

DOCUMENT

SOFTWARE USER MANUAL
 (SUM – Software User Manual)

FOR

MESSAGES PARSER LIBRARY

Version 2.0

Prepared for:

Albatross
SkySoft-ATM
Rte de Pré-Bois 15-17
CH-1215 Geneva
Switzerland

Disposed by:

CS SOFT a.s.
K letišti 6/1019, P.O.Box 86
160 08 Praha 6
Czech Republic

Document ID Date
 Version
/ Revision Pages

MsgsParseLib_R20_SUM 6.6.2013 1.0 - 21

Distribution
Limited to contractual parties

All information contained in this document remains the sole and exclusive property of CS SOFT and
shall not be disclosed by the recipient third persons without the prior written consent of the company.

Messages Parser Library 2.0

SUM MsgsParseLib_R20_SUM 1.0 - 6.6.2013
,

 Distribution : Limited to contractual parties

page
2 of 21

CHANGE LIST

Version Date Description Author

1.0 A 3.5.2013 Document creation K. Hanton

1.0 B 13.5.2013 Add compilation and building steps
P. Roth,

K. Hanton

1.0 C 6.6.2013 Add library usage examples
P. Roth,

K. Hanton
1.0 6.6.2013 Formal review J. Sýkora

AUTHORIZATION

Version
Review / Date

Acceptance / Date

1.0

Ivana Holaňová / 7.6.2013 Jiří Sýkora / 7.6.2013

Version
Customer / Date

1.0

Address/: CS SOFT a.s.
 K letišti 6/1019
 P.O.Box 86
 160 08 Praha 6
 Czech Republic

Phone: +420 220 372 402
Fax: +420 220 372 402
E-mail: info@cs-soft.cz

Messages Parser Library 2.0

SUM MsgsParseLib_R20_SUM 1.0 - 6.6.2013
,

 Distribution : Limited to contractual parties

page
3 of 21

TABLE OF CONTENTS

1 SCOPE .. 5

1.1 IDENTIFICATION .. 5
1.2 SYSTEM OVERVIEW .. 5

1.3 DOCUMENT OVERVIEW .. 5

2 REFERENCED DOCUMENTS .. 6

3 SOFTWARE SUMMARY .. 7

3.1 SOFTWARE APPLICATION ... 7

3.2 SOFTWARE INVENTORY... 8

3.2.1 Source files inventory ... 8

3.2.2 Library files inventory ... 9

3.3 SOFTWARE ENVIRONMENT .. 9

3.4 SOFTWARE ORGANIZATION AND OVERVIEW OF OPERATION 9
3.4.1 Level 4 .. 9

3.4.2 Editions ... 9

3.4.3 Generated source code ... 10

3.4.4 C code structures .. 10

3.5 TESTS ... 10

3.5.1 Unit tests... 10

3.5.2 Verification – Integration tests ... 11

3.5.3 Validation – STD Tests .. 11

3.5.4 Working test ... 11

3.6 CONTINGENCIES AND ALTERNATE STATES AND MODES OF OPERATION . 11

3.7 SECURITY AND PRIVACY ... 11

3.8 ASSISTANCE AND PROBLEM REPORTING ... 11

4 ACCESS TO SOFTWARE ... 12

4.1 FIRST-TIME USER OF THE SOFTWARE.. 12
4.1.1 Compile and Build ... 12

4.1.2 Compile, Build and Run tests .. 13

4.1.3 Link with user software ... 14

4.2 CONFIGURATION .. 14
4.2.1 parser_adexp_smart_index.xml.. 14

4.2.2 message_item_list.xml ... 14

4.2.3 parser_error_strings.xml .. 14

4.2.4 mpl_config.xml ... 15

4.3 INITIATING A SESSION .. 15

4.4 STOPPING AND SUSPENDING WORK .. 15

5 PROCESSING REFERENCE GUIDE .. 16

5.1 LIBRARY INITIALIZATION .. 16

5.2 MESSAGE FORMAT AND TYPE DETECTION ... 16
5.3 DECODE MESSAGE .. 16
5.4 BUILD MESSAGE ... 17
5.5 BUILD/DECODE OTHER EDITION (FPL 2012) .. 17
5.6 DECODE/BUILD ROUTE (FILED15) ... 18

6 NOTES .. 19

Messages Parser Library 2.0

SUM MsgsParseLib_R20_SUM 1.0 - 6.6.2013
,

 Distribution : Limited to contractual parties

page
4 of 21

6.1 LIST OF DEFINITIONS .. 19

7 APPENDICES .. 21

Messages Parser Library 2.0

SUM MsgsParseLib_R20_SUM 1.0 - 6.6.2013
,

 Distribution : Limited to contractual parties

page
5 of 21

1 SCOPE

This document, the Software User Manual (SUM), tells how to install, use and test Computer Software
Configuration Item (CSCI), software library, MsgsParseLib.

1.1 Identification

Title: Messages Parser Library
Identification: MsgsParseLib
Abbreviation: MPL (mpl)
Version: 2.0
Release: r2.0

1.2 System overview

Message Parser Library is common software library for processing messages in ICAO and ADEXP
format. In such can be used in many ATC systems and tools in this area.
Software library can be used only as a part of other software libraries or applications, which call the
library services. Library provides all services only via application program interface (API).

Provided services are decoding and building ATC area messages. Converts message from textual
representation to C programming language structures (decode) and back (build). In both ways the
services provide checking of message items structure and validity. Library provides only
textual/syntactical processing service; there is no any semantic work, airspace knowledge or other.
Operations go as deep to provide also syntactical decode and build of ICAO field 15 (route
description).

Library can handle more alternatives of one type of message (message versions, also local
specifications are usual), such alternatives are called message editions.

Library was primary implemented as part of CS SOFT Inc. FDP system. Later was modified to be
independent on FDP system developing space and to be able provided under GPL licence as part of
Albatross community [1] projects.

1.3 Document overview

This document describes the theory of this MsgsParseLib software library, how to use it, call services
and also technical issues how to compile, install and link to user software/applications.

Messages Parser Library 2.0

SUM MsgsParseLib_R20_SUM 1.0 - 6.6.2013
,

 Distribution : Limited to contractual parties

page
6 of 21

2 REFERENCED DOCUMENTS

[1] Albatross, the ATM Open Source Community:
http://www.albatross.aero

Messages Parser Library 2.0

SUM MsgsParseLib_R20_SUM 1.0 - 6.6.2013
,

 Distribution : Limited to contractual parties

page
7 of 21

3 SOFTWARE SUMMARY

This chapter contains basic description of software library, its structure and API. Also explain theory
of library processing sides and levels and message editions. Explain principle of usage the meaning of
each source file, their generation and message C code structures.

3.1 Software application

This software library is written in C programming language and is prepare to process ATM messages
in ICAO or ADEXP format. Provides functionality to decode such message form string representation
to C-structure or build back message form C-structure to string.
As software library it is not a standalone application (but tests) and it doesn’t provide any user
interface. It is expected to be used by other software library or application via API.

Message processing part of software library is divided (so it’s API) into two main sides Decode and
Build and into 4 Levels. Sides define the direction of message processing and each level provides
specific message processing services (see Pic: 1 – Message processing theory and API).

The library can handle multiple editions of one message on all four levels. Message can differ in
mandatory/option fields, add specific local purpose field and field value limits; good example of
message edition is old ICAO messages and FPL2012 messages.

Also provides common library API, for software library initialization, error code processing and
activity logging.

Part of software library code are automatic tests, which may be compiled and run as standalone
process, which runs through all prepared tests and provide result. There is infrastructure for Unit,
Integration and User Requirements tests.

Caller

Level 1
Try recognize
format, message
type, edition

What is this
string?

Level 2
Do syntactic check
(as deep as implemented)

Is message (format,

type, edition) OK?

Level 3 (main)
Break message to
fields and decode
simple ones

Decode message
to fields list

Level 4
Process complex
fields

Decode complex
field to C-structure

Level 3 (main)
Break message to
fields and decode
simple ones

Level 4
Process complex
fields

DECODE side BUILD side

Build message
from fields list

Build field from
C-structure

Pic: 1 – Message processing theory and API

Messages Parser Library 2.0

SUM MsgsParseLib_R20_SUM 1.0 - 6.6.2013
,

 Distribution : Limited to contractual parties

page
8 of 21

3.2 Software inventory

This is software library written in C language, so it must be first compiled from the source files to
software library and then used in user software. Therefore software inventory has two states: source
code and library.

3.2.1 Source files inventory
MsgParseLib is complex piece of software and combines more programming techniques, flex and
bison tools to generate parser, XML for configuration and data structure definition and XSL
transformation for generating source code based on those definitions. Therefore inventory contains
various types of source files and also complex process of compilation (described later).

The source code files structure doesn’t exactly follows defined parser Levels. Level 1 (message
detection) service is placed directly in Level 3 (decoding) source code files and Level 2 (syntactic
check) service is even implemented as part of Level 3 processing (there was no need to have Level 2
as separate service at all).

Groups of source files in csrc/ directory:

• library API files
o mplDecode – provide top access to decode functionality

� also common library functions (initialization, configuration, …)
� mplConfig.h – separated declaration of configuration API

o mplEncode – provide top access to encode functionality
• fields processing (decode and encode) files (level 4)

o mplICAO…, mplOtherInfo – for each ICAO field
� mplICAOField15 – process field as string only

o mplADEXPDecode, mplADEXPEncode – for each ADEXP field
o mplRoute – separated processing for ICAO field 15

• Filed 15 route parser source files
o mplRouteScanner.l , mplRouteParser.y – flex and bison

• XML – data files in xml/ directory
o parser.xml – definition of messages structure
o parser_adexp_smart_index.xml , message_item_list.xml ,

parser_error_strings.xml , mpl_config.xml – configuration files (below
4.2)

o .xsd – XML files schema definition files
o .xsl – XSL transformation for generating source code files, with message

typedefs and support functions, from parser.xml
• Generated C source code files

o mplTypes.h , mplDump, mplNull – from parser.xml via XSLT
o mplRouteScanner , mplRouteParser – parser from flex and bison

• Testing files test/ directory
o mplTest*.c – different types and levels testing applications
o .xsl – XSL transformation for Cunit result formating

• Makefiles
o Makefile.am – template (for details see 4.1)

Messages Parser Library 2.0

SUM MsgsParseLib_R20_SUM 1.0 - 6.6.2013
,

 Distribution : Limited to contractual parties

page
9 of 21

3.2.2 Library files inventory
Compiled MsgsParseLib library has much less variation in file types. At this time it is standard
software library so it consists from header files and one library file (static or dynamic depends on
usage).

3.3 Software environment

This software library is written in C and was developed and compiled by Linux gcc compiler. ICAO
field 15 parser C code is generated by flex and bison lexical analyzer and parser generators.
Supporting message structure functions (dump() , free() , copy() , …) C code is generated from
XML by XSL transformation tool. There are also software compiling and building support tools.

Tools and versions list:

• Linux
• gcc version 4.5
• make version 3.81
• LIBXML2 version 2.7.7
• xsltproc
• xmllint
• yacc (GNU Bison) version 2.6.5
• flex version 2.5.37
• CUnit version 2.1 (needed for tests)
• Doxygen version 1.6.3 (needed for generate documentation)
• LogTool (optional, internal logger can be used)

3.4 Software organization and overview of operation

The software organization is divided to two main sides (Decode, Build) and four levels (see Pic: 1 –
Message processing theory and API). The main API is implemented in mplDecode and
mplEncode files for all formats (actually ICAO and ADEXP only). Those files contains whole first
three parser levels services (recognize, check, fields list) and mplDecode also the library common
services (initialization, configuration, …).

3.4.1 Level 4
mplICAOField* files implements ICAO field processing (decode/encode) level 4 functionality and
the mplADEXPDecode and mplADEXPEncode the same for ADEXP fields. This way is also
possible to add other message formats. Files mplRoute is fully separated implementation for
processing ICAO filed 15 (same field is used for ADEXP messages). Implemented separation is more
for technical reason, as the field 15 processing is complex task, and parser source code is generated
(flex, bison).
There is also mplICAOField15 file, but has no functionality, just process the string of field 15 to
string. There is also mplOtherInfo files, which process ICAO field 18 as any other
mplICAOField* files. Those are some historical level and naming inconsistencies, which should
disappear in time.

3.4.2 Editions
Message editions are handled in all four level of message processing. Edition name/code is usually just
underscore separated postfix text to message identification (“FPL”, “FPL_FPL2012”, “FPL_Airport”,
“CFD_EFS_FPL2012” …). Edition are then handled simply via the postfix extended functions and C

Messages Parser Library 2.0

SUM MsgsParseLib_R20_SUM 1.0 - 6.6.2013
,

 Distribution : Limited to contractual parties

page
10 of 21

code structure names on main API (mpl_decodeFPL() , mpl_decodeCFD_EFS_FPL2012() ,
…) and also on level 4 (mpl_encodeICAOField10() ,
mpl_parseICAOField10_FPL2012() , …).
Non-extended names, actually means default or standard message, but it is expected that by time all
identifiers (at least on library API) will have some edition postfix.

MsgsParseLib provides service for message format, type and edition detection. Such detection is based
just on basic syntax knowledge of ICAO and ADEXP format. Actually there is not implemented the
edition detection. Such detection is in most cases impossible (editions differ too slightly) and none
requested such service yet (editions and even types recognition is based on other system service). But
the service can be fulfilled if needed.

3.4.3 Generated source code
There are two types of source code generation:

• from XML files – types definition and common support function for C code message
structures. They are generated via XSL transformation.

o typedef char mpl_per_fpl2012_t[mpl_ARC_PER_FPL2012_ LEN + 1];
o char* dump_mpl_per_t();
o mpl_null_mpl_message_FPL_fpl2012_s();

• mplRoute parser – parser for ICAO field 15 is implemented in lexical analyzer flex and
parser generator bison , which are then converted to pure C code.

If you don’t do any changes to library source code, you don’t have to care about those generations.
They are processed automatically, while compiling and building the library (see 4.1.1).

3.4.4 C code structures
MsgsParseLib software library converts message to and from C code structures. Such structures are
quite complex, same as are complex messages and their fields and field’s items. Messages structures
are generated from XML description file as described in previous section.

All ICAO and ADEXP messages are composed from set of predefined fields. Also the C code
message structures are composed from predefined set of sub-structures (for each field). The sub-
structure for specific ICAO field, decoded from one message may be used to build same ICAO field in
other message.

Same ICAO and ADEXP (message with same meaning FPL-IFPL, …) has exactly the same C code
structure. MsgsParseLib may be then used to convert ICAO messages to same ADEXP messages.
(This needn’t be always true, as “same meaning” messages may differ significantly by specification).

Edition of same message has usually different C code structure and often also differ in field sub-
structures. Such edition structures and sub-structures names are identified by edition postfix (see
3.4.2).

3.5 Tests

Library MsgsParseLib provides wide range of automatic self-testing tools. Test tools are written in C
code and use CUnit tool to administrate tests and generate their result. There are several test levels.

3.5.1 Unit tests
Tests individual library functions. Unit tests are implemented on the end of same source file as
function itself. Placed inside #ifdef block:

Messages Parser Library 2.0

SUM MsgsParseLib_R20_SUM 1.0 - 6.6.2013
,

 Distribution : Limited to contractual parties

page
11 of 21

#ifdef UNIT_TEST
…
#endif /* UNIT_TEST */

Unit tests launching is implement in test/mplTestUnit.c . Not for all functions are actually unit
tests implemented.

3.5.2 Verification – Integration tests
Tests are covering whole of library functionality. Passing those test proves, that library works correct
– is verified. All tests are implemented in mplTestIntegration.c .

3.5.3 Validation – STD Tests
Tests based on MsgsParseLib requirements. Each test validates original library requirement. Passing
those test proves, that library is doing what was required – is validated. All tests are implemented in
mplTestSTD.c(h) and their launching is in mplTestSTDmain.c .

Inside source file mplTestSTD.c are placed doxygen tags. This source files may be also used to
generate standard software test description tables, which may be placed to some library STD
documentation.

3.5.4 Working test
User working test is implemented in mplTest.c . This tool can process file with user filled list of
messages and provide result of errors. The result briefly contains bad messages and returned decoding
errors and also messages which were not same as original after building them back.

Default testing messages file is tests/messages of main library directory.

Working test for separated mplRoute works similar way (process file with ICAO field15 list) and is
placed in mplTestRoute.c .

3.6 Contingencies and alternate states and modes of operation

N/A

3.7 Security and privacy

N/A

3.8 Assistance and problem reporting

For any MsgsParseLib related question use: servis@cs-soft.cz.

Messages Parser Library 2.0

SUM MsgsParseLib_R20_SUM 1.0 - 6.6.2013
,

 Distribution : Limited to contractual parties

page
12 of 21

4 ACCESS TO SOFTWARE

This chapter explain software library compilation, how to include it and link it with user software and
how to compile and run automatic tests and generate tests documentation. It also explains the library
configuration and basic library access – initialization.

4.1 First-time user of the software

At the first time the library is in form of source code (as described in 3.2). So before can be used, must
be compiled first. Even compiled library cannot be used as it is (expect the testing), but must linked
and called from a user software.

4.1.1 Compile and Build
Following steps show how to compile and build MsgsParseLib with provided library Makefile.

Download & Unpack
 Download msgsparse-<version>.tar.gz from ... (TODO).
 Unpack the distribution it with this command:

$> tar -xvf msgsparse-<version>tar.gz

Configure

$> cd msgsparse-<version>

 The default configuration is with disabled LogTools and CUnit.
 For logging is used internal logger.
 Can be run only test independent on CUnit (mpl_test , mpl_test_route)
 Default prefix is /opt/cssoft/

 For default configuration run command:

$> ./configure

 Following options can be enabled:

enable LogTools --enable-logtools
enable CUnit --enable-cunit
change default prefix --prefix=<CUSTOM>

 Example:

./configure --enable-cunit

Compile
 Run command:

$> make
 to compile package.

Install
 Run command:

$> make install
 to install package.

Cleaning

Messages Parser Library 2.0

SUM MsgsParseLib_R20_SUM 1.0 - 6.6.2013
,

 Distribution : Limited to contractual parties

page
13 of 21

 To clean building directory, run command:
$> make clean

4.1.2 Compile, Build and Run tests
MsgsParseLibs contains automatic tests (as described in Chyba! Nenalezen zdroj odkazů.), which
must be compiled and build, before running. Following steps shows how to compile, build and run
MsgsParseLib Unit and Integration tests.

Download & Unpack
 First see Compile and Build section above 4.1.1.

Configure

$> cd msgsparse-<version>
 To Run all test must be library configured with options ’--enable-cunit ’ (without can be run
only mpl_test and mpl_test_route).

Compile
 At default all tests are compiled.

$> make

 Tests can be compiled separately with:

$> make csrc/test/<test_name>
 where <test_name> is one of mpl_test , mpl_test_integration ,
mpl_test_route , mpl_test_std , mpl_test_unit .

Test documentation
 To generate software test description tables documentation run command:

$> make html

Run test

$> cd csrc/test
$> ./mpl_test <test_dir>

 where <test_dir> is path to test directory containing file ‘messages ’. Default test directory
is ‘./ ‘ .

 Example messages file can be found in ‘msgsparse-<versions>/tests ’.

$> ./mpl_test_route <route_file>
 where <route_file> is file containing list of route descriptions (ICAO fields 15).
 To create example <route_file> run command:

$> echo "N0467F380 KUMRU A16 LEMDA UM855 KFK UL610
TONDO/N0457F400 UM749 RUGUT UL858 OKF UM725 HDO UM7 48 RENDO
Q230 BEBEX T235 MITNI DCT" > <route_file>

 Rest of tests are run without parameter.

$> ./mpl_test_integration
$> ./mpl_test_std
$> ./mpl_test_unit

Tests result
 mpl_test

Each Message from test file is decoded.

Messages Parser Library 2.0

SUM MsgsParseLib_R20_SUM 1.0 - 6.6.2013
,

 Distribution : Limited to contractual parties

page
14 of 21

If decode function end with error, message is written to file <test_dir>/messages_bad .
Result from decode is used to test encode part. Decoded message is encoded back and
compared with original.
Differences are written in <test_dir>/messages_cmp .

 mpl_test_integration

Result is written to XML file ‘msgsparse-integration-Results.xml ’

 mpl_test_unit

Result is written to XML file ‘msgsparse-Results.xml ’

 Rest of tests produces results to stdout .

 For more information about CUnit visit http://cunit.sourceforge.net/documentation.html

Cleaning
 To clean building directory, run command:

$> make clean

4.1.3 Link with user software
MsgsParseLib, when is build, is standard software library composed from one library binary file and
group of header files (as described in 3.2.2).
The user software must first include the main header file:

/* include MsgsParseLib library main header file */
#include "msgsparse-1/mpl.h"

To link user software, the MagsParseLib library file (libmpl-1) must be used:

$> gcc <user_software_files> –lmpl-1 –o <user_softw are_bin>

4.2 Configuration

MsgsParseLib can be also configured to set common behavior of library software. Configuration is
stored in XML files, each with different meaning.

4.2.1 parser_adexp_smart_index.xml
The ADEXP format is not very good communication protocol; you cannot just syntactically
recognized field and subfield. One solution is a list of fields, which contains such additional
information. This file has for each field information Filed or Subfield and Basic or Compound
(compound - contains subfields).

4.2.2 message_item_list.xml
This file contains list of each message fields with additional information if the field is Mandatory,
Optional or Ignore. MsgsParseLib use this configuration for checking missed fields.

4.2.3 parser_error_strings.xml
This file is used to define error string provided by library to user software in case of any error.
Structure contains error code, symbolic code and the description strings for each library error. The
recommendation is not to do any changes to those code items, because they are referenced from source
code. Even the description strings are in English, so there is no possible need to do any changes to this
file.

Messages Parser Library 2.0

SUM MsgsParseLib_R20_SUM 1.0 - 6.6.2013
,

 Distribution : Limited to contractual parties

page
15 of 21

4.2.4 mpl_config.xml
This file is MsgsParseLib common configuration file. Can contains configuration parameter items in
form name-value (<item name="CHECK_ITEMS" value="NO"/>). Actually contains some
very specific parameters not any common configuration.

4.3 Initiating a session

Before software library can be used in user software, must be compiled and linked with such software
(this was explained before 4.1). After this the initialization means just calling the library init function
(description about mpl_init() in source code). Library also provide initialization state function
(description about mpl_isInitialized() in source code).

4.4 Stopping and suspending work

As pure software library, the work is stopped along with the process. But it is good practice to call
deinit function (description about mpl_deinit() is in source code).

Messages Parser Library 2.0

SUM MsgsParseLib_R20_SUM 1.0 - 6.6.2013
,

 Distribution : Limited to contractual parties

page
16 of 21

5 PROCESSING REFERENCE GUIDE

MsgsParseLib is software library, so the best guide is good set of examples. Examples are getting from
basic (initialization) to more complex library usage and on the end are also examples showing how to
improve library itself.

5.1 Library initialization
/* include MsgsParseLib main header file library */
#include "mpl.h"

int main (const int argc, const char ** argv)
{
 /* initialize */
 int result = mpl_init (argc, argv) ;
 if (result != 0)
 {
 printf ("error : %s \n" , mpl_getErrorString (result)) ;
 return -1 ;
 }

 /* check if initialized */
 if (mpl_isInitialized () == 1)
 {
 /*

 */
 }

 /* deinitialize */
 mpl_deinit () ;

 return 0;
}

5.2 Message format and type detection

 /* obtain message string and declare variables */
 char message_str [MAX_BUFFER_LEN] ;
 strncpy (message_str, "<some message>" , MAX_BUFFER_LEN) ;
 mpl_msg_type_e msg_type;
 mpl_format_type_e format_type;

 /* get type and format */
 mpl_getMessageType (message_str, &msg_type, &format_type) ;
 if (format_type == mplFormatICAO || format_type == mplFormatADEXP)
 {
 printf ("error : %s \n" , "unsupported format.") ;

 }

5.3 Decode Message

Parameter <type> represents corresponding message type (FPL, …).

 /* declare structure where decoded message is stored */
 mpl_message_<type>_s message_<type>;
 if (msg_type == mplMsg<type>)

Messages Parser Library 2.0

SUM MsgsParseLib_R20_SUM 1.0 - 6.6.2013
,

 Distribution : Limited to contractual parties

page
17 of 21

 {
 /* decode */
 result = mpl_decode<type> (message_str, &message_<type>) ;
 if (result != 0)
 {
 printf ("error : %s \n" , mpl_getErrorString (result)) ;

 }
 }

5.4 Build message

Parameter <type> represents corresponding message type (FPL, …). Variables with same meanings
are declared in previous examples.

 if (message_<type>. source = mplFormatICAO)
 {
 /* build the ICAO format */
 result = mpl_encodeICAO_<type> (message_str, MAX_BUFFER_LEN, &message_<type>) ;
 if (result != 0)
 {
 printf ("error : %s \n" , mpl_getErrorString (result)) ;

 }

 }
 else if (message_<type>. source = mplFormatADEXP)
 {
 /* build the ADEXP format */
 result = mpl_encodeADEXP_<type> (message_str, MAX_BUFFER_LEN, &message_<type>) ;
 if (result != 0)
 {
 printf ("error : %s \n" , mpl_getErrorString (result)) ;

 }

 }
 else
 {
 printf ("error : %s \n" , "unsupported format.") ;

 }

5.5 Build/Decode other edition (FPL 2012)

Parameter <type> represents corresponding message type (FPL, …). Variables with same meanings
are declared in previous examples.

 mpl_message_<type>_fpl2012_s message_<type>;
 if (msg_type == mplMsg<type>)
 {
 /* decode for FPL 2012 edition */
 result = mpl_decode<type>_FPL2012 (message_str, &message_<type>) ;
 if (result != 0)
 {
 printf ("error : %s \n" , mpl_getErrorString (result)) ;

 }
 }

 if (message_<type>. source = mplFormatICAO)
 {

Messages Parser Library 2.0

SUM MsgsParseLib_R20_SUM 1.0 - 6.6.2013
,

 Distribution : Limited to contractual parties

page
18 of 21

 /* build the ICAO format for FPL 2012 edition */
 result = mpl_encodeICAO_<type>_FPL2012 (message_str, MAX_BUFFER_LEN,

&message_<type>) ;
 if (result != 0)
 {
 printf ("error : %s \n" , mpl_getErrorString (result)) ;

 }

 }
 else if (message_<type>. source = mplFormatADEXP)
 {
 /* build the ADEXP format for FPL 2012 edition */
 result = mpl_encodeADEXP_<type>_FPL2012 (message_str, MAX_BUFFER_LEN,

&message_<type>) ;
 if (result != 0)
 {
 printf ("error : %s \n" , mpl_getErrorString (result)) ;

 }

 }
 else
 {
 printf ("error : %s \n" , "unsupported format.") ;

 }

5.6 Decode/Build route (filed15)
 /* obtain Field15 string and declare variables */
 char route_str [MAX_BUFFER_LEN + 1] ;
 strncpy (route_str, "<some field15>" , MAX_BUFFER_LEN) ;
 /* declare structure where decoded route is stored */
 mpl_route_s route;

 /* decode */
 result = mpl_parseRoute (buf, &route) ;
 if (result != 0)
 {
 printf ("error : %d \n" , mpl_getParseErrorCode ()) ;

 }

 /* Build the route back as string */
 route_str [0] = ‘\0‘ ;
 result = mpl_buildRoute (route_str, MAX_BUFFER_LEN + 1, &route) ;
 if (result == 0)
 {
 printf ("error : empty string builded \n") ;

 }

 /* Free the route internal structure */
 mpl_freeRoute (& route, MPL_ROUTE_DONT_FREE) ;

Messages Parser Library 2.0

SUM MsgsParseLib_R20_SUM 1.0 - 6.6.2013
,

 Distribution : Limited to contractual parties

page
19 of 21

6 NOTES

6.1 List of definitions

A
ADEXP ATS Data Exchange Presentation
API Application program interface
ATM Air Traffic Management
ATS Air Traffic Services
B, C

D

E

F
FDP Flight Data Processing
G

H

I
ICAO International Civil Aviation Organization
J, K, L

M

N

O

P

Q

R

S
STD Software Test Description
T

U

V

Messages Parser Library 2.0

SUM MsgsParseLib_R20_SUM 1.0 - 6.6.2013
,

 Distribution : Limited to contractual parties

page
20 of 21

W, X, Y, Z
XML Extensible Marku Language
XSD XML Schema Definition
XSL XML Stylesheet Language

Messages Parser Library 2.0

SUM MsgsParseLib_R20_SUM 1.0 - 6.6.2013
,

 Distribution : Limited to contractual parties

page
21 of 21

7 APPENDICES

N/A

