selection. Default is R^2.

... Further arguments passed to or from other methods.

Details

Given a set of competing fitted GVF models, this function selects the best model according to a
given criterion.

Four goodness-of-fit criteria are available: R^2, adjusted R^2, AIC, and BIC (see getR2).

If object is a set of GVF models fitted to grouped data (i.e. of class gvf.fits.gr), the function
will return the fitted GVF model with best average score in the given criterion over the groups.

Value

A single GVF fitted model.

Methodological Warning

Each one of the available criteria has its own specificities and limitations (e.g. it is senseless to use
AIC to compare two GVF models with different response variables). It is up to the user to select
the measure which is appropriate to his goals.

Author(s)

Diego Zardetto

See Also

GVF.db to manage ReGenesees archive of registered GVF models, gvf.input and svystat to pre-
pare the input for GVF model fitting, fit.gvf to fit GVF models, plot.gvf.fit to get diagnostic
plots for fitted GVF models, drop.gvf.points to drop alleged outliers from a fitted GVF model
and simultaneously refit it, and predictCV to predict CV values via fitted GVF models.

Examples

Load example data:
data(AF.gvf)

Inspect available estimates and errors of counts:
str(ee.AF)

getR2 75

List available registered GVF models:
GVF.db

(A) A *a set* of GVF models fitted to the same data
Fit example data to all registered GVF models:
mm <- fit.gvf(ee.AF)
summary(mm)

Get the best model according to adjusted R^2:
mm.best <- getBest(mm, criterion = "adj.R2")
mm.best

NOTE: The *first* model has been selected. A thorough model comparison
by means of diagnostic plots would have led to the same result:
plot(mm, 1:3)

(B) a *set of* GVF models fitted to *grouped* data
We have at our disposal the following survey design object on household data:
exdes

Use function svystat to prepare *grouped* estimates and errors of counts
to be fitted separately (here groups are regions):
ee.g <- svystat(exdes, y=~ind, by=~age5c:marstat:sex, combo=3, group=~regcod)
str(ee.g)

Fit all registered GVF model number separately inside groups:
mm.g <- fit.gvf(ee.g)
summary(mm.g)

Get the best model according to R^2:
mm.g.best <- getBest(mm.g)
mm.g.best

NOTE: Again, the *first* model has been selected. A thorough model comparison
by means of diagnostic plots would have led to the same result:
plot(mm.g, 1:3)

getR2 Quality Measures on Fitted GVF Models

Description

These functions extract goodness-of-fit measures from fitted GVF models.

Usage

getR2(object, adjusted = FALSE, ...)

S3 method for class 'gvf.fits'
AIC(object, ...)

S3 method for class 'gvf.fits'
BIC(object, ...)

76 getR2

Arguments

object An object containing one or more fitted GVF models.

adjusted Should the adjusted R^2 be computed? The default is FALSE

... Further arguments passed to or from other methods.

Details

These functions compute three goodness-of-fit measures on fitted GVF models: R^2, AIC, and BIC.
Such measures can help compare the relative quality of competing GVF models, hence facilitating
model selection (see also function getBest).

Though object can also be a single fitted GVF model, these functions are principally meant to
compare different GVF models fitted to the same data (i.e. the same estimates and errors).

To request the adjusted R^2, use function getR2 and specify adjusted = TRUE.

Value

If object is a single GVF model (class gvf.fit), the requested quality measure.

If object is a set of GVF models fitted to the same data (class gvf.fits), a vector whose elements
store the requested quality measure for each GVF model.

If object is a single GVF model fitted to "grouped" data (class gvf.fit.gr), a list whose compo-
nents store the requested quality measure for the corresponding groups.

If object is a set of GVF models fitted to "grouped" data (class gvf.fits.gr), a list whose com-
ponents store vectors whose elements report the requested quality measure for each GVF model of
each group.

Methodological Warning

Each one of the provided quality measures has its own specificities and limitations (e.g. it is sense-
less to use AIC to compare two GVF models with different response variables). It is up to the user
to select the measure which is appropriate to his goals.

Author(s)

Diego Zardetto

See Also

GVF.db to manage ReGenesees archive of registered GVF models, gvf.input and svystat to pre-
pare the input for GVF model fitting, fit.gvf to fit GVF models, plot.gvf.fit to get diagnostic
plots for fitted GVF models, drop.gvf.points to drop alleged outliers from a fitted GVF model
and simultaneously refit it, and predictCV to predict CV values via fitted GVF models.

Examples

Load example data:
data(AF.gvf)

Inspect available estimates and errors of counts:
str(ee.AF)

List available registered GVF models:
GVF.db

GVF.db 77

(A) A *single* fitted GVF model
Fit example data to registered GVF model number one:
m <- fit.gvf(ee.AF, 1)

Compute some goodness-of-fit measures:
getR2(m)
AIC(m)

(B) A *a set* of GVF models fitted to the same data
Fit example data to all registered GVF models:
mm <- fit.gvf(ee.AF)

Compute some goodness-of-fit measures:
getR2(mm, adjusted = TRUE)
BIC(mm)

(C) a *single* GVF model fitted to *grouped* data
We have at our disposal the following survey design object on household data:
exdes

Use function svystat to prepare *grouped* estimates and errors of counts
to be fitted separately (here groups are regions):
ee.g <- svystat(exdes, y=~ind, by=~age5c:marstat:sex, combo=3, group=~regcod)
str(ee.g)

Fit registered GVF model number one separately inside groups:
m.g <- fit.gvf(ee.g, 1)

Compute some goodness-of-fit measures:
getR2(mm)
AIC(mm)

(D) a *set of* GVF models fitted to *grouped* data
Fit all registered GVF model number separately inside groups:
mm.g <- fit.gvf(ee.g)

Compute some goodness-of-fit measures:
getR2(mm.g, adjusted = TRUE)
BIC(mm.g)

GVF.db Archive of Registered GVF Models

Description

GVF.db is the archive of registered (i.e. built-in and/or user-defined) Generalized Variance Func-
tions models supported by ReGenesees. Special accessor functions allow to customize, maintain,
extend, update, save and reset such archive.

78 GVF.db

Usage

GVF.db

GVF.db$insert(GVF.model, Estimator.kind = NA, Resp.to.CV = NA, verbose = TRUE)

GVF.db$delete(Model.id, verbose = TRUE)

GVF.db$get(verbose = TRUE)

GVF.db$assign(value, verbose = TRUE)

GVF.db$reset(verbose = TRUE)

Arguments

GVF.model A GVF model, expressed as a formula object or as a character string (see ‘De-
tails’).

Estimator.kind Character string identifying the kind of estimators for which the GVF model is
deemed to be appropriate (see ‘Details’).

Resp.to.CV Character string representing the function which maps the response of the GVF
model (namely: variable ’resp’) to the coefficient of variation (namely: variable
’CV’), see ‘Details’.

Model.id Unique integer key identifying the GVF model.

value An exported copy of GVF.db, as returned by GVF.db$get().

verbose Enables printing of a summary description of the result (the default is TRUE).

Format

Each row of the GVF.db data frame represents a registered GVF model, with relevant information
on the following 4 variables:

Model.id A unique integer key identifying the GVF model, integer.

GVF.model A character string specifying the GVF model formula, character. See also ’Details’.

Estimator.kind A character string identifying the kind of estimators for which the GVF model is
deemed to be appropriate, character. See also ’Details’.

Resp.to.CV A character string which represents the function mapping the response of the GVF
model (namely: variable ’resp’) to the coefficient of variation (namely: variable ’CV’), character.
See also ’Details’.

Details

GVF.db stores information about Generalized Variance Functions models supported by ReGene-
sees. When starting a new work session with ReGenesees, GVF.db contains few built-in GVF mod-
els (currently 5, see sections ’Source’ and ’Examples’). The content of GVF.db can be customized
by means of special accessor functions:

ACCESSOR FUNCTION PURPOSE
GVF.db$insert...........Register a new GVF model by adding a new row to the

GVF.db archive
GVF.db$delete...........Unregister a GVF model by deleting the corresponding

GVF.db 79

row from GVF.db
GVF.db$get..............Get the current version of GVF.db (e.g. to copy/save a

customized archive for later usage)
GVF.db$assign...........Overwrite the current version of GVF.db (e.g. to use a

customized archive which was exported in a previous
ReGenesees session)

GVF.db$reset............Reset GVF.db to its default version (i.e. the one with
built-in GVF models only)

Information about registered GVF models stored inside GVF.db will be accessed and used by Re-
Genesees Generalized Variance Functions facilities, e.g. functions fit.gvf or predictCV.

GVF.db$insert()
Function GVF.db$insert has just a single mandatory argument: GVF.model. This can be either a
two-sided formula or a character string which would be tranformed into a (well formed) two-sided
formula by function as.formula.

The GVF.model formula to be inserted into GVF.db must be new (i.e. not already present into the
archive) and can involve only variables contained inside gvf.input objects, namely:

(1) 'Y'
(2) 'SE'
(3) 'CV'
(4) 'VAR'
(5) 'DEFF'

Moreover, since GVF models are intended to model variances in terms of estimates, the response
term of GVF.model must involve some of 'SE', 'CV', 'VAR', and the linear predictor must involve
'Y'.

Optional argument Estimator.kind can be used to specify the kind of estimators for which the
GVF.model is deemed to be appropriate. There are currently only 9 valid values for Estimator.kind,
namely:

(1) 'Total'
(2) 'Mean'
(3) 'Frequency'
(4) 'Absolute Frequency'
(5) 'Relative Frequency'
(6) 'Ratio'
(7) 'Regression Coefficient'
(8) 'Quantile'
(9) 'Complex Estimator'

Note that category 'Frequency' has to be understood as an aggregation of categories 'Absolute Frequency'
and 'Relative Frequency', thus being appropriate for GVF models which are deemed to work
well for estimators of both kind of frequencies.

One of the primary motivations for building and fitting a GVF model is to exploit the fitted model
to predict the sampling error associated to a given estimate, instead of having to compute directly
an estimate of such sampling error. Optional argument Resp.to.CV is relevant to that scope.

80 GVF.db

Indeed, different GVF models can actually specify as response term (call it 'resp' for definiteness)
different functions of variables 'SE', 'CV', and 'VAR', but ReGenesees will always adopt variable
'CV' as a pivot. Thus, when registering a new GVF model, the user can provide via argument
Resp.to.CV the function which transforms the response of the model, 'resp', into the pivot mea-
sure of variability, 'CV'. A look to the default content of GVF.db should make the latter statement
clear (see ‘Examples’).

Note that while Resp.to.CV is passed as a character string, that string is expected to represent a
well-formed mathematical expression (otherwise function predictCV would not work). Moreover,
only variables 'resp' and 'Y' are allowed to appear inside Resp.to.CV (which is enough, since
'VAR' and 'SE' can be expressed in terms of 'CV' and 'Y').

If the user does not specify Resp.to.CV when registering a new GVF model, he will be not able to
use function predictCV for predicting CV values based on the fitted GVF model.

Lastly, note that the Model.id of a newly inserted GVF model will automatically be set, by adding
1 to the previous maximum of Model.id.

GVF.db$delete()
Function GVF.db$delete has just a single mandatory argument: Model.id. It must match the
integer key of the (already existing) GVF model you want to drop from GVF.db.

Note that, after deleting a GVF model from GVF.db, values of column Model.id will be automati-
cally renumbered, so as to range always from 1 to nrow(GVF.db).

GVF.db$get()
Function GVF.db$get has no mandatory arguments. When invoked, the function returns the current
content of GVF.db, so that it can be assigned and saved/exported for later usage (see ‘Examples’).
Should the current content of GVF.db happen to be empty, the function would inform the user and
return NULL. The return value of GVF.db$get has class "GVF.db_exported", and inherits from class
"data.frame".

GVF.db$assign()
Function GVF.db$assign has just a single mandatory argument: value. The object passed to argu-
ment value can only be a previously exported copy of GVF.db, i.e. an object of class GVF.db_exported.
The function overwrites the current version of GVF.db with value. As a result, after invoking
GVF.db$assign, the content of GVF.db is value.

GVF.db$reset()
Function GVF.db$reset has no mandatory arguments and simply restores the default version of
GVF.db (i.e. the one containing built-in GVF models only).

Author(s)

Diego Zardetto

GVF.db 81

Source

Built-in GVF models for frequencies (i.e. those with Model.id 1, 2, and 3) are discussed in Chapter
7 of [Wolter 07], along with their theoretical justification. Built-in GVF models for totals (i.e. those
with Model.id 4, and 5) lack a rigorous justification, but have sometimes been used successfully on
a purely empirical basis. For instance, Istat surveys on structural business statistics adopted models
of that kind to summarize standard errors in publications and to allow their approximate evaluation
on a custom basis.

References

Wolter, K.M. (2007) "Introduction to Variance Estimation", Second Edition, Springer-Verlag, New
York.

See Also

estimator.kind to assess what kind of estimates are stored inside a survey statistic object, gvf.input
and svystat to prepare the input for GVF model fitting, fit.gvf to fit GVF models, plot.gvf.fit
to get diagnostic plots for fitted GVF models, drop.gvf.points to drop alleged outliers from a fit-
ted GVF model and simultaneously refit it, and predictCV to predict CV values via fitted GVF
models.

Examples

Print the current content of GVF.db (invoking
print(GVF.db) would do the same):
GVF.db

Inspect the structure of the GVF.db data frame:
data.class(GVF.db)
str(GVF.db)
dim(GVF.db)
nrow(GVF.db)

######################
Accessor functions
######################

Delete the 3rd model:
GVF.db$delete(3)
Print GVF.db (note that Model.id has been renumbered,
so as to range always from 1 to nrow(GVF.db))
GVF.db

Now delete the 1st model:
GVF.db$delete(1)
GVF.db

Reset GVF.db to its default values:
GVF.db$reset()
GVF.db

Insert a new tentative GVF model for Totals:
GVF.db$insert(CV ~ I(1/Y^2) + I(1/Y) + Y + I(Y^2), "Total", "resp")
GVF.db

82 GVF.db

(notice that invoking GVF.db$insert() with first argument of type character,
i.e. GVF.model="CV~I(1/Y^2)+I(1/Y)+Y+I(Y^2)", would have obtained exactly the
same result)

Now suppose you have somehow validated your newly added model,
and you want to save your current, enhanced GVF.db in order to
be able to use it later in a subsequent ReGenesees session.
This can be achieved as follows:
START

1. You must first get a copy of it, by using accessor function
GVF.db$get:

myGVF.db <- GVF.db$get()
myGVF.db
data.class(myGVF.db)

2. Then, you must save the copy to a .RData workspace, in order
to be able to load it later when needed, e.g.:

Not run:
save(myGVF.db, file="custom.GVF.Archive.RData")

End(Not run)

3. Starting a new ReGenesees session will set the default GVF.db,
which we can simulate in this example as follows:

GVF.db$reset()
GVF.db

4. Now you can load your previously saved customized GVF.db...
Not run:
load("custom.GVF.Archive.RData")

End(Not run)
...so that myGVF.db is back into your .GlobalEnv:

myGVF.db

5. Lastly, you must overwrite GVF.db with your custom
GVF archive myGVF.db via function GVF.db$assign:

GVF.db$assign(myGVF.db)
GVF.db

Now your custom GVF archive is ready to be used by ReGenesees.
STOP

Illustrate some GVF.db$insert checks by trying crazy models
or ill-specified attributes

Examples start: reset GVF.db to its default values
GVF.db$reset()
GVF.db

GVF model must be "syntactically new"...
Not run:
GVF.db$insert(log(CV^2) ~ log(Y))

End(Not run)
...if this is the case, it can even be "equivalent" to old ones: e.g.
the following is identical to model number 5 and will produces identical

gvf.input 83

estimates and predictions (as you may want to check):
GVF.db$insert(I(sqrt(VAR)/Y) ~ I(1/Y) + Y, "Total", Resp.to.CV = "resp")
GVF.db

GVF model must have a response term
Not run:
GVF.db$insert(~ log(Y))

End(Not run)

GVF model response must involve some of 'SE', 'CV', 'VAR'
Not run:
GVF.db$insert(DEFF ~ log(Y))

End(Not run)

GVF model predictor must involve 'Y'
Not run:
GVF.db$insert(VAR ~ SE)

End(Not run)

If passed, Resp.to.CV can only involve 'resp' and 'Y'
Not run:
GVF.db$insert(I(sqrt(VAR)/Y) ~ I(1/Y) + Y + I(Y^2), Resp.to.CV = "sqrt(VAR)/Y")

End(Not run)

Examples end: reset GVF.db to its default values:
GVF.db$reset()

gvf.input Prepare Input Data to Fit GVF Models

Description

Transforms a set of computed survey statistics into a suitable (data.frame-like) data structure, in
order to fit a Generalized Variance Function model.

Usage

gvf.input(design, ..., stats = list(...))

S3 method for class 'gvf.input'
plot(x, ...)

Arguments

design The design object (of class analytic or inheriting from it) from which the input
survey statics are supposed to have been derived.

... For function gvf.input, objects containing survey statistics. For plot, further
arguments passed to or from other methods.

stats A list storing survey statistic objects (see ‘Details’).
x The object of class gvf.input to plot.

84 gvf.input

Details

Given a set of survey statistic objects (via arguments ‘...’ or stats) and a design object (design)
from which those statics are supposed to have been derived, function gvf.input builds a data
structure that can be fed to ReGenesees GVF model fitting function fit.gvf.

Argument ‘...’ can be bound to an arbitrary number of objects. These objects must be output of
survey statistics functions, i.e. svystatTM, svystatR, svystatB, svystatQ, and svystatL.
All input objects passed to ‘...’ must derive from estimators of the same kind (as returned by
function estimator.kind). For the same reason, objects of mixed kind (see estimator.kind) are
not allowed. Since function svystatL can actually handle estimators of different kinds, objects of
kind ‘Complex Estimator’ are the only exception to the rule.

Argument stats can be used as an alternative to argument ‘...’: one has only to store the survey
statistic objects into a list and bind such list to stats. Note that, if both are passed, argument
stats will prevail on ‘...’ (see ‘Examples’).

Should any input object be a survey statistic derived from a design object other than design, the
function would raise an error.

The plot method for gvf.input objects produces a matrix of scatterplots with polynomial smoothers.

Value

An object of class gvf.input, inheriting from class data.frame: basically a data frame supplied
with appropriate attributes.
Each row of the data frame contains an estimate along with its estimated sampling error, expressed
in terms of standard error, coefficient of variation, variance, and - whenever available - design
effect.
The data frame has the following structure:

name The name of the original estimate, factor.

Y The value of the original estimate, numeric.

SE The standard error of the original estimate, numeric.

CV The coefficient of variation of the original estimate, numeric.

VAR The variance of the original estimate, numeric.

DEFF The design effect of the original estimate (if available), numeric.

Note that by inspecting the attributes of a gvf.input object, one can always identify which design
object and which kind of estimator generated that object (see ‘Examples’).

Author(s)

Diego Zardetto

See Also

estimator.kind to assess what kind of estimates are stored inside a survey statistic object, svystat
as a useful alternative to prepare the input for GVF model fitting, GVF.db to manage ReGenesees
archive of registered GVF models, fit.gvf to fit GVF models, plot.gvf.fit to get diagnostic
plots for fitted GVF models, drop.gvf.points to drop alleged outliers from a fitted GVF model
and simultaneously refit it, and predictCV to predict CV values via fitted GVF models.

gvf.misc 85

Examples

Load sbs data:
data(sbs)

Create a design object...
sbsdes<-e.svydesign(data=sbs,ids=~id,strata=~strata,weights=~weight,fpc=~fpc)

...and use it to compute some survey statistics:
va<-svystatTM(sbsdes,~va.imp2)
va.reg<-svystatTM(sbsdes,~va.imp2,~region)
va.area<-svystatTM(sbsdes,~va.imp2,~area)

Now suppose you want to fit a GVF model on the estimates and errors computed
above: you must prepare your input as follows:
ee<-gvf.input(sbsdes,va,va.reg,va.area)

Inspect the obtained data structure:
ee
str(ee) # Note the "design" and "stats.kind" attributes
plot(ee)

Note that, instead of argument '...', you could have used argument 'stats'
as follows:
va.list<-list(va,va.reg,va.area)
ee2<-gvf.input(sbsdes,stats=va.list)

...obtaining exactly the same result:
identical(ee,ee2)

Note also that, if both are passed, argument 'stats' prevails on '...':
indeed, while:
gvf.input(sbsdes,va.reg)
we would get again:
gvf.input(sbsdes,va.reg,stats=va.list)

gvf.misc Miscellanea: Methods for Fitted GVF Models

Description

These methods extract information from fitted GVF model(s).

Usage

S3 method for class 'gvf.fit'
coef(object, ...)
S3 method for class 'gvf.fits'
coef(object, ...)
S3 method for class 'gvf.fit.gr'
coef(object, ...)
S3 method for class 'gvf.fits.gr'
coef(object, ...)

86 gvf.misc

S3 method for class 'gvf.fit'
residuals(object, ...)
S3 method for class 'gvf.fits'
residuals(object, ...)
S3 method for class 'gvf.fit.gr'
residuals(object, ...)
S3 method for class 'gvf.fits.gr'
residuals(object, ...)

S3 method for class 'gvf.fit'
fitted(object, ...)
S3 method for class 'gvf.fits'
fitted(object, ...)
S3 method for class 'gvf.fit.gr'
fitted(object, ...)
S3 method for class 'gvf.fits.gr'
fitted(object, ...)

S3 method for class 'gvf.fit'
predict(object, ...)
S3 method for class 'gvf.fits'
predict(object, ...)
S3 method for class 'gvf.fit.gr'
predict(object, ...)
S3 method for class 'gvf.fits.gr'
predict(object, ...)

S3 method for class 'gvf.fit'
effects(object, ...)
S3 method for class 'gvf.fits'
effects(object, ...)
S3 method for class 'gvf.fit.gr'
effects(object, ...)
S3 method for class 'gvf.fits.gr'
effects(object, ...)

S3 method for class 'gvf.fit'
rstandard(model, ...)
S3 method for class 'gvf.fits'
rstandard(model, ...)
S3 method for class 'gvf.fit.gr'
rstandard(model, ...)
S3 method for class 'gvf.fits.gr'
rstandard(model, ...)

S3 method for class 'gvf.fit'
rstudent(model, ...)
S3 method for class 'gvf.fits'
rstudent(model, ...)
S3 method for class 'gvf.fit.gr'
rstudent(model, ...)

gvf.misc 87

S3 method for class 'gvf.fits.gr'
rstudent(model, ...)

S3 method for class 'gvf.fit'
anova(object, ...)
S3 method for class 'gvf.fits'
anova(object, ...)
S3 method for class 'gvf.fit.gr'
anova(object, ...)
S3 method for class 'gvf.fits.gr'
anova(object, ...)

S3 method for class 'gvf.fit'
vcov(object, ...)
S3 method for class 'gvf.fits'
vcov(object, ...)
S3 method for class 'gvf.fit.gr'
vcov(object, ...)
S3 method for class 'gvf.fits.gr'
vcov(object, ...)

Arguments

object An object containing one or more fitted GVF models (see ‘Usage’ for the al-
lowed classes).

model An object containing one or more fitted GVF models (see ‘Usage’ for the al-
lowed classes).

... Further arguments passed to or from other methods (see corresponding .lm meth-
ods).

Details

These methods can be used to extract information from fitted GVF model(s).

For more details on their usage, please read the help pages of the methods with same name defined
on class .lm by package stats (e.g. coef, fitted, etc.).

Value

The requested information, wrapped into an R object whose structure depends on the class of the
input fitted GVF model(s) (i.e. arguments object and/or model).

Author(s)

Diego Zardetto

See Also

GVF.db to manage ReGenesees archive of registered GVF models, gvf.input and svystat to pre-
pare the input for GVF model fitting, fit.gvf to fit GVF models, plot.gvf.fit to get diagnostic
plots for fitted GVF models, drop.gvf.points to drop alleged outliers from a fitted GVF model
and simultaneously refit it, and predictCV to predict CV values via fitted GVF models.

88 gvf.misc

Examples

Load example data:
data(AF.gvf)

Inspect available estimates and errors of counts:
head(ee.AF)
summary(ee.AF)

List available registered GVF models:
GVF.db

(A) A *single* fitted GVF model
Fit example data to registered GVF model number one:
m <- fit.gvf(ee.AF, 1)

Extract some information:
coef(m)
fitted(m)

(B) A *a set* of GVF models fitted to the same data
Fit example data to registered GVF models for frequencies (i.e. number 1:3):
mm <- fit.gvf(ee.AF, 1:3)

Extract some information:
r.mod <- residuals(mm)
lapply(r.mod, head)

r.sta <- rstandard(mm)
lapply(r.sta, head)

r.stu <- rstudent(mm)
lapply(r.stu, head)

(C) a *single* GVF model fitted to *grouped* data
We have at our disposal the following survey design object on household data:
exdes

Use function svystat to prepare *grouped* estimates and errors of counts
to be fitted separately (here groups are regions):
ee.g <- svystat(exdes, y=~ind, by=~age5c:marstat:sex, combo=3, group=~regcod)
str(ee.g)

Fit registered GVF model number one separately inside groups:
m.g <- fit.gvf(ee.g, 1)

Extract some information:
coef(m.g)
fitted(m.g)

(D) a *set of* GVF models fitted to *grouped* data
Fit all registered GVF models for frequencies (i.e. number 1:3) separately
inside groups:
mm.g <- fit.gvf(ee.g, 1:3)

plot.gvf.fit 89

Extract some information:
coef(mm.g)
fitted(mm.g)

plot.gvf.fit Diagnostic Plots for Fitted GVF Models

Description

This function provides basic diagnostic plots for fitted GVF model(s).

Usage

S3 method for class 'gvf.fit'
plot(x, which.more = 1:3, id.n = 3, labels.id = names(residuals(x)),

cex.id = 0.75, label.pos = c(4, 2), cex.caption = 1, Main = NULL, ...)

S3 method for class 'gvf.fits'
plot(x, which.more = NULL, id.n = 3, labels.id = names(residuals(x)),

cex.id = 0.75, label.pos = c(4, 2), cex.caption = 1, Main = NULL, ...)

S3 method for class 'gvf.fit.gr'
plot(x, which.more = 1:3, id.n = 3, labels.id = names(residuals(x)),

cex.id = 0.75, label.pos = c(4, 2), cex.caption = 1, ...)

S3 method for class 'gvf.fits.gr'
plot(x, which.more = NULL, id.n = 3, labels.id = names(residuals(x)),

cex.id = 0.75, label.pos = c(4, 2), cex.caption = 1, ...)

Arguments

x An object containing one or more fitted GVF models (see ‘Usage’ for the al-
lowed classes).

which.more Select additional plots beyond the default one (‘Observed vs Fitted’). Can be
any subset of vector 1:6 with up to three elements.

id.n Number of points to be initially labelled in each plot, starting with the most
extreme.

labels.id Vector of labels, from which the labels for extreme points will be chosen. NULL
uses observation numbers.

cex.id Magnification of point labels.

label.pos Positioning of labels, for the left half and right half of the graph(s) respectively.

cex.caption Controls the size of caption.

Main Optional string to be added to automatic plot titles.

... Other parameters to be passed through to plotting functions.

90 plot.gvf.fit

Details

Diagnostic plots can be useful both for assessing the goodness of a GVF model fit qualitatively, and
for selecting the “best” GVF model among different alternatives.

This function can provide any of the following 7 plots:

(0) 'Observed vs Fitted'
(1) 'Residuals vs Fitted'
(2) 'Normal Q-Q'
(3) 'Scale-Location'
(4) 'Cook's distance'
(5) 'Residuals vs Leverage'
(6) 'Cook's distances vs Leverage/(1-Leverage)'

The ‘Residuals vs Fitted’ plot is special in that it will be always provided: this explains its zero-
th order in the list above. The rest of the list, namely plots 1:6, exactly matches the numbering
convention of function plot.lm.

Additional plots - beyond ‘Residuals vs Fitted’ - can be requested through argument which.more.
Any subset of 1:6 is allowed, provided its length does not exceed 3. Therefore, at most 4 plots
will be generated simultaneously.

Note that the default behaviour of this function do depend on whether input object x stores one or
more than one fitted GVF models. In the first case, plots 0:3 will be returned in a multiple plot with
a 2x2 layout. In the second case, only the default plot number 0 will be returned, opening a new
graphics frame for each different GVF model.

Argument id.n specifies how many points have to be labelled, starting with the most extreme in
terms of residuals: this applies to all plots.

Argument Main is expected to be seldom (if ever) useful: its main purpose is programming consis-
tency at a deeper level.

All the other arguments have the same meaning as in function plot.lm.

Author(s)

Diego Zardetto

References

See plot.lm and references therein.

See Also

GVF.db to manage ReGenesees archive of registered GVF models, gvf.input and svystat to
prepare the input for GVF model fitting, fit.gvf to fit GVF models, drop.gvf.points to drop
alleged outliers from a fitted GVF model and simultaneously refit it, and predictCV to predict CV
values via fitted GVF models.

Examples

Load example data:
data(AF.gvf)

Inspect available estimates and errors of counts:

plot.gvf.fit 91

str(ee.AF)

List available registered GVF models:
GVF.db

##
Diagnostic plots for fitted GVF model(s)
##

(A) Plots of a *single* fitted GVF model
Fit example data to registered GVF model number one:
m <- fit.gvf(ee.AF, 1)

Default call yields 4 plots:
plot(m)

Play with argument 'which.more':
which.more = NULL yields the "Observed vs Fitted" plot only:
plot(m, which.more = NULL)

which.more = 1 adds the "Residuals vs Fitted" plot:
plot(m, which.more = 1)

subsets of 1:6 with length <= 3 are allowed:
plot(m, which.more = c(1:2,4))

Just for illustration, play with other parameters:
plot(m, id.n = 6, col = "blue", pch = 20)

(B) Plots of *many* fitted GVF models
Fit example data to registered GVF models for frequencies (i.e. number 1:3):
mm <- fit.gvf(ee.AF, 1:3)

Default call yields the "Observed vs Fitted" plot reported separately for
each model in subsequent graphics frames:
plot(mm)

Play with argument 'which.more':
which.more = 1:3 yields subsequent 2x2 plots:
plot(mm, which.more = 1:3)

again, subsets of 1:6 are allowed:
plot(mm, which.more = 1)

##
Diagnostic plots for "grouped" fitted GVF model(s)
##
We have at our disposal the following survey design object on household data:
exdes

Use function svystat to prepare "grouped" estimates and errors of counts
to be fitted separately (here groups are regions):
ee <- svystat(exdes, y=~ind, by=~age5c:marstat:sex, combo=3, group=~regcod)
lapply(ee, head)

92 pop.template

(C) Plots of a *single* GVF model fitted to different groups
Fit registered GVF model number one separately inside groups:
m.g <- fit.gvf(ee, 1)

Default call yields 4 plots reported separately for each group
in subsequent graphics frames:
plot(m.g)

Play with argument 'which.more' to select different plots:
plot(m.g, which.more = c(1:2,4))

(D) Plots of *many* GVF model fitted to different groups
Fit all registered GVF models for frequencies separately inside groups:
mm.g <- fit.gvf(ee, 1:3)

Default call yields the "Residuals vs Fitted" plot reported separately
for each group in subsequent graphics frames:
plot(mm.g)

Play with argument 'which.more' to add more plots:
plot(mm.g, which.more = 1:3, id.n = 6, col = "blue", pch = 20)

pop.template Template Data Frame for Known Population Totals

Description

Constructs a "template" data frame to store known population totals for a calibration problem.

Usage

pop.template(data, calmodel, partition = FALSE)

Arguments

data Data frame of survey data (or an object inheriting from class analytic).

calmodel Formula defining the linear structure of the calibration model.

partition Formula specifying the variables that define the "calibration domains" for the
model. FALSE (the default) implies no calibration domains.

Details

This function creates an object of class pop.totals. A pop.totals object is made up by the union
of a data frame (whose structure conforms to the standard required by e.calibrate for the known
totals) and the metadata describing the calibration problem.

The mandatory argument data must identify the survey data frame on which the calibration problem
is defined (or, as an alternative, an analytic object built upon that data frame). Should empty levels
be present in any factor variable belonging to data, they would be dropped.

The mandatory argument calmodel symbolically defines the calibration model you intend using: it
identifies the auxiliary variables and the constraints for the calibration problem. The data variables
referenced by calmodel must be numeric or factor and must not contain any missing value (NA).

pop.template 93

The optional argument partition specifies the variables that define the calibration domains for
the model. The default value (FALSE) means either that there are not calibration domains or that
you want to solve the problem globally (even though it could be factorized). If a formula is passed
through the partition argument the program checks that calmodel actually describes a "reduced
model", that is it does not reference any of the partition variables; if this is not the case, the program
stops and prints an error message. Notice that a formula like by=~D1+D2 will be automatically trans-
lated into the factor-crossing formula by=~D1:D2. The data variables referenced by partition (if
any) must be factor and must not contain any missing value (NA).

Value

An object of class pop.totals. The data frame it contains is a "template" in the sense that all the
known totals it must be able to store are missing (NA). However, this data frame has a structure that
complies with the standard required by e.calibrate (provided the latter is invoked with the same
calmodel and partition values used to create the template).
The operation of filling the template’s NAs with the actual values of the corresponding population
totals has, obviously, to be done by the user. If the user has access to a "sampling frame" (that is a
data frame containing the complete list of the units belonging to the target population along with the
corresponding values of the auxiliary variables), then he can exploit the function fill.template
to automatically fill the template.

The pop.totals class is a specialization of the data.frame class; this means that an object built
by pop.template inherits from the data.frame class and you can use on it every method defined
on that class.

Author(s)

Diego Zardetto

See Also

e.calibrate for calibrating weights, population.check to check that the known totals data frame
satisfies the standard required by e.calibrate, fill.template to automatically fill the template
when a sampling frame is available.

Examples

Creation of population totals template data frames for different
calibration problems (if the calibration models can be factorized
both a global and an iterative solution are given):

data(data.examples)

1) Calibration on the total number of units in the population:
pop.template(data=example,calmodel=~1)

2) Calibration on the total number of units in the population
and on the marginal distribution of marstat (notice that the
total for the first level "married" of the marstat factor
variable is missing because it can be deduced from
the remaining totals):
pop.template(data=example,calmodel=~marstat)

3) Calibration on the marginal distribution of marstat (you

94 population.check

must explicitly remove the intercept term in the
calibration model adding -1 to the calmodel formula):
pop.template(data=example,calmodel=~marstat-1)

4) Calibration (global solution) on the joint distribution of sex
and marstat:
pop.template(data=example,calmodel=~sex:marstat-1)

4.1) Calibration (iterative solution) on the joint distribution
of sex and marstat:
4.1.1) Using sex to define calibration domains:
pop.template(data=example,calmodel=~marstat-1,partition=~sex)

4.1.2) Using marstat to define calibration domains:
pop.template(data=example,calmodel=~sex-1,partition=~marstat)

5) Calibration (global solution) on the total for the quantitative
variable x1 and on the marginal distribution of the qualitative
variable age5c, in the subpopulations defined by crossing sex
and marstat:
pop.template(data=example,calmodel=~(age5c+x1-1):sex:marstat)

5.1) The same problem with iterative solutions:
5.1.1) Using sex to define calibration domains:
pop.template(data=example,calmodel=~(age5c+x1-1):marstat,partition=~sex)

5.1.2) Using marstat to define calibration domains:
pop.template(data=example,calmodel=~(age5c+x1-1):sex,partition=~marstat)

5.1.3) Using sex and marstat to define calibration domains:
pop.template(data=example,calmodel=~age5c+x1-1,partition=~sex:marstat)

population.check Compliance Test for Known Totals Data Frames

Description

Checks whether a known population totals data frame conforms to the standard required by e.calibrate
for a specific calibration problem.

Usage

population.check(df.population, data, calmodel, partition = FALSE)

Arguments

df.population Data frame of known population totals.

data Data frame of survey data (or an object inheriting from class analytic).

calmodel Formula defining the linear structure of the calibration model.

partition Formula specifying the variables that define the "calibration domains" for the
model. FALSE (the default) implies no calibration domains.

population.check 95

Details

The behaviour of this function depends on the outcome of the test. If df.population is found to
conform to the standard, the function first converts it into an object of class pop.totals and then
invisibly returns it. Failing this, the function stops and prints an error message: the meaning of the
message should help the user diagnose the cause of the problem.

The mandatory argument df.population identifies the known totals data frame for which compli-
ance with the standard is to be checked.

The mandatory argument data identifies the survey data frame on which the calibration problem is
defined (or, as an alternative, an analytic object built upon that data frame).

The mandatory argument calmodel symbolically defines the calibration model you intend using: it
identifies the auxiliary variables and the constraints for the calibration problem. The data variables
referenced by calmodel must be numeric or factor and must not contain any missing value (NA).

The optional argument partition specifies the variables that define the calibration domains for
the model. The default value (FALSE) means either that there are not calibration domains or that
you want to solve the problem globally (even though it could be factorized). If a formula is passed
through the partition argument the program checks that calmodel actually describes a "reduced
model", that is it does not reference any of the partition variables; if this is not the case, the program
stops and prints an error message. Notice that a formula like by=~D1+D2 will be automatically trans-
lated into the factor-crossing formula by=~D1:D2. The data variables referenced by partition (if
any) must be factor and must not contain any missing value (NA).

Value

An invisible object of class pop.totals. The pop.totals class is a specialization of the data.frame
class; this means that an object built by pop.template inherits from the data.frame class and you
can use on it every method defined on that class.

Note

The population.check function can be used to convert a known totals data frame that conforms
to the standard required by e.calibrate into an object of class pop.totals. The usefulness of
this conversion lies in the fact that, once you have known totals with this "certified format", you can
invoke e.calibrate without specifying the values for the calmodel and partition arguments
(this means that the function is able to extract them directly from the attributes of the pop.totals
object).

Author(s)

Diego Zardetto

See Also

e.calibrate for calibrating weights, pop.template for the definition of the class pop.totals and
to build a "template" data frame for known population totals, fill.template to automatically fill
the template when a sampling frame is available.

Examples

data(data.examples)

Suppose you have to calibrate the example survey data frame
on the totals of x1 by sex and you want the iterative solution.

96 population.check

Start creating a design object:
des<-e.svydesign(data=example,ids=~towcod+famcod,strata=~SUPERSTRATUM,

weights=~weight)

Then build a template data frame for the known totals:
pop<-pop.template(data=example,calmodel=~x1-1,partition=~sex)
pop
class(pop)

Now fill NAs with the actual values for the population
totals (suppose 123 for sex="f" and 456 for sex="m"):
pop[,"x1"]<-c(123,456)
pop
class(pop)

Finally check if pop complies with the e.calibrate standard:
population.check(df.population=pop,data=example,calmodel=~x1-1,

partition=~sex)

If, despite keeping the content unchanged, we altered the
structure of the data frame (for example, by changing the
order of its rows)...
pop.mod<-pop ; pop.mod[1,]<-pop[2,] ; pop.mod[2,]<-pop[1,]
pop
pop.mod

...we would obtain an error:
Not run:
population.check(df.population=pop.mod,data=example,calmodel=~x1-1,

partition=~sex)

End(Not run)

Remember that, if the known totals have been converted
into the pop.totals "format" by means of population.check,
it is possible to invoke e.calibrate without specifying
calmodel and partition:

class(pop04p)
pop04p
descal04p<-e.calibrate(design=des,df.population=pop04p,

calfun="logit",bounds=bounds,aggregate.stage=2)

...this option is not allowed if the known totals
are not of class 'pop.totals' even if they conform to the
standard:

pop04p.mod=data.frame(pop04p)
class(pop04p.mod)
pop04p.mod
Not run:
e.calibrate(design=des,df.population=pop04p.mod,calfun="logit",

bounds=bounds,aggregate.stage=2)

predictCV 97

End(Not run)

predictCV Predict CV Values via Fitted GVF Models

Description

This function predicts the CV values associated to given estimates, based on fitted GVF model(s).

Usage

predictCV(object, new.Y = NULL, scale = NULL, df = Inf,
interval = c("none", "confidence", "prediction"), level = 0.95,
na.action = na.pass, pred.var = NULL, weights = 1)

Arguments

object An object containing one or more fitted GVF models.

new.Y A data frame storing new estimates whose CVs have to be predicted. If omitted
or NULL, CVs arising from the fitted GVF model(s) will be returned.

scale Scale parameter for standard error calculation. See also predict.lm.

df Degrees of freedom for scale. See also predict.lm.

interval Type of interval calculation. Can be abbreviated. See also predict.lm.

level Confidence (or tolerance) level for intervals. See also predict.lm.

na.action Function determining what should be done with missing values in new.Y. The
default is to predict NA. See also predict.lm.

pred.var The variance(s) for future observations to be assumed for prediction intervals.
See also predict.lm.

weights Variance weights for prediction. This can be a numeric vector or a one-sided
model formula. In the latter case, it is interpreted as an expression evaluated in
new.Y. See also predict.lm.

Details

The main motivation for building and fitting a GVF model is to exploit the fitted model to predict
the sampling error associated to a given estimate, instead of having to compute directly an estimate
of such sampling error. Function predictCV is relevant to that scope.

Despite different GVF models can specify as response term (call it 'resp') different functions of
variables 'SE', 'CV', and 'VAR' (see e.g. [Wolter 07]), function predictCV adopts variable 'CV'
as a universal pivot. This means that predictCV can handle only fitted GVF models which are
registered (that is already stored inside GVF.db), and for which variable Resp.to.CV is not NA.
Indeed, it is variable Resp.to.CV of data frame GVF.db which tells predictCV how to transform
the response of an arbitrary GVF model ('resp') into the pivot measure of variability ('CV').

By default new.Y = NULL and CVs (and intervals, if any) obtained by transforming fitted response
values will be returned. If passed, argument new.Y must be a data frame storing new estimates
for which CVs have to be predicted. Such input estimates have to be stored in column Y of data
frame new.Y. Moreover, if object stores GVF model(s) fitted to grouped data (namely, it has class
gvf.fit.gr or gvf.fits.gr), then new.Y must also have columns identifying the groups to which

98 predictCV

input estimates are referred (see ‘Examples’). The function will check for consistency between
groups available in object and in new.Y.

If interval = "none" (the default), the function will return predicted CVs only. Otherwise,
lower and upper bounds of confidence (or prediction) intervals around predicted CVs will be also
provided. Use argument level to specify the desired confidence (or tolerance) level for those
intervals.

All the other arguments have the same meaning as in function predict.lm.

Value

If object is a single GVF model (classes gvf.fit and gvf.fit.gr), a data frame.

If object is a set of GVF models fitted to the same data (classes gvf.fits and gvf.fits.gr), a
list of data frames, one for each input GVF model.

The output data frame(s) will store input estimates new.Y plus additional columns:

CV.fit Predicted CV value, numeric.

CV.lwr Lower bound of requested interval (if any), numeric.

CV.upr Upper bound of requested interval (if any), numeric.

Of course, lower and upper bounds for CVs will be reported only when interval != "none".

Note

Please read the ‘Note’ section of predict.lm.

Author(s)

Diego Zardetto

References

Wolter, K.M. (2007) "Introduction to Variance Estimation", Second Edition, Springer-Verlag, New
York.

See Also

GVF.db to manage ReGenesees archive of registered GVF models, gvf.input and svystat to pre-
pare the input for GVF model fitting, fit.gvf to fit GVF models, plot.gvf.fit to get diagnostic
plots for fitted GVF models, and drop.gvf.points to drop alleged outliers from a fitted GVF
model and simultaneously refit it.

Examples

##
Simple examples to illustrate the syntax
##
Load example data:
data(AF.gvf)

Inspect available estimates and errors of counts:
head(ee.AF)
summary(ee.AF)

predictCV 99

List available registered GVF models:
GVF.db

(A) A *single* fitted GVF model
Fit example data to registered GVF model number one:
m <- fit.gvf(ee.AF, 1)

Not passing 'new.Y' yield CVs from fitted response values:
p <- predictCV(m)

Take a look:
head(p)
with(p, plot(CV, CV.fit, col = "blue", pch = 20))

Now let's predict CV values for new estimates of counts
e.g. Y = c(1000, 5000, 10000, 50000, 100000)
First, put these values into a data frame:
new.Y <- data.frame(Y = c(1000, 5000, 10000, 50000, 100000))
new.Y

Then, compute predicted values and confidence intervals:
p <- predictCV(m, new.Y, interval = "confidence")
p

NOTE: Should we ever need it, we could also use function predict
to predict *response* values instead of CVs:
predict(m, new.Y, interval = "confidence")

(B) A *a set* of GVF models fitted to the same data
Fit example data to registered GVF models for frequencies (i.e. number 1:3):
mm <- fit.gvf(ee.AF, 1:3)

Let's predict CV values for the same new estimates of counts used above,
i.e. Y = c(1000, 5000, 10000, 50000, 100000).

Separate predictions will be obtained from the three fitted GVF models
pp <- predictCV(mm, new.Y, interval = "confidence")
pp

NOTE: The WARNING above arises from the third fitted GVF model and explains
the appearance of NaN at the lower bound of the CV confidence interval
for input Y = 100000. Indeed, the response of the third model is the
squared CV (which ought to be *positive*), but the prediction for the
lower endpoint of the confidence interval happens to be *negative*:
predict(mm, new.Y, interval = "confidence")

(C) a *single* GVF model fitted to *grouped* data
We have at our disposal the following survey design object on household data:
exdes

Use function svystat to prepare *grouped* estimates and errors of counts
to be fitted separately (here groups are regions):
ee.g <- svystat(exdes, y=~ind, by=~age5c:marstat:sex, combo=3, group=~regcod)

Inspect these grouped estimates and errors of counts:

100 predictCV

lapply(ee.g, head)
lapply(ee.g, summary)

Fit registered GVF model number one, separately inside regions '6', '7',
and '10':
m.g <- fit.gvf(ee.g, 1)

Suppose we want to predict CV values for the same new estimates of counts used
above, i.e. Y = c(1000, 5000, 10000, 50000, 100000).
Obviously, we need tell to what groups (i.e. regions) should these Y values
be referred. Therefore, input data frame new.Y must have columns identifying
the groups (i.e. regions).

Case 1: all known regions (i.e. regions '6', '7', and '10')
new.Y.g <- data.frame(Y = c(1000, 5000, 10000, 50000, 100000),

regcod = rep(c(6, 7, 10), each = 5))
new.Y.g

Predict:
p.g <- predictCV(m.g, new.Y.g, interval = "confidence")
p.g

Case 2: a subset of known regions (e.g. region '7' only)
new.Y.g <- data.frame(Y = c(1000, 5000, 10000, 50000, 100000),

regcod = 7)
new.Y.g

Predict:
p.g <- predictCV(m.g, new.Y.g, interval = "confidence")
p.g

Case 3: a subset of known regions (e.g. region '7') *plus* some *unknown*
region (e.g. region '11').
Unknown groups will be tacitly *discarded*:
new.Y.g <- data.frame(Y = c(1000, 5000, 10000, 50000, 100000),

regcod = rep(c(7, 11), each = 5))
new.Y.g

Predict:
p.g <- predictCV(m.g, new.Y.g, interval = "confidence")
p.g

Case 4: only *unknown* regions (e.g. regions '11' and '12).
This will raise an *error*:
new.Y.g <- data.frame(Y = c(1000, 5000, 10000, 50000, 100000),

regcod = rep(c(11, 12), each = 5))
new.Y.g

Not run:
Predict:

p.g <- predictCV(m.g, new.Y.g, interval = "confidence")

End(Not run)

predictCV 101

Case 5: *unknown* group variables (e.g. 'region' instead of 'regcod').
This will raise an *error*:
new.Y.g <- data.frame(Y = c(1000, 5000, 10000, 50000, 100000),

region = rep(c(11, 12), each = 5))
new.Y.g

Not run:
Predict:

p.g <- predictCV(m.g, new.Y.g, interval = "confidence")

End(Not run)

(D) a *set of* GVF models fitted to *grouped* data
Fit all registered GVF models for frequencies (i.e. number 1:3) separately
inside groups:
mm.g <- fit.gvf(ee.g, 1:3)

Predict CV values for the same new estimates of counts used above,
i.e. Y = c(1000, 5000, 10000, 50000, 100000), for all the regions:
new.Y.g <- data.frame(Y = c(1000, 5000, 10000, 50000, 100000),

regcod = rep(c(6, 7, 10), each = 5))
new.Y.g

Predict:
pp.g <- predictCV(mm.g, new.Y.g)
pp.g

NOTE: The WARNING above explains the appearance of NaN for some predicted
CV values stemming from the third GVF model. The reason causing this
behaviour is exactly the same as discussed in previous example (B).

##
Estimating CVs: Prediction vs Direct Calculation
##
Load example data:
data(AF.gvf)

Fit available registered GVF models for frequencies:
mm <- fit.gvf(ee.AF, model=1:3)

Get the best fitted model:
mbest <- getBest(mm, criterion="adj.R2")
mbest
Note: adjusted R^2 used as a 'quick and dirty' criterion, as a thorough model
comparison via diagnostic plots would have given the same result.

Compute directly the estimates and errors of a set of absolute frequencies
which did not belong to the previously fitted data ee.AF, e.g. the joint
distribution of marstat and regcod:
marstat.regcod <- svystatTM(exdes, ~I(marstat:regcod))
marstat.regcod

Predict CVs of the joint distribution of marstat and regcod

102 ReGenesees.options

by means of the selected GVF model:
First, prepare data with which to predict:
newdata <- gvf.input(exdes, marstat.regcod)

Then, compute CV predictions:
p.marstat.regcod <- predictCV(mbest, new.Y = newdata, interval="prediction")

Inspect the results:
p.marstat.regcod

Plot of computed and predicted CVs with prediction error bars:
plot starts

plot(p.marstat.regcod$Y, p.marstat.regcod$CV.fit, pch=19, col="red",
ylim=range(p.marstat.regcod$CV.lwr, p.marstat.regcod$CV.upr, p.marstat.regcod$CV),
xlab="Absolute Frequency Estimate", ylab="Coefficient of Variation",
main="Estimated and GVF Predicted CVs\n(joint distribution of marstat and regcod)")

segments(x0=p.marstat.regcod$Y, y0=p.marstat.regcod$CV.lwr, y1=p.marstat.regcod$CV.upr,
col="red")

points(p.marstat.regcod$Y, p.marstat.regcod$CV, pch=0)
legend("topright", title="CV Estimation Method",

legend=c("Direct Estimate", "GVF Predicted Value", "GVF Prediction Interval"),
pch=c(0,19,124), col=c("black", "red", "red"), inset=rep(0.05, 2))

plot ends

ReGenesees.options Variance Estimation Options for the ReGenesees Package

Description

This help page documents the options that control the behaviour of the ReGenesees package with
respect to standard error estimation.

Details

The ReGenesees package provides four options for variance estimations which can be freely set
and modified by the user:

- RG.ultimate.cluster
- RG.lonely.psu
- RG.adjust.domain.lonely
- RG.warn.domain.lonely

When options("RG.ultimate.cluster") is TRUE, the ReGenesees package adopts the so called
"Ultimate Cluster Approximation" [Kalton 79]. Under this approximation, the overall sampling
variance for a multistage sampling design is estimated by taking into account only the contribution
arising from the estimated PSU totals (thus simply ignoring any available information about subse-
quent sampling stages). For without replacement sampling designs, this approach is known to un-
derestimate the true multistage variance, while - at the same time - overestimating its true first-stage
component. Anyway, the underestimation error becomes negligible if the PSUs’ sampling fractions
across strata are very small. When sampling with replacement, the Ultimate Cluster approach is no
longer an approximation, but rather an exact result. Hence, be options("RG.ultimate.cluster")
TRUE or FALSE, if one does not specify first-stage finite population corrections, ReGenesees will
produce exactly the same variance estimates.

ReGenesees.options 103

When options("RG.ultimate.cluster") is FALSE, each sampling stage contributes and vari-
ances get estimated by means of a recursive algorithm [Bellhouse, 85] inherited and adapted from
package survey [Lumley 06]. Notice that the results obtained by choosing this option can differ
from the one that would be obtained under the "Ultimate Cluster Approximation" only if first-stage
finite population corrections are specified.

Lonely PSUs (i.e. PSUs which are alone inside a not self-representing stratum) are a concern from
the viewpoint of variance estimation. The suggested ReGenesees facility to handle the lonely PSUs
problem is the strata aggregation technique (see e.g. [Wolter 07] and [Rust, Kalton 87]) provided
in function collapse.strata. As a possible alternative, you can get rid of lonely PSUs also by
setting proper variance estimation options via options("RG.lonely.psu"). The default setting is
"fail", which raises an error if a lonely PSU is met. Option "remove" simply causes the software
to ignore lonely PSUs for variance computation purposes. Option "adjust" means that deviations
from the population mean will be used in variance estimation formulae, instead of deviations from
the stratum mean (a conservative choice). Finally, option "average" causes the software to replace
the variance contribution of the stratum by the average variance contribution across strata (this
can be appropriate e.g. when one believes that lonely PSU strata occur at random due to uniform
nonresponse among strata).

The variance formulae for domain estimation give well-defined, positive results when a stratum
contains only a single PSU with observations falling in the domain, but are not unbiased.
If options("RG.adjust.domain.lonely") is TRUE and options("RG.lonely.psu") is "average"
or "adjust" the same adjustment for lonely PSUs will be used within a domain. Note that this ad-
justment is not available for calibrated designs.

If options("RG.warn.domain.lonely") is set to TRUE, a warning message is raised whenever an
estimation domain happens to contain just a single PSU belonging to a stratum. The default is
FALSE.

References

Kalton, G. (1979). "Ultimate cluster sampling", Journal of the Royal Statistical Society, Series A,
142, pp. 210-222.

Bellhouse, D. R. (1985). "Computing Methods for Variance Estimation in Complex Surveys". Jour-
nal of Official Statistics, Vol. 1, No. 3, pp. 323-329.

Lumley, T. (2006) "survey: analysis of complex survey samples", http://cran.at.r-project.
org/web/packages/survey/index.html.

Wolter, K.M. (2007) "Introduction to Variance Estimation", Second Edition, Springer-Verlag, New
York.

Rust, K., Kalton, G. (1987) "Strategies for Collapsing Strata for Variance Estimation", Journal of
Official Statistics, Vol. 3, No. 1, pp. 69-81.

See Also

e.svydesign and its self.rep.str argument for a "compromise solution" that can be adopted
when the sampling design involves self-representing (SR) strata, collapse.strata for the sug-
gested way of handling lonely PSUs, and fpcdat for useful data examples.

Examples

Define a two-stage stratified cluster sampling without
replacement:
data(fpcdat)
des<-e.svydesign(data=fpcdat,ids=~psu+ssu,strata=~stratum,weights=~w,

http://cran.at.r-project.org/web/packages/survey/index.html
http://cran.at.r-project.org/web/packages/survey/index.html

104 sbs

fpc=~fpc1+fpc2)

Now compare SE (or CV%) sizes under different settings:

1) Default setting, i.e. Ultimate Cluster Approximation is off
svystatTM(des,~x+y+z,vartype=c("se","cvpct"))

2) Turn on the Ultimate Cluster Approximation, thus missing
the variance contribution from the second stage
(hence SR strata give no contribution at all):
old.op <- options("RG.ultimate.cluster"=TRUE)
svystatTM(des,~x+y+z,vartype=c("se","cvpct"))
options(old.op)

3) The "compromise solution" (see ?e.svydesign) i.e. retaining
only the leading contribution to the sampling variance (namely
the one arising from SSUs in SR strata and PSUs in not-SR strata):
des2<-e.svydesign(data=fpcdat,ids=~psu+ssu,strata=~stratum,weights=~w,

fpc=~fpc1+fpc2, self.rep.str=~sr)
svystatTM(des2,~x+y+z,vartype=c("se","cvpct"))

Therefore, sampling variances come out in the expected
hierarchy: 1) > 3) > 2).

Under default settings lonely PSUs produce errors in standard
errors estimation (notice we didn't pass the fpcs):
data(fpcdat)
des.lpsu<-e.svydesign(data=fpcdat,ids=~psu+ssu,strata=~stratum,

weights=~w)
Not run:
svystatTM(des.lpsu,~x+y+z,vartype=c("se","cvpct"))

End(Not run)

This can be circumvented in different ways, namely:
old.op <- options("RG.lonely.psu"="adjust")
svystatTM(des.lpsu,~x+y+z,vartype=c("se","cvpct"))
options(old.op)

or:
old.op <- options("RG.lonely.psu"="average")
svystatTM(des.lpsu,~x+y+z,vartype=c("se","cvpct"))
options(old.op)

or otherwise by collapsing strata inside planned
estimation domains:
des.clps<-collapse.strata(design=des.lpsu,block.vars=~pl.domain)
svystatTM(des.clps,~x+y+z,vartype=c("se","cvpct"))

sbs Artificial Structural Business Statistics Data

sbs 105

Description

The sbs data frame stores artificial sbs-like sampling data, while sbs.frame is the artificial sam-
pling frame from which the sbs units have been drawn. They allow to run R code contained in the
’Examples’ section of the ReGenesees package help pages.

Usage

data(sbs)

Format

The sbs data frame mimics data observed in a Structural Business Statistics survey, under a one-
stage stratified unit sampling design. The sample is made up of 6909 units, for which the following
20 variables were observed:

id Identifier of the sampling units (enterprises), numeric

public Does the enterprise belong to the Public Sector? factor with levels 0 (No) and 1 (Yes)

emp.num Number of employees, numeric

emp.cl Number of employees classified into 5 categories, factor with levels [6,9] (9,19] (19,49]
(49,99] (99,Inf] (notice that small enterprises with less than 6 employees fell outside the
scope of the survey)

nace5 Economic Activity code with 5 digits, factor with 596 levels

nace2 Economic Activity code with 2 digits, factor with 57 levels

area Territorial Division, factor with 24 levels

cens Flag identifying statistical units to be censused (hence defining take-all strata), factor with
levels 0 (No) and 1 (Yes)

region Macroregion, factor with levels North Center South

va.cl Class of Value Added, factor with 27 levels

va Value Added, numeric (contains NAs)

dom1 A planned estimation domain, factor with 261 levels (dom1 crosses nace2 and emp.cl)

nace.macro Economic Activity Macrosector, factor with levels Agriculture Industry Commerce
Services

dom2 A planned estimation domain, factor with 12 levels (dom2 crosses nace.macro and region)

strata Stratification Variable, a factor with 664 levels (obtained by crossing variables region,
nace2, emp.cl and cens)

va.imp1 Value Added Imputed1, numeric (NAs were replaced with average values computed inside
imputation strata obtained by crossing region, nace.macro, emp.cl)

va.imp2 Value Added Imputed2, numeric (NAs were replaced with median values computed inside
imputation strata obtained by crossing region, nace.macro, emp.cl)

y A numeric variable correlated with va

weight Direct weights, numeric

fpc Finite Population Corrections (given as sampling fractions inside strata), numeric

ent Convenience numeric variable identically equal to 1 (sometimes useful, e.g. to estimate the
total number of enterprises)

dom3 An unplanned estimation domain, factor with 4 levels

The sbs.frame sampling frame (from which sbs units have been drawn) contains 17318 units.

106 svystat

Examples

data(sbs)
head(sbs)
str(sbs)
str(sbs.frame)

svystat Compute Many Estimates and Errors in Just a Single Shot

Description

Computes many estimates and errors (e.g. for disparate estimation domains) in just a single shot,
primarily to use them in fitting GVF models. Can handle Estimators of all kinds.

Usage

svystat(design, kind = c("TM", "R", "B", "Q", "L"),
by = NULL, group = NULL, forGVF = TRUE,
combo = -1, ...)

S3 method for class 'gvf.input.gr'
plot(x, ...)

S3 method for class 'svystat.gr'
coef(object, ...)
S3 method for class 'svystat.gr'
SE(object, ...)
S3 method for class 'svystat.gr'
VAR(object, ...)
S3 method for class 'svystat.gr'
cv(object, ...)
S3 method for class 'svystat.gr'
deff(object, ...)
S3 method for class 'svystat.gr'
confint(object, ...)

Arguments

design Object of class analytic (or inheriting from it) containing survey data and sam-
pling design metadata.

kind character specifying the summary statistics function to call: it may be 'TM'
(i.e. svystatTM, the default), 'R' (i.e. svystatR), 'B' (i.e. svystatB), 'Q'
(i.e. svystatQ), and 'L' (i.e. svystatL).

by Formula specifying the variables that define the "estimation domains". If NULL
(the default option) estimates refer to the whole population.

group Formula specifying a partition of the population into "groups": the output will
be returned separately for each group. If NULL (the default option) the output is
returned as a whole.

forGVF Select TRUE (the default) if you want to use the output to fit a GVF model.
Otherwise, the output will be simply a set of summary statistics objects.

svystat 107

combo An integer which is only meaningful if by is passed. Requests to compute
outputs for all the domains determined by crossing the by variables up to a given
order (see ‘Details’).

... For function svystat, additional arguments to the summary statistic function
implied by kind. Otherwise, further arguments passed to or from other methods.

x The object of class gvf.input.gr to plot.

object An object of class svystat.gr containing survey statistics.

Details

This function can compute all the summary statistics provided by ReGenesees, and is principally
meant to return a lot of them in just a single shot.

If forGVF = TRUE the output will be ready to feed ReGenesees GVF fitting infrastructure, otherwise
it will consist simply of a set of summary statistic objects.

Use argument kind to specify the summary statistic you need. The default value 'TM' selects
function svystatTM, which yields Totals and Means. All the arguments needed by the summary
statistic function implied by kind (e.g. argument y for svystatTM when kind = 'TM') will be
passed on through argument ‘...’.

As usual in summary statistics, argument by can be used to request domain estimates.

The group formula (if any) specifies a way of partitioning the population into groups: the output
will be reported separately for each group. In the GVF context, a “grouped” output will permit to fit
separate GVF models inside different groups (and hence to compute separate variance predictions
for different groups).

Note that group and by share identical syntax and semantics as model formulae, despite they have
different purposes in function svystat (as explained above).

Parameter combo is only meaningful if by is passed. Its purpose is to allow computing estimates
and errors simultaneously for many estimation domains.

If the by formula involves n variables, specifying combo = m requests to compute outputs for all
the domains determined by all the interactions of by variables up to order m (with -1 <= m <= n),
as follows:

COMBO MEANING
m = -1.......'no combo', i.e. treat 'by' formula as usual (the default);
m = 0.......'order zero' combination, i.e. just a single domain:

the whole population;
m = 1.......'order zero' plus 'order one' combinations, the latter being

all the marginal domains defined by 'by' variables;
m = n........combinations of any order, the maximum being the one with

all 'by' variables interacting simultaneously.

The plot method can be used only when forGVF = TRUE and produces a matrix (or many matrices,
if group is passed) of scatterplots with polynomial smoothers.

Methods coef, SE, VAR, cv, deff, and confint can be used only when forGVF = FALSE, to extract
estimates and variability statistics.

Value

An object storing estimates and errors, whose detailed structure depends on input parameters’ val-
ues.

108 svystat

If forGVF = FALSE, a set of summary statistics stored into a list (in the most general case).
If forGVF = TRUE and argument group is not passed, an object of class gvf.input.
If forGVF = TRUE and argument group is passed, an object of class gvf.input.gr. This is a list
of objects of class gvf.input, each one pertaining to a different population group.

Author(s)

Diego Zardetto

See Also

estimator.kind to assess what kind of estimates are stored inside a survey statistic object, gvf.input
as an alternative to prepare the input for GVF model fitting, GVF.db to manage ReGenesees archive
of registered GVF models, fit.gvf to fit GVF models, plot.gvf.fit to get diagnostic plots for
fitted GVF models, drop.gvf.points to drop alleged outliers from a fitted GVF model and simul-
taneously refit it, and predictCV to predict CV values via fitted GVF models.

Examples

Load sbs data:
data(sbs)

Create a design object:
sbsdes<-e.svydesign(data=sbs,ids=~id,strata=~strata,weights=~weight,fpc=~fpc)

##
svystat as an alternative way to compute 'ordinary' summary statistics
##
Total number of employees
svystat(sbsdes,y=~emp.num,forGVF=FALSE)
equivalent to:
svystatTM(sbsdes,y=~emp.num)

Average number of employees per enterprise
svystat(sbsdes,y=~emp.num,estimator="Mean",forGVF=FALSE)
equivalent to:
svystatTM(sbsdes,y=~emp.num,estimator="Mean")

Average value added per employee by economic activity macro-sector
(nace.macro):
svystat(sbsdes,kind="R",num=~va.imp2,den=~emp.num,by=~nace.macro,forGVF=FALSE)
equivalent to:
svystatR(sbsdes,num=~va.imp2,den=~emp.num,by=~nace.macro)

Counts of employees by classes of number of employees (emp.cl) crossed
with economic activity macro-sector (nace.macro):
svystat(sbsdes,y=~emp.num,by=~emp.cl:nace.macro,forGVF=FALSE)
equivalent to:
svystatTM(sbsdes,y=~emp.num,by=~emp.cl:nace.macro)

Provided forGVF = FALSE, you can use estimator.kind on svystat output:
stat<-svystat(sbsdes,kind="R",num=~va.imp2,den=~emp.num,by=~emp.cl:nace.macro,

group=~region,forGVF=FALSE)
stat

svystat 109

estimator.kind(stat,sbsdes)

##
Understanding syntax and semantics of argument 'combo'
##
Load household data:
data(data.examples)

Create a design object:
houdes<-e.svydesign(data=example,ids=~towcod+famcod,strata=~SUPERSTRATUM,

weights=~weight)

Add convenience variable 'ones' to estimate counts:
houdes<-des.addvars(houdes,ones=1)

To facilitate understanding, let's for the moment keep forGVF = FALSE.
Let's use estimates and errors of counts of individuals by sex and
five age classes (age5c):
svystat(houdes,y=~ones,by=~age5c:sex,forGVF=FALSE)

Now let's play with argument 'combo':
combo = -1
-> 'no combo', i.e. treat 'by' formula as usual
svystat(houdes,y=~ones,by=~age5c:sex,forGVF=FALSE,combo=-1)

combo = 0
-> 'order zero' combination, i.e. just a single domain: the whole population
svystat(houdes,y=~ones,by=~age5c:sex,forGVF=FALSE,combo=0)

combo = 1
-> 'order zero' plus 'order one' combinations, the latter being all the
marginal domains defined by 'by' variables
svystat(houdes,y=~ones,by=~age5c:sex,forGVF=FALSE,combo=1)

combo = 2
-> since 'by' has 2 variables, this means combinations of any order up to
the maximum
svystat(houdes,y=~ones,by=~age5c:sex,forGVF=FALSE,combo=2)

combo = 3
-> yields an error, as 'combo' cannot exceed the number of 'by' variables
(2 in this example)

Not run:
svystat(houdes,y=~ones,by=~age5c:sex,forGVF=FALSE,combo=3)

End(Not run)

##
svystat as an alternative way to prepare input data for GVF models
##
The same estimates and errors of the last example above, now with
forGVF = TRUE: note the different output data format
svystat(houdes,y=~ones,by=~age5c:sex,combo=2)

Note that the agile command above is indeed equivalent to the following

110 svystat

lengthier, cumbersome statement:
gvf.input(houdes,

svystatTM(houdes,y=~ones),
svystatTM(houdes,y=~ones,by=~age5c),
svystatTM(houdes,y=~ones,by=~sex),
svystatTM(houdes,y=~ones,by=~age5c:sex)
)

##
Using argument 'group' to prepare input data
for separate GVF models
##
The same estimates and errors of the last example above, now prepared
separately for different regions (regcod):
svystat(houdes,y=~ones,by=~age5c:sex,combo=2,group=~regcod)

Again the same estimates and errors, prepared separately for groups
defined crossing marital status (marstat) and region:
svystat(houdes,y=~ones,by=~age5c:sex,combo=2,group=~marstat:regcod)

NOTE: Output has class "gvf.input.gr". This will tell ReGenesees' GVF
fitting facilities to handle estimates and errors pertaining to
different groups independently of each other.

NOTE: Parameter combo allows svystat to gather a huge amount of estimates and
errors in just a single slot, as the number of estimation domains grows
exponentially with the number of by variables.
See, for instance, the following example:
out <- svystat(houdes,y=~ones,by=~age5c:marstat:sex:regcod,combo=4)
dim(out)
head(out)
plot(out)

##
Minor details: accessor functions and plotting
##

Accessor functions work only when forGVF = FALSE
Average value added per employee by nace.macro:
out <- svystat(sbsdes,kind="R",num=~va.imp2,den=~emp.num,by=~nace.macro,forGVF=FALSE)
out
Access CV values and confidence intervals:
cv(out)
confint(out)

The same as above, separately for regions:
out <- svystat(sbsdes,kind="R",num=~va.imp2,den=~emp.num,by=~nace.macro,group=~region,forGVF=FALSE)
out
Access CV values and confidence intervals:
cv(out)
confint(out)

Plot function works only when forGVF = TRUE
Counts of individuals by sex, marstat and age5c, and all their interactions:

svystatB 111

out <- svystat(houdes,y=~ones,by=~age5c:marstat:sex,combo=3)
Plot GVF input:
plot(out)

The same as above, grouped by region:
out <- svystat(houdes,y=~ones,by=~age5c:marstat:sex,combo=3,group=~regcod)
Plot GVF inputs, separately by groups (regions):
plot(out)

svystatB Estimation of Population Regression Coefficients

Description

Computes estimates, standard errors and confidence intervals for Multiple Regression Coefficients.

Usage

svystatB(design, model,
vartype = c("se", "cv", "cvpct", "var"),
conf.int = FALSE, conf.lev = 0.95, deff = FALSE,
na.rm = FALSE)

S3 method for class 'svystatB'
coef(object, ...)
S3 method for class 'svystatB'
SE(object, ...)
S3 method for class 'svystatB'
VAR(object, ...)
S3 method for class 'svystatB'
cv(object, ...)
S3 method for class 'svystatB'
deff(object, ...)
S3 method for class 'svystatB'
confint(object, ...)
S3 method for class 'svystatB'
summary(object, ...)

Arguments

design Object of class analytic (or inheriting from it) containing survey data and sam-
pling design metadata.

model Formula specifying the linear model whose coefficients have to be estimated.

vartype character vector specifying the desired variability estimators. It is possible to
choose one or more of: standard error ('se', the default), coefficient of variation
('cv'), percent coefficient of variation ('cvpct'), or variance ('var').

conf.int Compute confidence intervals for the estimates? The default is FALSE.

conf.lev Probability specifying the desired confidence level: the default value is 0.95.

deff Should the design effect be computed? The default is FALSE (see ‘Details’).

112 svystatB

na.rm Should missing values (if any) be removed from the variables of interest? The
default is FALSE (see ‘Details’).

object An object of class svystatB.

... Additional arguments to coef, . . . , confint methods (if any).

Details

This function computes weighted estimates for Multiple Regression Coefficients using suitable
weights depending on the class of design: calibrated weights for class cal.analytic and direct
weights otherwise. Standard errors are calculated using the Taylor linearization technique.

The mandatory argument model identifies the regression model whose population coefficients have
to be estimated (for details on model specification, see e.g. lm). The design variables referenced by
model should be numeric or factor (variables of other types - e.g. character - will be coerced).

The conf.int argument allows to request the confidence intervals for the estimates. By default
conf.int=FALSE, that is the confidence intervals are not provided.

Whenever confidence intervals are requested (i.e. conf.int=TRUE), the desired confidence level can
be specified by means of the conf.lev argument. The conf.lev value must represent a probability
(0<=conf.lev<=1) and its default is chosen to be 0.95.

The optional argument deff allows to request the design effect [Kish 1995] for the estimates. By
default deff=FALSE, that is the design effect is not provided. The design effect of an estimator is
defined as the ratio between the variance of the estimator under the actual sampling design and the
variance that would be obtained for an ’equivalent’ estimator under a hypothetical simple random
sampling without replacement of the same size. To obtain an estimate of the design effect comparing
to simple random sampling "with replacement", one must use deff="replace".
For nonlinear estimators, the design effect is estimated on the linearized version of the estimator
(that is for the estimator of the total of the linearized variable, aka "Woodruff transform").
When dealing with domain estimation, the design effects referring to a given subpopulation are
currently computed by taking the ratios between the actual variance estimates and those that would
have been obtained if a simple random sampling were carried out within that subpopulation. This
is the same as the srssubpop option for Stata’s function estat.

Missing values (NA) in model variables should be avoided. If na.rm=FALSE (the default) they gen-
erate an error. If na.rm=TRUE, observations containing NAs in model variables are dropped, and
estimates gets computed on non missing values only. This implicitly assumes that missing values
hit interest variables completely at random: should this be not the case, computed estimates would
be biased.

The summary method invoked on regression coefficients (say b) estimated via svystatB, gives p-
values and significance codes for the component-wise test b = 0. Such values are computed assum-
ing that the distribution of the regression coefficients estimators is normal (which is asymptotically
true for large scale surveys). This assumption has the advantage of overcoming the problem of
chosing the "right" statistic and assessing its "right" number of degrees of freedom when using data
from a complex survey (see e.g. [Korn, Graubard 1990]).

Value

An object inheriting from the data.frame class, whose detailed structure depends on input param-
eters’ values.

Author(s)

Diego Zardetto

svystatB 113

References

Sarndal, C.E., Swensson, B., Wretman, J. (1992) "Model Assisted Survey Sampling", Springer Ver-
lag.

Kish, L. (1995). "Methods for design effects". Journal of Official Statistics, Vol. 11, pp. 55-77.

Korn, E.L., Graubard, B.I. (1990) "Simultaneous testing of regression coefficients with complex
survey data: Use of Bonferroni t statistics". The American Statistician, 44, 270-276.

See Also

Estimators of Totals and Mans svystatTM, Ratios between Totals svystatR, Quantiles svystatQ,
Complex Analytic Functions of Totals and/or Means svystatL, and all of the above svystat.

Examples

##
A simple regression model with a single predictor.
Let's compare the estimated regression coefficient
to its true value computed on the sampling frame.
##

Load sbs data:
data(sbs)

Create a design object:
sbsdes<-e.svydesign(data=sbs,ids=~id,strata=~strata,weights=~weight,

fpc=~fpc)

The population scatterplot of y vs emp.num reveals a linear
behaviour:
plot(sbs.frame$emp.num,sbs.frame$y,

col=rgb(50,205,50,100,maxColorValue=255),pch=16)

Compute the population fit of the linear regression
model y~emp.num-1 (no intercept):
pop.fit<-lm(y~emp.num-1,data=sbs.frame)
abline(pop.fit,col="red",lwd=2,lty=2)

The obtained population R-squared is quite significant
(greater than 0.7):
pop.R2<-summary(pop.fit)$r.squared
pop.R2

The population regression coefficient is:
B<-coef(pop.fit)
B

Now let's estimate B on the basis of the sbs sample and
let's build a 95% confidence interval for the obtained estimate:
svystatB(sbsdes,y~emp.num-1,conf.int=TRUE)

Thus, the confidence interval covers the true value of B.

Notice that using ReGenesees Complex Estimators function
svystatL, you would have obtained exactly the same results:
sbsdes<-des.addvars(sbsdes,y4emp.num=y*emp.num,

114 svystatB

emp.num.sq=emp.num^2)
svystatL(sbsdes,expression(y4emp.num/emp.num.sq),

conf.int=TRUE)

##################################
A multiple regression example.
##################################

Let's estimate the coefficients of a model describing
value added (variable va.imp2) as a linear function
of number of employees by region and of nace.macro:
b <- svystatB(sbsdes,va.imp2~emp.num:region+nace.macro,vartype="cvpct")
b

To obtain p-values and significance codes for the
component-wise test t=0, you can exploit the
summary method:
summary(b)

Notice that estimators normality is assumed.

##
Obtaining domain means via regression.
##

The domain mean of a numeric variable can be thought
as a regression coefficient. Suppose you need the
average number of employees by macro-sector, you can
do as follows:
svystatB(sbsdes,emp.num~nace.macro-1)

...which, indeed, gives exactly the same results of:
svystatTM(sbsdes,y=~emp.num,by=~nace.macro,estimator="Mean")

##########################
Handling collinearity.
##########################

Function svystatB overcomes problems arising from exact
collinearity between model variables via 'aliasing'.
To understand how aliasing works, let's build a manifestly
redundant linear model:
svystatB(sbsdes,y~emp.num+I(2*emp.num)+I(3*va.imp2)+va.imp2-1)

The obtained warning message shows that order definitely matters
in aliasing, indeed:
svystatB(sbsdes,y~emp.num+I(2*emp.num)+va.imp2+I(3*va.imp2)-1)

Notice also that aliasing gives exact estimates and standard errors
for non-aliased regression coefficients (i.e. the same results that
would be obtained with a reduced - no collinearity - model):
svystatB(sbsdes,y~emp.num+va.imp2-1)

svystatL 115

###
Handling missing values in model variables.
###

Load fpcdat:
data(fpcdat)

Now, let's introduce some NAs in survey data:
fpcdat$y[c(1,3)]<-NA
fpcdat$x[c(3,5)]<-NA

Create a design object:
fpcdes<-e.svydesign(data=fpcdat,ids=~psu+ssu,strata=~stratum,weights=~w,

fpc=~fpc1+fpc2)

Let's estimate regression coefficients of model z~y+x
na.rm=FALSE (the default) leads to an error:
Not run:
svystatB(fpcdes,z~y+x)

End(Not run)

whereas na.rm=TRUE simply drops all the cases
with missing data in model variables:
svystatB(fpcdes,z~y+x,na.rm=TRUE)

##################################
Handling non positive weights.
##################################

Non positive direct weights are not allowed, anyway some
calibrated weights can sometimes turn out to be <= 0. The
corrisponding observations would be dropped by svystatB.

Prepare a template for population totals:
pop<-pop.template(fpcdes,~z+pl.domain-1)

Fill it with silly values in order to obtain some negative g-weights:
pop[1,]<-c(20000,90,10,90)

Calibrate:
fpccal<-e.calibrate(fpcdes,pop)

We got 2 negative calibrated weights:
g.range(fpccal)
sum(weights(fpccal)<=0)

Now, let's estimate regression coefficients of model z~y+x
and pay attantion to the warnings:
svystatB(fpccal,z~y+x,na.rm=TRUE)

svystatL Estimation of Complex Estimators in Subpopulations

116 svystatL

Description

Computes estimates, standard errors and confidence intervals for Complex Estimators in subpopu-
lations. A Complex Estimator can be any analytic function of (Horvitz-Thompson or Calibration)
estimators of Totals and Means.

Usage

svystatL(design, expr, by = NULL,
vartype = c("se", "cv", "cvpct", "var"),
conf.int = FALSE, conf.lev = 0.95, deff = FALSE,
na.rm = FALSE)

S3 method for class 'svystatL'
coef(object, ...)
S3 method for class 'svystatL'
SE(object, ...)
S3 method for class 'svystatL'
VAR(object, ...)
S3 method for class 'svystatL'
cv(object, ...)
S3 method for class 'svystatL'
deff(object, ...)
S3 method for class 'svystatL'
confint(object, ...)

Arguments

design Object of class analytic (or inheriting from it) containing survey data and sam-
pling design metadata.

expr R expression defining the Complex Estimator (see ‘Details’).

by Formula specifying the variables that define the "estimation domains". If NULL
(the default option) estimates refer to the whole population.

vartype character vector specifying the desired variability estimators. It is possible to
choose one or more of: standard error ('se', the default), coefficient of variation
('cv'), percent coefficient of variation ('cvpct'), or variance ('var').

conf.int Compute confidence intervals for the estimates? The default is FALSE.

conf.lev Probability specifying the desired confidence level: the default value is 0.95.

deff Should the design effect be computed? The default is FALSE (see ‘Details’).

na.rm Should missing values (if any) be removed from the variables of interest? The
default is FALSE (see ‘Details’).

object An object of class svystatL.

... Additional arguments to coef, . . . , confint methods (if any).

Details

This function computes weighted estimates for Complex Estimators using suitable weights depend-
ing on the class of design: calibrated weights for class cal.analytic and direct weights otherwise.
Standard errors are calculated using the Taylor linearization technique.

The mandatory argument expr, which identifies the Complex Estimator, must be an object of class
expression. It can be specified just a single Complex Estimator at a time, i.e. length(expr) must

svystatL 117

be equal to 1. Any analytic function of estimators of Totals and Means is allowed.
Inside expr the estimator of the Total of a variable is simply represented by the name of the variable
itself. To represent the estimator of the Mean of a variable y, the expression y/ones has to be used
(ones being the convenience name of an artificial variable whose value is 1 for each sampling unit,
so that its Total estimator actually estimates the population total). Variables referenced inside expr
have obviously to belong to design and must be numeric.
At a minimal level, svystatL can be used to estimate Totals, Means and Ratios, thus reproduc-
ing the same results achieved by using the corresponding dedicated functions svystatTM and
svystatR. For instance, calling svystatL(design, expression(y/x)) is equivalent to invok-
ing svystatR(design, ~y, ~x), while using svystatL(design, expression(y/ones)) or
svystatTM(design, ~y, estimator = "Mean") achieves an identical result.

The optional argument by specifies the variables that define the "estimation domains", that is the
subpopulations for which the estimates are to be calculated. If by=NULL (the default option), the esti-
mates produced by svystatL refer to the whole population. Estimation domains must be defined by
a formula: for example the statement by=~B1:B2 selects as estimation domains the subpopulations
determined by crossing the modalities of variables B1 and B2. Notice that a formula like by=~B1+B2
will be automatically translated into the factor-crossing formula by=~B1:B2: if you need to com-
pute estimates for domains B1 and B2 separately, you have to call svystatL twice. The design
variables referenced by by (if any) should be of type factor, otherwise they will be coerced.

The conf.int argument allows to request the confidence intervals for the estimates. By default
conf.int=FALSE, that is the confidence intervals are not provided.

Whenever confidence intervals are requested (i.e. conf.int=TRUE), the desired confidence level can
be specified by means of the conf.lev argument. The conf.lev value must represent a probability
(0<=conf.lev<=1) and its default is chosen to be 0.95.

The optional argument deff allows to request the design effect [Kish 1995] for the estimates. By
default deff=FALSE, that is the design effect is not provided. The design effect of an estimator is
defined as the ratio between the variance of the estimator under the actual sampling design and the
variance that would be obtained for an ’equivalent’ estimator under a hypothetical simple random
sampling without replacement of the same size. To obtain an estimate of the design effect comparing
to simple random sampling "with replacement", one must use deff="replace".
For nonlinear estimators, the design effect is estimated on the linearized version of the estimator
(that is for the estimator of the total of the linearized variable, aka "Woodruff transform").
When dealing with domain estimation, the design effects referring to a given subpopulation are
currently computed by taking the ratios between the actual variance estimates and those that would
have been obtained if a simple random sampling were carried out within that subpopulation. This
is the same as the srssubpop option for Stata’s function estat.

Missing values (NA) in interest variables should be avoided. If na.rm=FALSE (the default) they gen-
erate NAs in estimates (or even an error, if design is calibrated). If na.rm=TRUE, observations
containing NAs are dropped, and estimates gets computed on non missing values only. This implic-
itly assumes that missing values hit interest variables completely at random: should this be not the
case, computed estimates would be biased.

Value

An object inheriting from the data.frame class, whose detailed structure depends on input param-
eters’ values.

Warning

When the linearized variable corresponding to a Complex Estimator is ill defined (because the esti-
mator gradient is singular at the Taylor series expansion point), SE estimates returned by svystatL

118 svystatL

are NaN.

Author(s)

Diego Zardetto

References

Sarndal, C.E., Swensson, B., Wretman, J. (1992) "Model Assisted Survey Sampling", Springer Ver-
lag.

Kish, L. (1995). "Methods for design effects". Journal of Official Statistics, Vol. 11, pp. 55-77.

See Also

Estimators of Totals and Means svystatTM, Ratios between Totals svystatR, Multiple Regression
Coefficients svystatB, Quantiles svystatQ, and all of the above svystat.

Examples

###
A first example: the Ratio Estimator of a Total.
###

Creation of a design object:
data(data.examples)
des<-e.svydesign(data=example,ids=~towcod+famcod,strata=~SUPERSTRATUM,

weights=~weight)

Recall that ratio estimators of Totals rely on auxiliary
information. Thus, suppose you want to estimate the total
of income and that you know from an external source that
the population size is, say, 1E6:
svystatL(des,expression(1E6*(income/ones)),vartype="cvpct")

By comparing the latter result with the ordinary
estimator of the mean one can see the variance
reduction stemming from the correlation between
numerator and denominator:
svystatTM(des,~income,vartype="cvpct")

##
A complex example: estimation of the Population Standard
Deviation of a variable.
##

Creation of another design object:
data(sbs)
sbsdes<-e.svydesign(data=sbs,ids=~id,strata=~strata,weights=~weight,

fpc=~fpc)

Suppose you want to estimate the standard deviation of the
population distribution of value added (va.imp2):
sbsdes<-des.addvars(sbsdes,va.imp2.sq=va.imp2^2)
svystatL(sbsdes,expression(sqrt((ones/(ones-1))*

((va.imp2.sq/ones)-(va.imp2/ones)^2)

svystatL 119

)
), conf.int=TRUE)

The estimate above and the associated confidence interval (which
involves the estimate of the sampling variance of the complex
estimator) turn out to be very sound: indeed the TRUE value of the
parameter is:
sd(sbs.frame$va.imp2)

###
Estimation of Geometric and Harmonic Means.
###

1. Harmonic Mean
Recall that the the harmonic mean of a positive variable,
say z, can be computed as 1/mean(1/z). Thus, for instance,
to get a survey estimate of the harmonic mean of emp.num,
you can do as follows:

sbsdes<-des.addvars(sbsdes,emp.num.m1=1/emp.num)
h<-svystatL(sbsdes,expression(ones/emp.num.m1),

conf.int=TRUE)
h

You can easily verify that the obtained estimate is close
to the true value (as computed from the sampling frame) and
covered by the 95% confidence interval:

1/mean(1/sbs.frame$emp.num)

2. Geometric Mean
Recall that the the geometric mean of a non negative variable,
say z, can be computed as exp(mean(log(z))). Thus, for instance,
to get a survey estimate of the geometric mean of emp.num,
you can do as follows:

sbsdes<-des.addvars(sbsdes,log.emp.num=log(emp.num))
g<-svystatL(sbsdes,expression(exp(log.emp.num/ones)),

conf.int=TRUE)
g

You can easily verify that the obtained estimate is close
to the true value (as computed from the sampling frame) and
covered by the 95% confidence interval:

exp(mean(log(sbs.frame$emp.num)))

3. Comparison with the arithmetic mean
If you compute the arithmetic mean estimate:

a<-svystatTM(sbsdes,~emp.num,estimator="Mean")
a

#...you easily verify the expected hierachy,
i.e. harmonic <= geometric <= arithmetic:

H<-coef(h)
G<-coef(g)
A<-coef(a)
stopifnot(H <= G && G <= A)

120 svystatQ

###
Further complex examples: estimation of Population Regression
Coefficients (for a model with a single predictor).
###

Suppose you want to estimate of the slope of the population
regression y vs. emp.num. You can do as follows:

1. No intercept model: y ~ emp.num - 1
Get survey estimate:
sbsdes<-des.addvars(sbsdes,y4emp.num=y*emp.num,

emp.num.sq=emp.num^2)
svystatL(sbsdes,expression(y4emp.num/emp.num.sq),

conf.int=TRUE)

Compare with the actual slope from the population fit:
pop.fit<-lm(y~emp.num-1,data=sbs.frame)
coef(pop.fit)

...a very good agreement.

2. The model with intercept: y ~ emp.num
Get survey estimate:
svystatL(sbsdes,expression((ones*y4emp.num - y*emp.num)/

(ones*emp.num.sq - emp.num^2)
),

conf.int=TRUE)

Compare with the actual slope from the population fit:
pop.fit<-lm(y~emp.num,data=sbs.frame)
coef(pop.fit)

...again a very good agreement.

Notice that both results above could be obtained also
by using ReGenesees specialized function svystatB:

1.
svystatB(sbsdes,y~emp.num-1,conf.int=TRUE)

2.
svystatB(sbsdes,y~emp.num,conf.int=TRUE)

Notice also - incidentally - that the estimate of the intercept
turns out to be less accurate than the one we obtained for the slope,
with about a 6% overestimation.

svystatQ Estimation of Quantiles in Subpopulations

Description

Calculates estimates, standard errors and confidence intervals for quantiles of numeric variables in
subpopulations.

svystatQ 121

Usage

svystatQ(design, y, probs = c(0.25, 0.5, 0.75), by = NULL,
vartype = c("se", "cv", "cvpct", "var"),
conf.lev = 0.95, na.rm = FALSE,
ties=c("discrete", "rounded"))

S3 method for class 'svystatQ'
coef(object, ...)
S3 method for class 'svystatQ'
SE(object, ...)
S3 method for class 'svystatQ'
VAR(object, ...)
S3 method for class 'svystatQ'
cv(object, ...)
S3 method for class 'svystatQ'
confint(object, ...)

Arguments

design Object of class analytic (or inheriting from it) containing survey data and sam-
pling design metadata.

y Formula defining the interest variable.

probs Vector of probability values to be used to calculate the quantiles estimates. The
default value selects estimates of quartiles.

by Formula specifying the variables that define the "estimation domains". If NULL
(the default option) estimates refer to the whole population.

vartype character vector specifying the desired variability estimators. It is possible to
choose one or more of: standard error ('se', the default), coefficient of variation
('cv'), percent coefficient of variation ('cvpct'), or variance ('var').

conf.lev Probability specifying the desired confidence level: the default value is 0.95.

na.rm Should missing values (if any) be removed from the variable of interest? The
default is FALSE (see ‘Details’).

ties How should duplicated observed values be treated? Select 'discrete' for a
genuinely discrete interest variable and 'rounded' for a continuous one.

object An object of class svystatQ.

... Additional arguments to coef, . . . , confint methods (if any).

Details

This function calculates weighted estimates for the quantiles of a quantitative variable using suitable
weights depending on the class of design: calibrated weights for class cal.analytic and direct
weights otherwise.
Standard errors are calculated using the so-called "Woodruff method" [Woodruff 52][Sarndal, Swens-
son, Wretman 92]: (i) first a confidence interval (at a given confidence level 1-a) is constructed for
the relative frequency of units with values below the estimated quantile, (ii) then the inverse of the
estimated cumulative relative frequency distribution (ECDF) is used to map this interval to a con-
fidence interval for the quantile, (iii) lastly the desired standard error is estimated by dividing the
length of the obtained confidence interval by the value 2*qnorm(1-a/2). Notice that the procedure
above builds, in general, asymmetric confidence intervals around the estimated quantiles.

122 svystatQ

The mandatory argument y identifies the variable of interest, that is the variable for which estimates
of quantiles have to be calculated. The design variable referenced by y must be numeric.

The optional argument probs specifies the probability values (0.001<=probs[i]<=0.999) corre-
sponding to the quantiles one wants to estimate; the default option selects quartiles.

The optional argument by specifies the variables that define the "estimation domains", that is the
subpopulations for which the estimates are to be calculated. If by=NULL (the default option), the
estimates produced by svystatTM refer to the whole population. Estimation domains must be
defined by a formula: for example the statement by=~B1:B2 selects as estimation domains the
subpopulations determined by crossing the modalities of variables B1 and B2. Notice that a formula
like by=~B1+B2 will be automatically translated into the factor-crossing formula by=~B1:B2: if you
need to compute estimates for domains B1 and B2 separately, you have to call svystatQ twice.
The design variables referenced by by (if any) should be of type factor, otherwise they will be
coerced.

The conf.int argument allows to request the confidence intervals for the estimates. By default
conf.int=FALSE, that is the confidence intervals are not provided.

Whenever confidence intervals are requested (i.e. conf.int=TRUE), the desired confidence level can
be specified by means of the conf.lev argument. The conf.lev value must represent a probability
(0<=conf.lev<=1) and its default is chosen to be 0.95.

Missing values (NA) in interest variables should be avoided. If na.rm=FALSE (the default) they gen-
erate NAs in estimates (or even an error, if design is calibrated). If na.rm=TRUE, observations
containing NAs are dropped, and estimates gets computed on non missing values only. This implic-
itly assumes that missing values hit interest variables completely at random: should this be not the
case, computed estimates would be biased.

Argument ties addresses the problem of how to treat duplicated observed values (if any) when
computing the ECDF. Option 'discrete' (the default) is appropriate when the variable of interest
is genuinely discrete, while 'rounded' is a better choice for a continuous variable, i.e. when
duplicates stem from rounding. In the first case the ECDF will show a vertical step corresponding
to a duplicated value, in the second a smoother shape will be achieved by linear interpolation.

Value

An object inheriting from the data.frame class, whose detailed structure depends on input param-
eters’ values.

Author(s)

Diego Zardetto

References

Woodruff, R.S. (1952) "Confidence Intervals for Medians and Other Position Measures", Journal
of the American Statistical Association, Vol. 47, No. 260, pp. 635-646.

Sarndal, C.E., Swensson, B., Wretman, J. (1992) "Model Assisted Survey Sampling", Springer Ver-
lag.

See Also

Estimators of Totals and Means svystatTM, Ratios between Totals svystatR , Multiple Regression
Coefficients svystatB, Complex Analytic Functions of Totals and/or Means svystatL, and all of
the above svystat.

svystatR 123

Examples

Creation of a design object:
data(data.examples)
des<-e.svydesign(data=example,ids=~towcod+famcod,strata=~SUPERSTRATUM,

weights=~weight)

Estimate of the deciles of the income variable for
the whole population:
svystatQ(des,~income,probs=seq(0.1,0.9,0.1),ties="rounded")

Another design object:
data(sbs)
des<-e.svydesign(data=sbs,ids=~id,strata=~strata,weights=~weight,

fpc=~fpc)

Estimation of the median value added
for economic activity macro-sectors:
svystatQ(des,~va.imp2,probs=0.5,by=~nace.macro,

ties="rounded",vartype="cvpct")

Estimation of the Interquartile Range (IQR) of the number
of employees for economic activity macro-sectors:
apply(svystatQ(des,~emp.num,probs=c(0.25,0.75),by=~nace.macro)[,2:3],1,diff)

svystatR Estimation of Ratios in Subpopulations

Description

Calculates estimates, standard errors and confidence intervals for ratios between totals in subpopu-
lations.

Usage

svystatR(design, num, den, by = NULL, cross = FALSE,
vartype = c("se", "cv", "cvpct", "var"),
conf.int = FALSE, conf.lev = 0.95, deff = FALSE,
na.rm = FALSE)

S3 method for class 'svystatR'
coef(object, ...)
S3 method for class 'svystatR'
SE(object, ...)
S3 method for class 'svystatR'
VAR(object, ...)
S3 method for class 'svystatR'
cv(object, ...)
S3 method for class 'svystatR'
deff(object, ...)
S3 method for class 'svystatR'
confint(object, ...)

124 svystatR

Arguments

design Object of class analytic (or inheriting from it) containing survey data and sam-
pling design metadata.

num Formula defining the numerator variables for the ratios.

den Formula defining the denominator variables for the ratios.

by Formula specifying the variables that define the "estimation domains". If NULL
(the default option) estimates refer to the whole population.

cross Should ratios be estimated for all the pairs of variables in 'num' and 'den'? The
default is FALSE, meaning that ratios get estimated parallel-wise (see ‘Details’).

vartype character vector specifying the desired variability estimators. It is possible to
choose one or more of: standard error ('se', the default), coefficient of variation
('cv'), percent coefficient of variation ('cvpct'), or variance ('var').

conf.int Compute confidence intervals for the estimates? The default is FALSE.

conf.lev Probability specifying the desired confidence level: the default value is 0.95.

deff Should the design effect be computed? The default is FALSE (see ‘Details’).

na.rm Should missing values (if any) be removed from the variables of interest? The
default is FALSE (see ‘Details’).

object An object of class svystatR.

... Additional arguments to coef, . . . , confint methods (if any).

Details

This function computes weighted estimates for Ratios between Totals using suitable weights de-
pending on the class of design: calibrated weights for class cal.analytic and direct weights
otherwise. Standard errors are calculated using the Taylor linearization technique.

The mandatory argument num (den) identifies the variables whose totals appear as numerators (de-
nominators) in the Ratios: the corresponding formula must be of the type num = ~num.1 + ... + num.k
(den = ~den.1 + ... + den.l). The design variables referenced by num (den) must be numeric.

If cross=TRUE, the function computes estimates for all the Ratios between pairs of variables coming
from num and den (that is k*l estimates for the formulae above). If, on the contrary, cross=FALSE
(the default), Ratios get estimated parallel-wise and R recycling rule is applied whenever k!=l: for
the formulae above, this generates r Ratios, where r=max(k,l).

The optional argument by specifies the variables that define the "estimation domains", that is the
subpopulations for which the estimates are to be calculated. If by=NULL (the default option), the esti-
mates produced by svystatR refer to the whole population. Estimation domains must be defined by
a formula: for example the statement by=~B1:B2 selects as estimation domains the subpopulations
determined by crossing the modalities of variables B1 and B2. Notice that a formula like by=~B1+B2
will be automatically translated into the factor-crossing formula by=~B1:B2: if you need to com-
pute estimates for domains B1 and B2 separately, you have to call svystatR twice. The design
variables referenced by by (if any) should be of type factor, otherwise they will be coerced.

The conf.int argument allows to request the confidence intervals for the estimates. By default
conf.int=FALSE, that is the confidence intervals are not provided.

Whenever confidence intervals are requested (i.e. conf.int=TRUE), the desired confidence level can
be specified by means of the conf.lev argument. The conf.lev value must represent a probability
(0<=conf.lev<=1) and its default is chosen to be 0.95.

The optional argument deff allows to request the design effect [Kish 1995] for the estimates. By
default deff=FALSE, that is the design effect is not provided. The design effect of an estimator is

svystatR 125

defined as the ratio between the variance of the estimator under the actual sampling design and the
variance that would be obtained for an ’equivalent’ estimator under a hypothetical simple random
sampling without replacement of the same size. To obtain an estimate of the design effect comparing
to simple random sampling "with replacement", one must use deff="replace".
Being Ratios nonlinear estimators, the design effect is estimated on the linearized version of the
estimator (that is: for the estimator of the total of the linearized variable, aka "Woodruff transform").
When dealing with domain estimation, the design effects referring to a given subpopulation are
currently computed by taking the ratios between the actual variance estimates and those that would
have been obtained if a simple random sampling were carried out within that subpopulation. This
is the same as the srssubpop option for Stata’s function estat.

Missing values (NA) in interest variables should be avoided. If na.rm=FALSE (the default) they gen-
erate NAs in estimates (or even an error, if design is calibrated). If na.rm=TRUE, observations
containing NAs are dropped, and estimates gets computed on non missing values only. This implic-
itly assumes that missing values hit interest variables completely at random: should this be not the
case, computed estimates would be biased. Notice that the na.rm=TRUE option is only allowed for
a single Ratio, i.e. if num and den references a single interest variable.

Value

An object inheriting from the data.frame class, whose detailed structure depends on input param-
eters’ values.

Warning

It can happen that, in some subpopulations, the estimate of the Total of some den variables turns
out to be zero. In such cases svystatR estimates are either NaN or Inf, and NaN is returned for the
corresponding SE estimates.

Author(s)

Diego Zardetto

References

Sarndal, C.E., Swensson, B., Wretman, J. (1992) "Model Assisted Survey Sampling", Springer Ver-
lag.

Kish, L. (1995). "Methods for design effects". Journal of Official Statistics, Vol. 11, pp. 55-77.

See Also

Estimators of Totals and Means svystatTM, Multiple Regression Coefficients svystatB, Quantiles
svystatQ, Complex Analytic Functions of Totals and/or Means svystatL, and all of the above
svystat.

Examples

Creation of a design object:
data(sbs)
des<-e.svydesign(data=sbs,ids=~id,strata=~strata,weights=~weight,

fpc=~fpc)

Estimation of the average value added per employee
at the nation level:
svystatR(des,~va.imp2,~emp.num)

126 svystatR

The same as above by economic activity macro-sector:
svystatR(des,~va.imp2,~emp.num,~nace.macro,vartype="cvpct")

Another design object:
data(data.examples)
des<-e.svydesign(data=example,ids=~towcod+famcod,strata=~SUPERSTRATUM,

weights=~weight)

Estimation of the ratios y1/x1, y1/x2, y2/x1 and y2/x2 by region,
notice the use of argument cross:
svystatR(des,~y1+y2,~x1+x2,by=~regcod,cross=TRUE)

... compare the latter with the default (i.e. cross=FALSE)
svystatR(des,~y1+y2,~x1+x2,by=~regcod)

Estimation of the ratios z/x1, z/x2 e z/x3
for the whole population (notice the recycling rule):
svystatR(des,~z,~x1+x2+x3,conf.int=TRUE)

Estimators of means can be thought as
estimators of ratios:
svystatTM(des,~income,estimator="Mean")
svystatR(des.addvars(des,ones=1),num=~income,den=~ones)

##
Household-level averages in household surveys.
##

For an introduction on this topic, see ?svystatTM examples.

Load survey data:
data(data.examples)

Define the survey design (variable famcod identifies households)
exdes<-e.svydesign(data=example,ids=~towcod+famcod,strata=~stratum,

weights=~weight)

Collapse strata to eliminate lonely PSUs
exdes<-collapse.strata(design=exdes,block.vars=~sr:procod)

Now add new convenience variables to the design object:
'ones': to estimate individuals counts
'housize': to classify individuals by household size
'houdensity': to estimate households counts

exdes<-des.addvars(exdes,
ones=1,
housize=factor(ave(famcod,famcod,FUN = length)),
houdensity=ave(famcod,famcod,FUN = function(x) 1/length(x))
)

Estimate the average number of household components by region:
svystatR(exdes,num=~ones,den=~houdensity,by=~regcod,

vartype="cvpct",conf.int=TRUE)

svystatTM 127

Estimate the average household income for the whole population:
svystatR(exdes,num=~income,den=~houdensity,vartype="cvpct",

conf.int=TRUE)

...for household size categories:
svystatR(exdes,num=~income,den=~houdensity,by=~housize,

vartype="cvpct",conf.int=TRUE)

...and for province and household size:
svystatR(exdes,num=~income,den=~houdensity,by=~housize:procod,

vartype="cvpct")

svystatTM Estimation of Totals and Means in Subpopulations

Description

Computes estimates, standard errors and confidence intervals for Totals and Means in subpopula-
tions.

Usage

svystatTM(design, y, by = NULL, estimator = c("Total", "Mean"),
vartype = c("se", "cv", "cvpct", "var"),
conf.int = FALSE, conf.lev = 0.95, deff = FALSE,
na.rm = FALSE)

S3 method for class 'svystatTM'
coef(object, ...)
S3 method for class 'svystatTM'
SE(object, ...)
S3 method for class 'svystatTM'
VAR(object, ...)
S3 method for class 'svystatTM'
cv(object, ...)
S3 method for class 'svystatTM'
deff(object, ...)
S3 method for class 'svystatTM'
confint(object, ...)

Arguments

design Object of class analytic (or inheriting from it) containing survey data and sam-
pling design metadata.

y Formula defining the variables of interest.

by Formula specifying the variables that define the "estimation domains". If NULL
(the default option) estimates refer to the whole population.

estimator character specifying the desired estimator: it may be 'Total' (the default) or
'Mean'.

128 svystatTM

vartype character vector specifying the desired variability estimators. It is possible to
choose one or more of: standard error ('se', the default), coefficient of variation
('cv'), percent coefficient of variation ('cvpct'), or variance ('var').

conf.int Compute confidence intervals for the estimates? The default is FALSE.

conf.lev Probability specifying the desired confidence level: the default value is 0.95.

deff Should the design effect be computed? The default is FALSE (see ‘Details’).

na.rm Should missing values (if any) be removed from the variables of interest? The
default is FALSE (see ‘Details’).

object An object of class svystatTM.

... Additional arguments to coef, . . . , confint methods (if any).

Details

This function computes weighted estimates for Totals and Means using suitable weights depending
on the class of design: calibrated weights for class cal.analytic and direct weights otherwise.
Standard errors for nonlinear estimators (e.g. calibration estimators) are calculated using the Taylor
linearization technique.

The mandatory argument y identifies the variables of interest, that is the variables for which esti-
mates are to be calculated. The corresponding formula should be of the type y=~var1+...+varn.
The design variables referenced by y should be numeric or factor (variables of other types - e.g.
character - will be coerced). It is admissible to specify for y "mixed" formulae that simultaneously
contain quantitative (numeric) variables and qualitative (factor) variables.

To override the restriction to formulae of the type y=~var1+...+varn, the AsIs operator I() can be
used (see ‘Examples’). Though the latter opportunity could appear quite useful in some occasion,
actually it should be almost always possible to find a work-around by using other functions of the
ReGenesees package.

The optional argument by specifies the variables that define the "estimation domains", that is the
subpopulations for which the estimates are to be calculated. If by=NULL (the default option), the
estimates produced by svystatTM refer to the whole population. Estimation domains must be
defined by a formula: for example the statement by=~B1:B2 selects as estimation domains the
subpopulations determined by crossing the modalities of variables B1 and B2. Notice that a formula
like by=~B1+B2 will be automatically translated into the factor-crossing formula by=~B1:B2: if you
need to compute estimates for domains B1 and B2 separately, you have to call svystatTM twice.
The design variables referenced by by (if any) should be of type factor, otherwise they will be
coerced.

The optional argument estimator makes it possible to select the desired estimator. If
estimator="Total" (the default option), svystatTM calculates, for a given variable of interest
vark, the estimate of the total (when vark is numeric) or the estimate of the absolute frequency
distribution (when vark is factor). Similarly, if estimator="Mean", the function calculates the es-
timate of the mean (when vark is numeric) or the the estimate of the relative frequency distribution
(when vark is factor).

The conf.int argument allows to request the confidence intervals for the estimates. By default
conf.int=FALSE, that is the confidence intervals are not provided.

Whenever confidence intervals are requested (i.e. conf.int=TRUE), the desired confidence level can
be specified by means of the conf.lev argument. The conf.lev value must represent a probability
(0<=conf.lev<=1) and its default is chosen to be 0.95.

The optional argument deff allows to request the design effect [Kish 1995] for the estimates. By
default deff=FALSE, that is the design effect is not provided. The design effect of an estimator is
defined as the ratio between the variance of the estimator under the actual sampling design and the

svystatTM 129

variance that would be obtained for an ’equivalent’ estimator under a hypothetical simple random
sampling without replacement of the same size. To obtain an estimate of the design effect comparing
to simple random sampling "with replacement", one must use deff="replace".
Understanding what ’equivalent’ estimator actually means is straightforward when dealing with
Horvitz-Thompson estimators of Totals and Means. This is not the case when, on the contrary, the
estimator to which the deff refers is a nonlinear estimator (e.g. for Calibration estimators of Totals
and Means). In such cases, the standard approach is to use as ’equivalent’ estimator the linearized
version of the original estimator (that is: the estimator of the total of the linearized variable, aka
"Woodruff transform").
When dealing with domain estimation, the design effects referring to a given subpopulation are
currently computed by taking the ratios between the actual variance estimates and those that would
have been obtained if a simple random sampling were carried out within that subpopulation. This
is the same as the srssubpop option for Stata’s function estat.

Missing values (NA) in interest variables should be avoided. If na.rm=FALSE (the default) they gen-
erate NAs in estimates (or even an error, if design is calibrated). If na.rm=TRUE, observations
containing NAs are dropped, and estimates gets computed on non missing values only. This implic-
itly assumes that missing values hit interest variables completely at random: should this be not the
case, computed estimates would be biased. Notice that the na.rm=TRUE option is only allowed if y
references a single interest variable.

Value

An object inheriting from the data.frame class, whose detailed structure depends on input param-
eters’ values.

Author(s)

Diego Zardetto

References

Sarndal, C.E., Swensson, B., Wretman, J. (1992) "Model Assisted Survey Sampling", Springer Ver-
lag.

Kish, L. (1995). "Methods for design effects". Journal of Official Statistics, Vol. 11, pp. 55-77.

See Also

Estimators of Ratios between Totals svystatR, Quantiles svystatQ, Multiple Regression Coeffi-
cients svystatB, Complex Analytic Functions of Totals and/or Means svystatL, and all of the
above svystat.

Examples

Load survey data:
data(data.examples)

Creation of a design object:
des<-e.svydesign(data=example,ids=~towcod+famcod,strata=~SUPERSTRATUM,

weights=~weight)

Estimation of the total of 3 quantitative variables for the whole
population:
svystatTM(des,~y1+y2+y3)

130 svystatTM

Estimation of the total of the same 3 variables by region, with SE
and CV%:
svystatTM(des,~y1+y2+y3,~regcod,vartype=c("se","cvpct"))

Estimation of the mean of the same 3 variables by marstat and sex:
svystatTM(des,~y1+y2+y3,~marstat:sex,estimator="Mean")

Estimation of the absolute frequency distribution of the qualitative
variable age5c for the whole population, with the design effect:
svystatTM(des,~age5c,deff=TRUE)

MARGINAL relative frequency distributions
Estimation of the relative frequency distribution of the qualitative
variable age5c for the whole population:
svystatTM(des,~age5c,estimator="Mean")

CONDITIONAL relative frequency distributions
Estimation of the relative frequency distribution of the qualitative
variable marstat by sex:
svystatTM(des,~marstat,~sex,estimator="Mean")

JOINT relative frequency distributions
Estimation of the relative frequency of the joint distribution of sex
and marstat:
First Solution (using the AsIs operator I()):
svystatTM(des,~I(sex:marstat),estimator="Mean")
Second Solution (adding a new variable to des):
des2 <- des.addvars(des, sex.marstat=sex:marstat)
svystatTM(des2,~sex.marstat,estimator="Mean")

Estimation of the mean income inside provinces, with confidence intervals
at a confidence level of 0.9:
svystatTM(des,~income,~procod,estimator="Mean",conf.int=TRUE,conf.lev=0.9)

Quantitative and qualitative variables together: estimation of the
total of income and of the absolute frequency distribution of sex,
by marstat:
svystatTM(des,~income+sex,~marstat)

Estimating totals in domains for "incomplete" partitions: more on
the AsIs operator I()

Estimation of the total income (plus cvpct) ONLY in region 7:
svystatTM(des,~I(income*(regcod=="7")),vartype="cvpct")
Alternative solution (adding a new variable to des):
des2 <- des.addvars(des, inc_reg7=I(income*(regcod=="7")))
svystatTM(des2,~inc_reg7,vartype="cvpct")

Estimation of the total income (plus cvpct) ONLY in regions 6 and 10:
svystatTM(des,~I(income*as.numeric(regcod %in% c("6","10"))),vartype="cvpct")

svystatTM 131

Alternative solution (adding a new variable to des):
des2 <- des.addvars(des, inc_reg6.10=I(income*(regcod %in% c("6","10"))))
svystatTM(des2,~inc_reg6.10,vartype="cvpct")

Compare with the corresponding estimates for the "complete" partition,
i.e. for regions:
svystatTM(des,~income,~regcod,vartype="cvpct")

Under default settings lonely PSUs produce errors in standard
errors estimation (notice we didn't pass the fpcs):
data(fpcdat)
des.lpsu<-e.svydesign(data=fpcdat,ids=~psu+ssu,strata=~stratum,

weights=~w)
Not run:
svystatTM(des.lpsu,~x+y+z,vartype=c("se","cvpct"))

End(Not run)

This can be circumvented in different ways, namely:
old.op <- options("RG.lonely.psu"="adjust")
svystatTM(des.lpsu,~x+y+z,vartype=c("se","cvpct"))
options(old.op)

or otherwise:
old.op <- options("RG.lonely.psu"="average")
svystatTM(des.lpsu,~x+y+z,vartype=c("se","cvpct"))
options(old.op)

but see also ?collapse.strata for a better alternative.

##
Household-level estimation in household surveys.
##

Large scale household surveys typically adopt a 2-stage sampling
design with municipalities as PSUs and households as SSUs, in order
to eventually collect informations on each individual belonging to
sampled SSUs. In such a framework (up to possible total nonresponse
effects), each individual inside a sampled household shares the
same direct weight, which, in turn, equals the household weight.
This implies that it is very easy to build estimates referred to
SSU-level (households) informations, despite estimators actually
involve only individual values. Some examples are given below.

Load survey data:
data(data.examples)

Define the survey design (variable famcod identifies households)
exdes<-e.svydesign(data=example,ids=~towcod+famcod,strata=~stratum,

weights=~weight)

Collapse strata to eliminate lonely PSUs
exdes<-collapse.strata(design=exdes,block.vars=~sr:procod)

Now add new convenience variables to the design object:

132 weights

'ones': to estimate individuals counts
'housize': to classify individuals by household size
'houdensity': to estimate households counts

exdes<-des.addvars(exdes,
ones=1,
housize=factor(ave(famcod,famcod,FUN = length)),
houdensity=ave(famcod,famcod,FUN = function(x) 1/length(x))
)

Estimate the total number of households:
nhou<-svystatTM(exdes,~houdensity,vartype="cvpct")
nhou

Estimate the total number of individuals:
nind<-svystatTM(exdes,~ones,vartype="cvpct")
nind

Thus the average number of individuals per household is:
coef(nind)/coef(nhou)

...which can be obtained also as a ratio (along with
its estimated sampling variability):
svystatR(exdes,~ones,~houdensity,vartype="cvpct")

Estimate the number and proportion of individuals living in households
of given sizes:
nind.by.housize<-svystatTM(exdes,~housize,vartype="cvpct")
nind.by.housize

pind.by.housize<-svystatTM(exdes,~housize,estimator="Mean",var="cvpct")
pind.by.housize

Estimate the number of households by household size:
nhou.by.housize<-svystatTM(exdes,~houdensity,~housize,vartype="cvpct")
nhou.by.housize

Notice that estimates of individuals and household counts are consistent,
indeed:
coef(nind.by.housize)/coef(nhou.by.housize)

weights Retrieve Sampling Units Weights

Description

Extracts the current weights of units belonging to a survey design object.

Usage

weights(object, ...)

Arguments

object Object of class analytic (or inheriting from it) containing survey data and sam-
pling design metadata.

weights 133

... Arguments for future expansion.

Details

The current weights of object are, by definition, those weights that would be used for estimation
purposes on that object (e.g. by functions svystatTM, svystatR, svystatQ, svystatB, svystatL,
. . .). The nature of such weights depends on the class of object: calibrated weights for class
cal.analytic and direct weights otherwise.

Value

A vector of weights, whose components are positionally tied to the sampling units belonging to
object.

Note

If object has undergone multiple, subsequent calibration steps, the function will return the output
weights generated by the last calibration step.

Author(s)

Diego Zardetto

See Also

Function g.range to asses the range of the g-weights of a calibrated design object.

Examples

Creation of the object to be calibrated:
data(data.examples)
exdes<-e.svydesign(data=example,ids=~towcod+famcod,strata=~SUPERSTRATUM,

weights=~weight)

Retrieve the weights and summarize their distribution:
summary(weights(exdes))

Now calibrate (global solution) on the joint distribution of sex
and marstat (totals in pop03):
excal.1st<-e.calibrate(design=exdes,df.population=pop03,

calmodel=~marstat:sex-1,calfun="linear",bounds=bounds)

Retrieve the current weights (i.e. the calibrated ones) and
summarize their distribution:
summary(weights(excal.1st))

Now calibrate once again, this time on the marginal distribution
of age in 5 classes (age5c) inside provinces (procod) (totals in pop06p)
with the iterative solution, the logit distance and bounds=c(0.5, 1.5):
excal.2nd<-e.calibrate(design=excal.1st,df.population=pop06p,

calmodel=~age5c-1,partition=~procod,calfun="logit",
bounds=c(0.5, 1.5))

Notice that the print method correctly takes the calibration chain
into account:
excal.2nd

134 write.svystat

Now retrieve the current weights (i.e. the ones generated by the second
calibration step) and summarize their distribution:
summary(weights(excal.2nd))

write.svystat Export Survey Statistics

Description

Prints survey statistics to a file or connection.

Usage

write.svystat(x, ...)

Arguments

x An object containing survey statistics.

... Arguments to write.table

Details

This function is just a convenience wrapper to write.table, designed to export objects which have
been returned by survey statistics functions (e.g. svystatTM, svystatR, svystatB, svystatQ,
svystatL).

Author(s)

Diego Zardetto

See Also

write.table and the ’R Data Import/Export’ manual.

Examples

Creation of a design object:
data(sbs)
des<-e.svydesign(data=sbs,ids=~id,strata=~strata,weights=~weight,

fpc=~fpc)

Estimation of the average value added per employee
for economic activity region and macro-sectors,
with SE, CV% and standard confidence intervals:
stat <- svystatR(des,~va.imp2,~emp.num,by=~region:nace.macro,

vartype=c("se","cvpct"),conf.int=TRUE)
stat

In order to export the summary statistics above
into a CSV file for input to Excel one can use:
Not run:
write.svystat(stat,file="stat.csv",sep=";")

Zapsmall 135

End(Not run)

...and to read this file back into R one needs
Not run:
stat.back <- read.table("stat.csv",header=TRUE,sep=";",

check.names=FALSE)
stat.back

End(Not run)

Notice, however, that the latter object has
lost a lot of meta-data as compared to the
original one, so that e.g.:
Not run:
confint(stat.back)

End(Not run)

...while, on the contrary:
confint(stat)

Zapsmall Zapsmall Data Frame Columns and Numeric Vectors

Description

Put to zero values "close" to zero.

Usage

Default S3 method:
Zapsmall(x, digits = getOption("digits"), ...)
S3 method for class 'data.frame'
Zapsmall(x, digits = getOption("digits"), except = NULL, ...)

Arguments

x A data.frame with numeric columns or a numeric vector.

digits Integer indicating the precision to be used.

except Indices of columns not to be zapped (if any).

... Arguments for future expansion.

Details

This function "extends" to data.frame objects function zapsmall from the package base.
The method for class data.frame ’zaps’ values close to zero occurring in columns of x. Argument
except can be used to prevent specific columns from being zapped.
The default method is a bare copy of the original function from package base.

Value

An object of the same class of x, with values "close" to zero zapped to zero.

136 %into%

Author(s)

Diego Zardetto

See Also

The original function zapsmall from package base.

Examples

Create a test data frame with columns containing
values of different orders of magnitude:
data <- data.frame(a = pi*10^(-8:1), b = c(rep(1000,8), c(1E-5, 1E-6)))

Print on screen the test data frame:
data

Compare with its zapped version:
Zapsmall(data)

%into% Compress Nested Factors

Description

The special binary operator %into% transforms nested factors in such a way as to reduce the dimen-
sion and/or the sparsity of the model matrix of a calibration problem.

Usage

inner %into% outer
"%into%"(inner, outer)

Arguments

inner Factor with levels nested into outer (see ‘Details’).

outer Factor whose levels are an aggregation of those in inner (see ‘Details’).

Details

Arguments inner and outer must be both factors and must have the same length. Moreover,
inner has to be strictly nested into outer. Nesting is defined by treating elements in inner and
outer as if they were positionally tied (i.e. as if they belonged to columns of a given data frame).
The definition is as follows:

inner and outer are strictly nested if, and only if, 1) every set of equal elements in inner cor-
respond to a set of equal elements in outer, and 2) inner has more non-empty levels than outer.

If inner and outer do not fulfill the conditions above, evaluating inner %into% outer gives
an error.

Suppose inner is actually nested into outer and define inner.in.outer <- inner %into% outer.
The output factor inner.in.outer is built by recoding inner levels in such a way that each of them

%into% 137

is mapped into the integer which represents its order inside the corresponding level of outer (see
‘Examples’). As a consequence, the levels of inner.in.outer will be 1:n.max, being n.max the
maximum number of levels of inner tied to a level of outer. Since this number is generally consid-
erably smaller than the number of levels of inner, inner.in.outer can be seen as a compressed
representation of inner. Obviously, compression comes at a price: indeed inner.in.outer can
now be used to identify a level of inner only inside a given level of outer (see ‘Examples’).

The usefulness of the %into% operator emerges in the calibration context. As we already docu-
mented in e.calibrate, factorizing a calibration problem (i.e. exploiting the partition argument
of e.calibrate) determines a significant reduction in computation complexity, especially for big
surveys. Now, it is sometimes the case that a calibration model is actually factorizable, even if this
property is not self-apparent, due to factor nesting. In such cases, anyway, trying naively to factorize
the outer variable(s) typically leads to very big and sparse model matrices (as well as population
totals data frames), with the net result of washing-out the expected efficiency gain. A better alterna-
tive is to exploit the %into% operator in order to compress the inner variable in such a way that the
outer variable can be actually factorized without giving rise to huge and sparse matrices. Section
’Examples’ reports some practical illustration of the above line of reasoning.

Value

A factor with levels 1:n.max, being n.max the maximum number of levels of inner tied to a level
of outer.

Author(s)

Diego Zardetto

See Also

Further examples can be found in the fill.template help page.

Examples

###
General properties of the %into% operator.
###
First build a small data frame with 2 nested factors representing
regions and provinces:

dd <- data.frame(
reg = factor(rep(LETTERS[1:3], c(6, 3, 1))),
prov = factor(rep(letters[1:6], c(3, 2, 1, 2, 1, 1)))

)
dd

Since prov is strictly nested into reg we can compute:
prov.in.reg <- dd$prov %into% dd$reg
prov.in.reg

Note that prov.in.reg has 3 levels because, as can be seen from dd,
the maximum number of provinces inside regions is 3. Thus prov.in.reg
is actually a compressed version of dd$prov (whose levels were 6)
but, obviously, it can now be used to identify a province only inside
a given region. This means that the the two factors below are identical (up
to levels' labels):

dd$prov
interaction(prov.in.reg,dd$reg,drop=TRUE)

138 %into%

Note that all the statements below generate errors:
Not run:
dd$reg %into% dd$prov
dd$reg %into% dd$reg
dd$prov %into% dd$prov

End(Not run)

##
A more useful (and complex) example from the calibration context.
##
First define a design object:

data(data.examples)
exdes <- e.svydesign(data=example,ids=~towcod+famcod,strata=~SUPERSTRATUM,
weights=~weight)

Now suppose you have to perform a calibration process which
exploits the following known population totals:
1) Joint distribution of sex and age10c (age in 10 classes)
at the region level;
2) Joint distribution of sex and age5c (age in 5 classes)
at the province level;
#
The auxiliary variables corresponding to the population totals above
can be symbolically represented by a calibration model like the following:
~(procod:age5c + regcod:age10c - 1):sex
#
At first sight it seems that only the sex variable can be factorized
in the model above. However if one observe that regions are an aggregation
of provinces, one realizes that also the regcod variable can be factorized.
Similarly, since categories of age5c are an aggregation of categories of
age10c, age5c can be factorized too. In both cases, using the %into%
operator will save computation time and memory usage.
Let us see it in practice:
#
1) Global calibration (i.e. calmodel=~(procod:age5c + regcod:age10c - 1):sex,
no partition variable, known totals stored in pop07):

t<-system.time(
cal07<-e.calibrate(design=exdes,df.population=pop07,

calmodel=~(procod:age5c + regcod:age10c - 1):sex,
calfun="logit",bounds=c(0.2,1.8))

)

2) Partitioned calibration on the self evident variable sex only
(i.e. calmodel=~procod:age5c + regcod:age10c - 1, partition=~sex,
known totals stored in pop07p):

tp<-system.time(
cal07p<-e.calibrate(design=exdes,df.population=pop07p,

calmodel=~procod:age5c + regcod:age10c - 1,partition=~sex,
calfun="logit",bounds=c(0.2,1.8))

)

3) Full partitioned calibration on variables sex, regcod and age5c
by exploiting %into%.
First add to the design object the new compressed factor variables
involving nested factors, namely provinces inside regions...

%into% 139

exdes<-des.addvars(exdes,procod.in.regcod=procod %into% regcod)

...and age10c inside age5c:
exdes<-des.addvars(exdes,age10c.in.age5c=age10c %into% age5c)

Now calibrate exploiting the new variables
(i.e. calmodel=~procod.in.regcod + age10c.in.age5c - 1,
partition=~sex:regcod:age5c, known totals stored inside cal07pp)

tpp<-system.time(
cal07pp<-e.calibrate(design=exdes,df.population=pop07pp,

calmodel=~procod.in.regcod + age10c.in.age5c - 1,
partition=~sex:regcod:age5c,
calfun="logit",bounds=c(0.2,1.8))

)

Now compare execution times:
t
tp
tpp

thus, tpp < tp < t, as expected.
Notice also that we obtained identical calibrated weights:

all.equal(weights(cal07),weights(cal07p))
all.equal(weights(cal07),weights(cal07pp))

as it must be.

Index

∗Topic datasets
AF.gvf, 5
data.examples, 26
fpcdat, 68
sbs, 104

∗Topic package
ReGenesees-package, 2

∗Topic survey
%into%, 136
aux.estimates, 6
bounds.hint, 8
check.cal, 11
collapse.strata, 12
Corr, 23
des.addvars, 28
des.merge, 29
drop.gvf.points, 32
e.calibrate, 35
e.svydesign, 50
extractors, 56
fill.template, 58
find.lon.strata, 61
fit.gvf, 63
g.range, 69
get.residuals, 70
getBest, 73
getR2, 75
GVF.db, 77
gvf.input, 83
gvf.misc, 85
plot.gvf.fit, 89
pop.template, 92
population.check, 94
predictCV, 97
ReGenesees.options, 102
svystat, 106
svystatB, 111
svystatL, 115
svystatQ, 120
svystatR, 123
svystatTM, 127
weights, 132
Zapsmall, 135

[.gvf.fits (fit.gvf), 63
[[.gvf.fits (fit.gvf), 63
%into%, 59, 136

AF (AF.gvf), 5
AF.gvf, 5
AIC, 76
AIC (getR2), 75
anova.gvf.fit (gvf.misc), 85
anova.gvf.fits (gvf.misc), 85
as.formula, 79
aux.estimates, 6, 17, 19

BIC, 76
BIC (getR2), 75
bounds (data.examples), 26
bounds.hint, 8, 39, 69

calmodel (contrasts.RG), 17
check.cal, 10, 11, 39
coef, 57, 87, 107
coef.gvf.fit (gvf.misc), 85
coef.gvf.fits (gvf.misc), 85
coef.svystat.gr (svystat), 106
coef.svystatB (svystatB), 111
coef.svystatL (svystatL), 115
coef.svystatQ (svystatQ), 120
coef.svystatR (svystatR), 123
coef.svystatTM (svystatTM), 127
collapse.strata, 5, 12, 53, 62, 103
confint, 57, 107
confint.svystat.gr (svystat), 106
confint.svystatB (svystatB), 111
confint.svystatL (svystatL), 115
confint.svystatQ (svystatQ), 120
confint.svystatR (svystatR), 123
confint.svystatTM (svystatTM), 127
contr.off (contrasts.RG), 17
contr.treatment, 18, 19
contrasts, 17–19
contrasts.off (contrasts.RG), 17
contrasts.reset (contrasts.RG), 17
contrasts.RG, 17
Corr, 23

140

INDEX 141

CoV (Corr), 23
cv, 107
cv (extractors), 56
cv.svystat.gr (svystat), 106
cv.svystatB (svystatB), 111
cv.svystatL (svystatL), 115
cv.svystatQ (svystatQ), 120
cv.svystatR (svystatR), 123
cv.svystatTM (svystatTM), 127

data.examples, 26
deff, 107
deff (extractors), 56
deff.svystat.gr (svystat), 106
deff.svystatB (svystatB), 111
deff.svystatL (svystatL), 115
deff.svystatR (svystatR), 123
deff.svystatTM (svystatTM), 127
des.addvars, 28, 30
des.merge, 29
drop.gvf.points, 6, 32, 65, 74, 76, 81, 84,

87, 90, 98, 108

e.calibrate, 5, 7, 10–12, 17, 19, 27, 28, 30,
35, 51, 53, 59, 69, 71, 93, 95, 137

e.svydesign, 5, 7, 28, 30, 39, 50, 103
ecal.status (e.calibrate), 35
ee.AF (AF.gvf), 5
effects.gvf.fit (gvf.misc), 85
effects.gvf.fits (gvf.misc), 85
estimator.kind, 5, 6, 54, 65, 81, 84, 108
example (data.examples), 26
exdes (AF.gvf), 5
extractors, 56

fill.template, 7, 17, 19, 37, 39, 58, 93, 95,
137

find.lon.strata, 61
fit.gvf, 6, 33, 55, 63, 65, 74, 76, 79, 81, 84,

87, 90, 98, 108
fitted, 87
fitted.gvf.fit (gvf.misc), 85
fitted.gvf.fits (gvf.misc), 85
formula, 18, 19
fpcdat, 62, 68, 103

g.range, 10, 39, 69, 71, 133
get.residuals, 70
getBest, 73, 76
getR2, 32, 74, 75
glm, 18
GVF (fit.gvf), 63
GVF.db, 6, 33, 55, 64, 65, 74, 76, 77, 84, 87,

90, 97, 98, 108

gvf.fit (fit.gvf), 63
gvf.fits (fit.gvf), 63
gvf.input, 5, 6, 33, 55, 64, 65, 74, 76, 79, 81,

83, 87, 90, 98, 108
gvf.input.gr, 65
gvf.input.gr (svystat), 106
gvf.misc, 85

identify, 33

list, 65
lm, 18, 64, 112

memory.limit, 59
model.matrix, 18, 19

plot.gvf.fit, 6, 33, 65, 74, 76, 81, 84, 87,
89, 98, 108

plot.gvf.fits (plot.gvf.fit), 89
plot.gvf.input (gvf.input), 83
plot.gvf.input.gr (svystat), 106
plot.lm, 33, 90
pop.template, 7, 10, 17, 19, 37, 39, 59, 92, 95
pop01 (data.examples), 26
pop02 (data.examples), 26
pop03 (data.examples), 26
pop03p (data.examples), 26
pop04 (data.examples), 26
pop04p (data.examples), 26
pop05 (data.examples), 26
pop05p (data.examples), 26
pop06p (data.examples), 26
pop07 (data.examples), 26
pop07p (data.examples), 26
pop07pp (data.examples), 26
population.check, 7, 9, 10, 37, 39, 93, 94
predict.gvf.fit (gvf.misc), 85
predict.gvf.fits (gvf.misc), 85
predict.lm, 97, 98
predictCV, 6, 33, 65, 74, 76, 79–81, 84, 87,

90, 97, 108
print.default, 64
print.gvf.fit (fit.gvf), 63
print.gvf.fits (fit.gvf), 63

ReGenesees (ReGenesees-package), 2
ReGenesees-package, 2
ReGenesees.options, 13, 14, 53, 62, 68, 102
residuals.gvf.fit (gvf.misc), 85
residuals.gvf.fits (gvf.misc), 85
RG.adjust.domain.lonely

(ReGenesees.options), 102
RG.lonely.psu (ReGenesees.options), 102

142 INDEX

RG.ultimate.cluster
(ReGenesees.options), 102

rstandard.gvf.fit (gvf.misc), 85
rstandard.gvf.fits (gvf.misc), 85
rstudent.gvf.fit (gvf.misc), 85
rstudent.gvf.fits (gvf.misc), 85

sbs, 104
SE, 107
SE (extractors), 56
SE.svystat.gr (svystat), 106
SE.svystatB (svystatB), 111
SE.svystatL (svystatL), 115
SE.svystatQ (svystatQ), 120
SE.svystatR (svystatR), 123
SE.svystatTM (svystatTM), 127
summary.gvf.fit (fit.gvf), 63
summary.gvf.fits (fit.gvf), 63
summary.svystatB (svystatB), 111
svystat, 6, 33, 54–57, 64, 65, 74, 76, 81, 84,

87, 90, 98, 106, 113, 118, 122, 125,
129

svystatB, 24, 39, 53, 54, 56, 57, 84, 111, 118,
122, 125, 129, 133, 134

svystatL, 23, 24, 39, 53, 54, 56, 57, 84, 113,
115, 122, 125, 129, 133, 134

svystatQ, 24, 39, 53, 54, 56, 57, 84, 113, 118,
120, 125, 129, 133, 134

svystatR, 24, 39, 53, 54, 56, 57, 84, 113, 118,
122, 123, 129, 133, 134

svystatTM, 7, 24, 39, 51, 53, 54, 56, 57, 71,
84, 107, 113, 118, 122, 125, 127,
133, 134

symnum, 64

VAR, 107
VAR (extractors), 56
VAR.svystat.gr (svystat), 106
VAR.svystatB (svystatB), 111
VAR.svystatL (svystatL), 115
VAR.svystatQ (svystatQ), 120
VAR.svystatR (svystatR), 123
VAR.svystatTM (svystatTM), 127
vcov.gvf.fit (gvf.misc), 85
vcov.gvf.fits (gvf.misc), 85

weights, 52, 53, 69, 71, 132
write.svystat, 134
write.table, 134

Zapsmall, 135
zapsmall, 135, 136

	ReGenesees-package
	AF.gvf
	aux.estimates
	bounds.hint
	check.cal
	collapse.strata
	contrasts.RG
	Corr
	data.examples
	des.addvars
	des.merge
	drop.gvf.points
	e.calibrate
	e.svydesign
	estimator.kind
	extractors
	fill.template
	find.lon.strata
	fit.gvf
	fpcdat
	g.range
	get.residuals
	getBest
	getR2
	GVF.db
	gvf.input
	gvf.misc
	plot.gvf.fit
	pop.template
	population.check
	predictCV
	ReGenesees.options
	sbs
	svystat
	svystatB
	svystatL
	svystatQ
	svystatR
	svystatTM
	weights
	write.svystat
	Zapsmall
	%into%
	Index

