Package ‘ReGenesees’

May 21, 2012

Type Package
Title R evolved Generalised software for sampling estimates and errors in surveys.

Description Design-Based and Model-Assisted analysis of complex sampling surveys.
Multistage, stratified, clustered, unequally weighted survey designs.
Horvitz-Thompson and Calibration Estimators. Variance Estimation for nonlinear
smooth estimators by Taylor-series linearization. Estimates, standard errors,confidence inter-
vals and design effects for: Totals, Means, absolute and relative
Frequency Distributions (marginal or joint), Ratios and Quantiles. Automated
Linearization of Complex Analytic Estimators. Estimates, standard errors,confidence inter-
vals and design effects for user-defined analytic estimators.
Estimates and sampling errors for subpopulations.

Version 1.1

Author Diego Zardetto

Maintainer Diego Zardetto <zardetto@istat.it>
License file LICENCE

Imports stats

Depends R (>=2.14.0)

Suggests MASS

R topics documented:

AUX.ESHIMALES . . . v v o vt e 2
bounds.hint 4
check.cal 7
collapse.strata e e e e e e e 8
data.examples 12
des.addvars L. e e e e e 13
ecalibrate L e e e e e 15
e.SVYdesign L e e e 25
EXITACIOTS & . v v v v v v e 28
fillLtemplate 30
fpedat e 33
SIANZE . . . e e e e e e e e e e e e e e 34

aux.estimates

pop.template e 35
population.check 38
ReGenesees.options e 40
8BS L e e 42
svystatl . . . L e e e 44
SVYStatQ . . . e e e e e 47
svystatR . . . L 49
svystatTM e 52
WeIghts e 56
WIHE.SVYStAat o e 58
Dointo%o 59

Index 63

aux.estimates Quick Estimates of Auxiliary Variables Totals
Description

Quickly estimates the totals of the auxiliary variables of a calibration model.

Usage

aux.estimates(design,

calmodel = if (inherits(template, "pop.totals"))
attr(template, "calmodel”),

partition = if (inherits(template, "pop.totals"))
attr(template, "partition”) else FALSE,

template = NULL)

Arguments
design Object of class analytic (or inheriting from it) containing survey data and sam-
pling design metadata.
calmodel Formula defining the linear structure of the calibration model.
partition Formula specifying the variables that define the "calibration domains" for the
model (see 'Details’); FALSE (the default) implies no calibration domains.
template An object of class pop. totals, be it a template or the actual known totals data
frame for the calibration task.
Details

The main purpose of function aux.estimates is to make easy the task of estimating the totals
of all the auxiliary variables involved in a calibration model (separately inside distinct calibration
domains, if specified). Even if such totals can be estimated also by repeatedly invoking function
svystatTM, this may reveal very tricky in practice, because real-world calibration tasks (e.g. in
the field of Official Statistics) can simultaneously involve several hundreds of auxiliary variables.
Moreover, total estimates provided by function svystatTM are always complemented by sampling
errors, whose estimation is very computationally demanding.

aux.estimates 3

Function aux.estimates, on the contrary, only provides estimates of totals (i.e. without associated
sampling errors), thus being very quick to be executed. Moreover, aux.estimates is able to com-
pute, in just a single shot, all the totals of the auxiliary variables of a calibration model, no matter
how complex the model is. Lastly, as a third strong point, the totals estimated by aux.estimates
will be returned exactly in the same standard format in which the known population totals for the re-
lated calibration task need to be represented (see pop. template, population.check, fill. template).

It may be useful to point out that, besides having been designed to handle auxiliary variables in-
volved in calibration models, function aux.estimates could be also used for computing general
estimates of totals inside subpopulations in a very effective way (see ’Examples’).

Value

An object of class pop. totals, thus inheriting from class data. frame storing the estimated totals
in a standard format.

Author(s)

Diego Zardetto

See Also

e.svydesign to bind survey data and sampling design metadata, svystatTM for calculating es-
timates and standard errors of totals, e.calibrate for calibrating weights, pop.template for
constructing known totals data frames in compliance with the standard required by e.calibrate,
population.check to check that the known totals data frame satisfies that standard, fill. template
to automatically fill the template when a sampling frame is available.

Examples

Load sbs data:
data(sbs)

Build a design object:
sbsdes<-e.svydesign(data=sbs,ids=~id, strata=~strata,weights=~weight, fpc=~fpc)

Now suppose you have to perform a calibration process which
exploits as auxiliary information:
1) the total number of employees (emp.num)
by class of number of employees (emp.cl) crossed with nace.macro;
ii) the total number of enterprises (ent)
by region crossed with nace.macro;
Build a template for the known totals:
pop<-pop.template(sbsdes,
calmodel=~emp.num:emp.cl + region -1,
partition=~nace.macro)

Use the fill.template function to automatically compute
the totals from the universe (sbs.frame) and safely fill
the template:

pop<-fill.template(sbs.frame, template=pop)

pop

You can now use aux.estimates to verify how much difference
exists between the target totals and the initial HT estimates:

4 bounds.hint

aux.HT<-aux.estimates(sbsdes, template=pop)
aux.HT

If you calibrate,
sbscal<-e.calibrate(sbsdes, pop)

... you can verify that CAL estimates exactly match the known totals:
aux.CAL<-aux.estimates(sbscal, template=pop)
aux.CAL

Recall that you can also use aux.estimates for computing
general estimates of totals inside subpopulations (even
not related to any calibration task).

E.g. estimate the total of value added inside areas:
aux.estimates(sbsdes,~va.imp2-1,~area)

...and compare to svystatTM (notice also
the increased execution time):
svystatTM(sbsdes,~va.imp2,~area)

bounds.hint A hint for range restricted calibration

Description

Suggests a sound bounds value for which e.calibrate is likely to converge.

Usage

bounds.hint(design, df.population,
calmodel = if (inherits(df.population, "pop.totals"))
attr(df.population, "calmodel”),
partition = if (inherits(df.population, "pop.totals"))
attr(df.population, "partition”) else FALSE,
msg = TRUE)

Arguments

design Object of class analytic (or inheriting from it) containing survey data and sam-
pling design metadata.

df .population Data frame containing the known population totals for the auxiliary variables.

calmodel Formula defining the linear structure of the calibration model.
partition Formula specifying the variables that define the "calibration domains" for the
model; FALSE (the default) implies no calibration domains.
msg Enables printing of a summary description of the result (default is TRUE).
Details

The function bounds.hint returns a bounds value for which e.calibtrate is likely to converge.
This interval is just a sound hint, not an exact result (see 'Note’).

The mandatory argument design identifies the analytic object on which the calibration problem
is defined.

bounds.hint 5

The mandatory argument df . population identifies the known totals data frame.

The argument calmodel symbolically defines the calibration model you want to use: it identifies
the auxiliary variables and the constraints for the calibration problem. The design variables ref-
erenced by calmodel must be numeric or factor and must not contain any missing value (NA).
The argument can be omitted provided df.population is an object of class pop.totals (see
population.check).

The optional argument partition specifies the variables that define the calibration domains for
the model. The default value (FALSE) means either that there are not calibration domains or that
you want to solve the problem globally (even though it could be factorised). The design vari-
ables referenced by partition (if any) must be factor and must not contain any missing value
(NA). The argument can be omitted provided df . population is an object of class pop.totals (see
population.check).

The optional argument msg enables/disables printing of a summary description of the achieved
result.

Value

A numeric vector of length 2, representing the suggested value for the bounds argument of e. calibrate.
The attributes of that vector store additional information, which can lead to better understand why
a given calibration problem is (un)feasible (see ’Examples’).

Note

Assessing the feasibility of an arbitrary calibration problem is not an easy task. The problem is even
more difficult whenever additional "range restrictions” are imposed. Indeed, even if one assumes
that the calibration constraints define a consistent system, one also has to choose the bounds such
that the feasible region is non-empty.

One can argue that there must exist a minimun-length interval I = [L, U] such that, if it is covered
by bounds, the specified calibration problem is feasible. Unfortunately in order to compute exactly
that minimun-length interval I one should solve a big linear programming problem [Vanderhoeft
01]. As an alternative, a trial and error procedure has been frequently proposed [Deville et al 1993;
Sautory 1993]: (i) start with a very large interval bounds. 0; (ii) if convergence is achieved, shrink it
S0 as to obtain a new inteval bounds. 1; (iii) repeat until you get a sufficiently tight feasible interval
bounds.n. The drawback is that this procedure can cost a lot of computer time since, for each
choice of the bounds, the full calibration problem has to be solved.

A rather easy task is, on the contrary, the one of finding at least a given specific interval I* =
[L*, U*] such that, if it is not covered by bounds, the current calibration problem is surely unfea-
sible. This means that any feasible bounds value must necessarily contain the I* interval. The
function bounds. hint: (i) first identifies such an I'* interval (by computing the range of the ratios
between known population totals and corresponding direct Horvitz-Thompson estimates), (ii) then
builds a new interval 7°"99 with same midpoint and double length. The latter is the suggested value
for the bounds argument of e.calibrate. The return value of bounds. hint should be understood
as a useful starting guess for bounds, even though there is definitely no warranty that the calibration
algorithm will actually converge.

Author(s)

Diego Zardetto

6 bounds.hint

References

Vanderhoeft, C. (2001) "Generalized Calibration at Statistic Belgium", Statistics Belgium Working
Paper n. 3, http://www.statbel.fgov.be/studies/paper03_en.asp.

Deville, J.C., Sarndal, C.E. and Sautory, O. (1993) "Generalized Raking Procedures in Survey Sam-
pling", Journal of the American Statistical Association, Vol. 88, No. 423, pp.1013-1020.

Sautory, O. (1993) "La macro CALMAR: Redressement d’un Echantillon par Calage sur Marges",
Document de travail de la Direction des Statistiques Demographiques et Sociales, no. F9310.

See Also

e.calibrate for calibrating weights, pop.template for constructing known totals data frames
in compliance with the standard required by e.calibrate, population.check to check that the
known totals data frame satisfies that standard and g.range to compute the range of the obtained
g-weights.

Examples

Creation of the object to be calibrated:

data(data.examples)

des<-e.svydesign(data=example, ids=~towcod+famcod, strata=~SUPERSTRATUM,
weights=~weight)

Calibration (iterative solution) on the marginal distribution
of age in 5 classes (age5c) inside provinces (procod)

(totals in pop06p). Get a hint for feasible bounds:
hint<-bounds.hint(des, pop06p,~age5c-1,~procod)

Let’s verify if calibration converges with the suggested

value for the bounds argument (i.e. c(0.219, 1.786)):

descalO6p<-e.calibrate(design=des,df.population=pop06p,
calmodel=~age5c-1,partition=~procod,calfun="1logit",
bounds=hint,aggregate.stage=2)

Now let’s verify that calibration fails, if bounds don’t cover

the interval [0.611, 1.394]:

Not run:

descalO6p<-e.calibrate(design=des,df.population=pop06p,
calmodel=~age5c-1,partition=~procod,calfun="logit",
bounds=c(0.62,1.50),aggregate.stage=2, force=FALSE)

End(Not run)

The warning message raised by e.calibrate tells that

the population total of variable age5c5 (i.e. the fifth
age class frequency) was not matched.

By analysing ecal.status one understands that calibration
failed due to the sub-task identified by procod 30:
ecal.status

this is easily explained by inspectioning the "bounds"
attribute of the bounds.hint output object:
attr(hint, "bounds")

indeed the specified lower bound (0.62) was too high
for procod 30, where instead a value ~0.61 was required.

http://www.statbel.fgov.be/studies/paper03_en.asp

check.cal 7

Recall that you can always "force” a calibration task that

would not converge:

descalO6p.forced<-e.calibrate(design=des,df.population=pop06p,
calmodel=~age5c-1,partition=~procod,calfun="logit",
bounds=c(0.62,1.50),aggregate.stage=2,force=TRUE)

Notice, also, that forced sub-tasks can be tracked down by
looking at ecal.status:
ecal.status

check.cal Calibration Convergence Check

Description

Checks whether Calibration Constraints are fulfilled; if not, assesses constraints violation degree.

Usage

check.cal(cal.design)

Arguments

cal.design Object of class cal.analytic.

Details

The function verifies if all the imposed Calibration Constraints are actually fulfilled by object
cal.design. If it is not the case, the function evaluates the degree of violation of the constraints
and prints a summary of the mismatches between population totals and achieved estimates (see also
Section ’Calibration process diagnostics’ in the help page of e.calibrate).

Value
The main purpose of the function is to print on screen; anyway a list is invisibly returned, which
summarizes the results of the check.

Author(s)

Diego Zardetto

See Also

e.calibrate for calibrating weights.

8 collapse.strata

Examples

Load sbs data:
data(sbs)

Build a design object:
sbsdes<-e.svydesign(data=sbs,ids=~id,strata=~strata,weights=~weight, fpc=~fpc)

Example 1
Build template...
pop<-pop.template(sbsdes,~emp.num:emp.cl+ent-1,~region)
Fill template...
pop<-fill.template(sbs.frame,pop)
Calibrate...
sbscal<-e.calibrate(sbsdes, pop, sigma2=~emp.num)
Check calibration...
check.cal(sbscal)

Example 2
Build template...
pop<-pop.template(sbsdes,~emp.num+ent-1,~area)
Fill template...
pop<-fill.template(sbs.frame,pop)
Calibrate with tight bounds...
sbscal<-e.calibrate(sbsdes, pop, sigma2=~emp.num,bounds=c(0.8,1.2))
Check calibration...
check.cal(sbscal)

Now try to calibrate with suggested bounds...
hint <- bounds.hint(sbsdes, pop)
sbscal<-e.calibrate(sbsdes,pop, sigma2=~emp.num,bounds=hint)
Check calibration...
check.cal(sbscal)

collapse.strata Collapse strata technique for eliminating lonely PSUs

Description

Modifies a stratified design containing lonely PSUs by collapsing its design strata into superstrata.

Usage

collapse.strata(design, block.vars = NULL, sim.score = NULL)

Arguments
design Object of class analytic (or inheriting from it) containing survey data and sam-
pling design metadata.
block.vars Formula specifying blocking variables: only strata belonging to the same block
will be aggregated (see ’Details’). If NULL (the default option) no constraints
will be imposed.
sim.score Formula specifying a similarity score for strata: lonely strata will be paired

with the most similar stratum in each block (see ’Details’). If NULL (the default
option) random pairs will be formed.

collapse.strata 9

Details

Lonely PSUs (i.e. PSUs which are alone inside a not self-representing stratum) are a concern from
the viewpoint of variance estimation. As a general solution, the ReGenesees package can handle
the lonely PSUs problem by setting proper variance estimation options (see ReGenesees.options).
The collapse. strata function implements a widely used alternative: the so called collapsed strata
technique. The basic idea is to build artificial "superstrata” by aggregating strata containing lonely
PSUs to other strata, and then to use such superstrata for variance estimation (see e.g. [Wolter 85]
and [Rust, Kalton 87]).

The optional argument block. vars identifies "blocking variables" that can be used to constrain the
way lonely strata are collapsed to form superstrata. More specifically: first, blocking variables are
used to partition sample data in "blocks” via factor crossing, then, only lonely strata belonging to
the same block are aggregated. If block.vars=NULL (the default option), no constraint will act on
collapsing. The design variables referenced by block.vars (if any) should be of type factor.
Errors will be raised if (i) blocks cut across strata, or (ii) block.vars generate any non-aggregable
strata (i.e. lonely strata which are a singleton inside a block).

The optional argument sim. score can be used to specify a similarity score for strata aggregation.
This means that each lonely stratum will be collapsed with the stratum that has the most similar
value of variable sim. score inside the block. Thus the similarity of two strata is actually measured
by the (absolute value of the) difference among the corresponding sim.score values. Only one
design variable can be referenced by the sim.score formula: (i) it must be of type numeric, (ii)
it must be constant inside each stratum, and (iii) it should be positive (otherwise its abs () will be
silently used). Note that if no similarity score is specified (i.e. sim.score=NULL), the achieved
strata aggregation will depend on the ordering of input sample data in design.

The collapsing algorithm will, whenever possible, build superstrata by pairing a lonely stratum to
another not-yet-aggregated stratum. Therefore, in general, superstrata will contain only two design
strata. Rare exceptions can arise, e.g. due to constraints, with at most three design strata inside
a superstratum. The choice to collapse strata in pairs has been taken because it is known to be
appropriate for large-scale surveys with many strata (at least for national level estimates, see e.g.
[Rust, Kalton 87]).

The collapse.strata function handles correctly finite population corrections. If design has been
built by passing strata sampling fractions via the fpc argument, the function re-computes sampling
fractions inside superstrata by exploiting the achieved mapping of strata to superstrata and the fpc
slot of design.

Value

An object of the same class as design, without strata containing lonely PSUs.

Strata collapse process diagnostics

As already observed in the ’Details’ Section, there are three non trivial reasons why function
collapse.strata can run into errors: (1) the blocks cut across strata, (2) some blocks contain
a stratum needing to be aggregated while this stratum happens to be the only one inside the block,
(3) the similarity score for strata aggregation varies inside strata. In order to help the user to identify
such data anomalies, hence taking a step forward to eliminate them, every call to collapse.strata
generates, by side effect, a diagnostics data structure named clps. strata. status into the . GlobalEnv
(see ’Examples’).

The clps.strata.status list has three components: the first reports the error message, the second
stores a vector identifying the data subsets that have been hit by the anomaly, the third reports the
call to collapse.strata that generated the list. For instance, when error condition (1) holds, the
second element of clps.strata. status identifies the strata that are cut by blocks; if, instead, error

10 collapse.strata

condition (2) holds, the second element of the list identifies the blocks containing non-aggregable
strata.

It must be stressed that every call to collapse.strata generates the clps.strata.status list,
even when the strata collapsing process ends succesfully. In such cases, the first element of the list
reports the number of lonely strata that have undergone aggregation, whereas the second is a useful
dataframe (named clps. table) mapping collapsed strata to superstrata. To be more specific: each
row of clps. table identifies a stratum that has been mapped to a superstratum, while the columns
of clps. table give: (i) the block to which the stratum belongs, (ii) the stratum name, (iii) a flag
indicating if the stratum was lonely or not, (iv) the name of the superstratum to which it has been
mapped.

Methodological warning

A warning must be emphasized: strata similarity score sim. score should be based on prior knowl-
edge and/or on expectations on true values of stratum means for the variable(s) to be estimated,
not on current sample data. Indeed, building sim. score by estimating stratum means with the cur-
rent sample can lead to severe underestimation of sampling variance, i.e. to too tight confidence
intervals.

Author(s)

Diego Zardetto

References

Wolter, K.M. (1985) "Introduction to Variance Estimation”, Springer-Verlag, New York.

Rust, K., Kalton, G. (1987) "Strategies for Collapsing Strata for Variance Estimation", Journal of
Official Statistics, Vol. 3, No. 1, pp. 69-81.

See Also

ReGenesees.options for a different way to handle the lonely PSUs problem (namely by setting
variance estimation options).

Examples

Build a survey design with lonely PSU strata:

data(data.examples)

exdes <- e.svydesign(data= example, ids= ~ towcod+famcod,
strata= ~ stratum, weights= ~ weight)

exdes

Explore 3 possible collapsing strategies:

1) Aggregate lonely strata by forming random pairs
exdes.clpsl <- collapse.strata(exdes)
exdes.clps1

2) Aggregate lonely strata in pairs under constraints:

i. aggregated strata must be both not self-representing
ii. aggregated strata must belong to the same province (which
is appropriate if e.g. provinces are planned estimation domains)

exdes.clps2 <- collapse.strata(exdes,~sr:procod)
exdes.clps2

3) A WRONG strategy: compute strata similarity score by using

collapse.strata

sample estimates of the interest variable (y1) inside strata:
old.op <- options(”RG.lonely.psu"="remove")
stat.score <- svystatTM(design= exdes, ~y1, by= ~ stratum)
options(old.op)
exdes2 <- des.addvars(exdes,
sim.score= sapply(stratum, function(str)
stat.score[stat.score[,"stratum”]==str,2]))
exdes.clps3 <- collapse.strata(exdes2,~sr:procod,~sim.score)
exdes.clps3

Compute total estimates of y1 at the province level

for all 3 designs with collapsed strata:

stat.clpsl <- svystatTM(design= exdes.clpsl, y= ~ y1, by= ~ procod,
estimator= "Total”, vartype= "cvpct")

stat.clps2 <- svystatTM(design= exdes.clps2, y= ~ y1, by= ~ procod,
estimator= "Total"”, vartype= "cvpct”)

stat.clps3 <- svystatTM(design= exdes.clps3, y= ~ y1, by= ~ procod,
estimator= "Total"”, vartype= "cvpct”)

Compute the same estimates by using two alternatives
to handle lonely PSUs:
"adjust” option

old.op <- options(”RG.lonely.psu”"="adjust")

stat.adj <- svystatTM(design= exdes, y= ~ y1, by= ~ procod,
estimator= "Total"”, vartype= "cvpct"”)

options(old.op)

"everage"” option

old.op <- options(”"RG.lonely.psu"="average")

stat.ave <- svystatTM(design= exdes, y= ~ y1, by= ~ procod,
estimator= "Total”, vartype= "cvpct")

options(old.op)

n_n

Lastly, compare achieved estimates for CV percentages:
stat.clpsi

stat.clps2

stat.clps3

stat.adj

stat.ave

Thus the qualitative features are as expected: the "adjust” option

tends to give conservative sampling variance estimates, the WRONG collapsing
strategy 3) tends to underestimate sampling variance, while other methods

give results in-between those extrema.

Few examples to inspect the clps.strata.status list generated
for diagnostics purposes:
1) I1l1 defined blocks: cutting across strata:
Not run:
clps.err1 <- collapse.strata(exdes,~sex)

End(Not run)
clps.strata.status

2) I11 defined blocks: generating non-aggregable strata
Not run:
clps.err2 <- collapse.strata(exdes,~regcod:stratum)

11

12 data.examples

End(Not run)
clps.strata.status

3) Successful collapsing: explore strata to superstrata mapping
exdes.ok <- collapse.strata(exdes,~sr:regcod:procod)
clps.strata.status

data.examples Example data for the ReGenesees package

Description

Example data frames and functions. Allow to run R code contained in the ’Examples’ section of
the ReGenesees package help pages.

Usage

data(data.examples)

Format

The main data frame, named example, contains (artificial) data from a two stage stratified cluster
sampling design. The sample is made up of 3000 final units, for which the following 21 variables
were observed:

towcod Code identifying "variance PSUs": towns (PSUs) in not-self-representing (NSR) strata,
families (SSUs) in self-representing (SR) strata, numeric

famcod Code identifying families (SSUs), numeric

key Key identifying final units (individuals), numeric

weight Initial weights, numeric

stratum Stratification variable, factor with levels 801 802 803 901 902 903 904 905 906 907
908 1001 1002 1003 1004 1005 1006 1007 1008 1009 1101 1102 1103 1104 3001 3002 3003
3004 3005 3006 3007 3008 3009 3010 3011 3012 3101 3102 3103 3104 3105 3106 3107
3108 3201 3202 3203 3204 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411
5412 5413 5414 5415 5416 5501 5502 5503 5504 9301 9302 9303 9304 9305 9306 9307
9308 9309 9310 9311 9312

SUPERSTRATUM Collapsed strata variable (eliminates lonely PSUs), factor with levels 123456
7891011121314151617 181920 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
383940 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

sr Strata type, integer with values 0 (NSR strata) and 1 (SR strata)

regcod Code identifying regions, factor with levels 6 7 10

procod Code identifying provinces, factor with levels 8 9 10 11 30 31 32 54 55 93
x1 Indicator variable (integer), numeric

x2 Indicator variable (integer), numeric

x3 Indicator variable (integer), numeric

y1 Indicator variable (integer), numeric

y2 Indicator variable (integer), numeric

des.addvars 13

y3 Indicator variable (integer), numeric

agebc Age variable with 5 classes, factor with levels 12345

agel10c Age variable with 10 classes, factor withlevels 12345678910

sex Sex variable, factor with levels f m

marstat Marital status variable, factor with levels married unmarried widowed
z A continuous quantitative variable, numeric

income Income variable, numeric

Details

Objects pop01, ..., pop07pp contain known population totals for various calibration models. Ob-
ject pairs with names differing in the ’p’ suffix (such as pop03 and pop03p) refer to the same
calibration problem but pertain to different solution methods (global and iterative respectively, see
e.calibrate). The two-component numeric vector bounds expresses a possible choice for the
allowed range for the ratios between calibrated weights and direct weights in the aforementioned
calibration problems.

Examples

data(data.examples)
str(example)

des.addvars Add variables to design objects

Description

Modifies an analytic object by adding new variables to it.

Usage
des.addvars(design, ...)
Arguments
design Object of class analytic (or inheriting from it) containing survey data and sam-
pling design metadata.
tag = expr arguments defining columns to be added to design.
Details

This function adds to the data frame contained in design the new variables defined by the tag = expr
arguments. A tag can be specified either by means of an identifier or by a character string; expr
can be any expression that it makes sense to evaluate in the design environment.

For each argument tag = expr bound to the formal argument ... the added column will have
name given by the tag value and values obtained by evaluating the expr expression on design.
Any input expression not supplied with a tag will be ignored and will therefore have no effect on
the des.addvars return value.

Variables to be added to the input object have to be new: namely it is not possible to use des. addvars
to modify the values in a pre-existing design column.

14 des.addvars

Value

An object of the same class of design, containing new variables but supplied with exactly the same
metadata.

Author(s)

Diego Zardetto

See Also

e.svydesign to bind survey data and sampling design metadata, e.calibrate for calibrating
weights.

Examples

data(data.examples)

Creation of an analytic object:
des<-e.svydesign(data=example, ids=~towcod+famcod, strata=~SUPERSTRATUM,
weights=~weight)

Adding the new ’ones’ variable to estimate the number
of final units in the population:
des<-des.addvars(des,ones=1)

svystatTM(des, ~ones)

Recoding a qualitative variable:
des<-des.addvars(des,agerange=factor (ifelse(agebc==1,

"young", "not-young"”)))
svystatTM(des, ~agerange,estimator="Mean")

svystatTM(des,~income, ~agerange,estimator="Mean", conf.int=TRUE)

Algebraic operations on numeric variables:
des<-des.addvars(des,z2=z"2)
svystatTM(des,~z2,estimator="Mean")

A more interesting example: estimating the
percentage of population with income below
the poverty threshold (defined as 0.6 times
the average income for the whole population):
Mean.Income <- coef(svystatTM(des, ~income,estimator="Mean"))
des <- des.addvars(des,
status = factor(
ifelse(income < (0.6 * Mean.Income),
"poor", "not-poor")
)
)
svystatTM(des,~status,estimator="Mean")
Mean income for poors and not-poors:
svystatTM(des,~income,~status,estimator="Mean")

e.calibrate 15

e.calibrate Calibration of survey weights

Description

Adds to an analytic object the calibrated weights column.

Usage

e.calibrate(design, df.population,

calmodel = if (inherits(df.population, "pop.totals"))
attr(df.population, "calmodel"),

partition = if (inherits(df.population, "pop.totals"))
attr(df.population, "partition”) else FALSE,

calfun = c("linear”, "raking”, "logit"),

bounds = c(-Inf, Inf), aggregate.stage = NULL,

sigma2 = NULL, maxit = 50, epsilon = 1e-07, force = TRUE)

Arguments

design Object of class analytic (or inheriting from it) containing survey data and sam-
pling design metadata.

df .population Data frame containing the known population totals for the auxiliary variables.
calmodel Formula defining the linear structure of the calibration model.

partition Formula specifying the variables that define the "calibration domains" for the
model (see 'Details’); FALSE (the default) implies no calibration domains.

calfun character specifying the distance function for the calibration process; the de-
faultis ’linear’.

bounds Allowed range for the ratios between calibrated and initial weights; the default
is c(-Inf,Inf).

aggregate.stage
An integer: if specified, causes the calibrated weights to be constant within
sampling units at this stage.

sigma2 Formula specifying a possible heteroskedasticity effect in the calibration model;
NULL (the default) implies homoskedasticity.

maxit Maximum number of iterations for the Newton-Raphson algorithm; the default
is 50.

epsilon Tolerance for the absolute relative differences between the population totals
and the corresponding estimates based on the calibrated weights; the default
is 10*-7.

force If TRUE, whenever the calibration algorithm does not converge, forces the func-

tion to return a value (see ’Details’ and ’Calibration process diagnostics’); the
default is TRUE.

16 e.calibrate

Details

This function creates an object of class cal.analytic. A cal.analytic object makes it possible
to compute estimates and standard errors of calibration estimators [Deville, Sarndal 92] [Deville,
Sarndal, Sautory 93].

The mandatory argument calmodel symbolically defines the calibration model you intend using,
that is - in the language of the Generalised Regression Estimator - the assisting linear regression
model underlying the calibration problem [Wilkinson, Rogers 73]. More specifically, the calmodel
formula identifies the auxiliary variables and the constraints for the calibration problem. For ex-
ample, calmodel=~(X+Z) : C+(A+B) : D defines the calibration problem in which constraints are im-
posed: (i) on the auxiliary (quantitative) variables X and Z within the subpopulations identified by
the (qualitative) classification variable C and, at the same time, (ii) on the absolute frequency of the
(qualitative) variables A and B within the subpopulations identified by the (qualitative) classification
variable D.

The design variables referenced by calmodel must be numeric or factor and must not contain
any missing value (NA).

Problems for which one or more qualitative variables can be "factorised" in the formula that spec-
ifies the calibration model, are particularly interesting. These variables split the population into
non-overlapping subpopulations known as "calibration domains" for the model. An example is
provided by the statement calmodel=~(A+B+X+Z):D in which the variable that identifies the cali-
bration domains is D; similarly, the formula calmodel=~(A+B+X+Z) :D1:D2 identifies as calibration
domains the subpopulations determined by crossing the modalities of D1 and D2. The interest in
models of this kind lies in the fact that the global calibration problem they describe can, actually, be
broken down into local subproblems, one per calibration domain, which can be solved separately
[Vanderhoeft 01]. Thus, for example, the global problem defined by calmodel=~(A+B+X+Z):D
is equivalent to the sequence of problems defined by the "reduced model” calmodel=~A+B+X+Z
in each of the domains identified by the modalities of D. The opportunity to separately solve the
subproblems related to different calibration domains achieves a significant reduction in computa-
tion complexity: the gain increases with increasing survey data size and (most importantly) with
increasing auxiliary variables number.

The optional argument partition makes it possible to choose, in cases in which the calibration
problem can be factorised, whether to solve the problem globally or iteratively (that is, separately for
each calibration domain). The global solution (which is the default option) can be selected invoking
the e.calibrate function with partition=FALSE. To request the iterative solution - a strongly rec-
ommended option when dealing with a lot of auxiliary variables and big data sizes - it is necessary
to specify via partition the variables defining the calibration domains for the model. If a formula
is passed through the partition argument (for example: partition=~D1:D2), the program checks
that calmodel actually describes a "reduced model” (for example: calmodel=~X+Z+A+B), that is it
does not reference any of the partition variables; if this is not the case, the program stops and prints
an error message.

The design variables referenced by partition (if any) must be factor and must not contain any
missing value (NA).

The mandatory argument df . population is used to specify the known totals of the auxiliary vari-
ables referenced by calmodel within the subpopulations (if any) identified by partition. These
known totals must be stored in a data frame whose structure (i) depends on the values of calmodel
and partition and (ii) must conform to a standard. In order to facilitate understanding of and
compliance with this standard, the ReGenesees package provides the user with three functions:
pop.template, population.check, and fill.template. The pop.template function is able to
guide the user in constructing the known totals data frame for a specific calibration problem, the
fill.template function can be exploited to automatically fill the template when a sampling frame
is available, while the population.check function allows to check whether a known totals data
frame conforms to the standard required by e.calibrate. In any case, if the df.population

e.calibrate 17

data frame does not comply with the standard, the e.calibrate function stops and prints an error
message: the meaning of the message should help the user diagnose the cause of the problem.

The calfun argument identifies the distance function to be used in the calibration process. Three
built-in functions are provided: "linear”, "raking", and "logit" (see [Deville, Sarndal, Sautory
93]). The default is "linear"”, which corresponds to the euclidean metric and yields the Gener-
alised Regression Estimator (provided that no range restrictions are imposed on the g-weights).
The "raking"” distance corresponds to the "multiplicative method" of [Deville, Sarndal, Sautory

93].

The bounds argument allows to add "range constraints"” to the calibration problem. To be precise,
the interval defined by bounds will contain the values of the ratios between final (calibrated) and
initial (direct) weights. The default value is c(-Inf,Inf), i.e. no range constraints are imposed.
These constraints are optional unless the "logit” function is selected: in the latter case the range
defined by bounds has to be finite (see, again, [Deville, Sarndal, Sautory 93]).

The value passed by the aggregate.stage argument must be an integer between 1 and the number
of sampling stages of design. If specified, causes the calibrated weights to be constant within sam-
pling units selected at the aggregate. stage stage (actually this is only allowed if the initial weights
had already this property, as it is sometimes the case in multistage cluster sampling). If not spec-
ified, the calibrated weights may differ even for sampling units with identical initial weights. The
same holds if some final units belonging to the same cluster selected at the stage aggregate.stage
fall in distinct calibration domains (i.e. if the domains defined by partition "cut across" the
aggregate.stage-stage clusters).

The argument sigma2 can be used to take into account a possible heteroskedasticity effect in the
(assisting linear regression model underlying the) calibration problem. In such cases, sigma2 must
identify some variable to which the variances of the error terms are believed to be proportional.
Notice that sigma2 can also be interpreted from a "purely calibration-based" point of view: it
corresponds to the 1/¢; unit-weights appearing inside the distance measures of [Deville, Sarndal
92] [Deville, Sarndal, Sautory 93]. The final effect is, on average, that calibrated weights associated
to higher values of sigma2 tend to stay closer to their corresponding initial weights. The sigma2
formula can reference just a single design variable: such variable must be numeric, strictly positive
and must not contain NAs. If aggregate.stage is specified, sigma2 must obviously be constant
inside aggregate. stage-stage clusters (otherwise the function stops and prints an error message).

The maxit argument sets the maximum number of iteration for the Newton-Raphson algorithm that
is used to solve the calibration problem (the only exception being unbounded linear calibration,
i.e. calfun=’1linear’ and bounds=c(-Inf, Inf), which is actually handled by directly solving a
linear problem). The default value of maxit is 50.

The epsilon argument determines the convergence criterion for the optimisation algorithm: it fixes
the maximum allowed absolute value for the relative differences between the population totals and
the corresponding estimates based on the calibrated weights. The default value is 10*-7.

The calibrated weights computed by e.calibrate must ensure that the calibration estimators of
the auxiliary variables exactly match the corresponding known population totals. It is, however,
possible (more likely when range constraints are imposed) that, for a specific calibration problem
and for given values of epsilon and maxit, the solving algorithm does not converge. In this
case, if force = FALSE, e.calibrate stops and prints an error message. If - on the contrary -
force = TRUE, the function is forced to return the best approximation achieved for the calibrated
weights, neverthless signaling the calibration failure by a warning (see also Section ’Calibration
process diagnostics’).

Value

An object of class cal.analytic. The data frame it contains includes (in addition to the data
already stored in design) the calibrated weights columns. The name of this column is obtained by

18 e.calibrate

pasting the name of the initial weights column with the string ".cal”.

Calibration process diagnostics

When, dealing with a factorisable calibration problem, the user selects the iterative solution, the
global calibration problem gets split into as many sub-problems as the number of subpopula-
tions defined by partition. In turn, each one of these calibration sub-problems can end with-
out convergence on any one of the involved auxiliary variables. A calibration process with such
a complex structure needs some ad hoc tool for error diagnostics. For this purpose, every call
to e.calibrate creates, by side effect, a dedicated data structure named ecal.status into the
.GlobalEnv. ecal.status is a list with up to three components: the first, “call”, identifies the
call to e.calibrate that generated the list, the second, return. code, is a matrix each element of
which identifies the return code of a specific calibration sub-problem. The meaning of the return
codes is as follows:

-1 not yet tackled sub-problem;
0 solved sub-problem (convergence achieved);

1 unsolved sub-problem (no convergence): output forced.

Recall that the latter return code may only occur if force = TRUE.

If any return. code equal to 1 exists, the ecal. status list gains a third component named "fail.diagnostics”
which is itself a list; its components correspond to sub-problems for which convergence was not

achieved, and store useful information about the auxiliary variables for which calibration constraints

are violated. Therefore, users can exploit ecal . status to identify sub-problems and variables from

which errors stemmed, hence taking a step forward to eliminate them.

Notice, lastly, that the ecal.status list will also be persistently bound to the e.calibrate return

object, stored inside a dedicated attribute. For the inspection of such diagnostics information the

check. cal function is available.

Note

The cal.analytic class is a specialisation of the analytic class; this means that an object created
by e.calibrate inherits from the analytic class and you can use on it every method defined on the
latter class. For instance, a calibrated design can be passed again to e.calibrate, thus undergoing
further calibration steps.

Author(s)

Diego Zardetto

References

Deville, J.C., Sarndal, C.E. (1992) "Calibration Estimators in Survey Sampling", Journal of the
American Statistical Association, Vol. 87, No. 418, pp. 376-382.

Deville, J.C., Sarndal, C.E., Sautory, O. (1993) "Generalized Raking Procedures in Survey Sam-
pling", Journal of the American Statistical Association, Vol. 88, No. 423, pp. 1013-1020.

Wilkinson, G.N., Rogers, C.E. (1973) "Symbolic Description of Factorial Models for Analysis of
Variance", Journal of the Royal Statistical Society, series C (Applied Statistics), Vol. 22, pp. 181-
191.

Vanderhoeft, C. (2001) "Generalized Calibration at Statistic Belgium", Statistics Belgium Working
Paper n. 3, http://www.statbel.fgov.be/studies/paper03_en.asp.

http://www.statbel.fgov.be/studies/paper03_en.asp

e.calibrate 19

Scannapieco, M., Zardetto, D., Barcaroli, G. (2007) "La Calibrazione dei Dati con R: una Speri-
mentazione sull’Indagine Forze di Lavoro ed un Confronto con GENESEES/SAS", Contributi Istat n.
4., http://www.istat.it/dati/pubbsci/contributi/Contributi/contr_2007/2007_4.pdf.

See Also

e.svydesign to bind survey data and sampling design metadata, svystatTM, svystatR, svystatQ
and svystatL for calculating estimates and standard errors, pop . template for constructing known
totals data frames in compliance with the standard required by e.calibrate, population.checkto
check that the known totals data frame satisfies that standard, fill. template to automatically fill
the template when a sampling frame is available, bounds.hint to obtain a hint for range restricted
calibration, g.range to asses the variation of weights after calibration and check.cal to check if
calibration constraints have been fulfilled.

Examples

B S
Calibration of a design object according to different calibration

models (the known totals data frames pop01, ..., pop05p and the
bounds vector are all contained in the data.examples file).
For the examples relating to calibration models that can be
factorised both a global and an iterative solution are given.

B
data(data.examples)

Creation of the object to be calibrated:
des<-e.svydesign(data=example, ids=~towcod+famcod, strata=~SUPERSTRATUM,
weights=~weight)

1) Calibration on the total number of units in the population

(totals in pop01):

descalO1<-e.calibrate(design=des,df.population=pop01, calmodel=~1,
calfun="logit",bounds=bounds, aggregate.stage=2)

Checking the result (first add the new ’ones’ variable

to estimate the number of final units in the population):
descalO1<-des.addvars(descal01,ones=1)

svystatTM(descal01, ~ones)

2) Calibration on the marginal distributions of sex and marstat

(totals in pop02):

descal02<-e.calibrate(design=des,df.population=pop02,
calmodel=~sex+marstat-1,calfun="logit",bounds=bounds,
aggregate.stage=2)

Checking the result:
svystatTM(descal02,~sex+marstat)

3) Calibration (global solution) on the joint distribution of sex

and marstat (totals in pop03):

descal03<-e.calibrate(design=des,df.population=pop03,
calmodel=~marstat:sex-1,calfun="logit",bounds=bounds)

http://www.istat.it/dati/pubbsci/contributi/Contributi/contr_2007/2007_4.pdf

20

e.calibrate

Checking the result:
svystatTM(descal03,~sex,~marstat) # or: svystatTM(descal03,~marstat,~sex)

which, obviously, is not respected by descal02 (notice the size of SE):
svystatTM(descal02,~sex,~marstat)

3.1) Again a calibration on the joint distribution of sex and marstat

but, this time, with the iterative solution (partition=-~sex,

totals in pop03p):

descalO3p<-e.calibrate(design=des,df.population=pop03p,
calmodel=~marstat-1,partition=~sex,calfun="logit",
bounds=bounds)

Checking the result:
svystatTM(descalO3p, ~sex,~marstat)

4) Calibration (global solution) on the totals for the quantitative

variables x1, x2 and x3 in the subpopulations defined by the

regcod variable (totals in pop04):

descalO4<-e.calibrate(design=des,df.population=pop04,
calmodel=~(x1+x2+x3-1):regcod,calfun="logit",
bounds=bounds, aggregate.stage=2)

Checking the result:
svystatTM(descal04,~x1+x2+x3, ~regcod)

4.1) Same problem with the iterative solution (partition=~regcod,

totals in pop04p):

descalO4p<-e.calibrate(design=des,df.population=pop04p,
calmodel=~x1+x2+x3-1,partition=~regcod,calfun="logit",
bounds=bounds, aggregate.stage=2)

Checking the result:
svystatTM(descalO4p, ~x1+x2+x3, ~regcod)

5) Calibration (global solution) on the total for the quantitative

variable x1 and on the marginal distribution of the qualitative

variable agebc, in the subpopulations defined by crossing sex

and marstat (totals in pop05):

descalO5<-e.calibrate(design=des,df.population=pop05,
calmodel=~(age5c+x1-1):sex:marstat,calfun="logit",
bounds=bounds)

Checking the result:
svystatTM(descal05,~age5c+x1,~sex:marstat)

5.1) Same problem with the iterative solution (partition=~sex:marstat,

totals in pop05p):

descalO5p<-e.calibrate(design=des,df.population=pop05p,
calmodel=~age5c+x1-1,partition=~sex:marstat,
calfun="logit",bounds=bounds)

e.calibrate

#

Checking the result:

svystatTM(descal05p, ~age5c+x1,~sex:marstat)

EE

Notice that 3.1 and 5.1) 5.2) do not impose the aggregate.stage=2
condition. This condition cannot, in fact, be fulfilled because

in both cases the domains defined by partition "cut across”

the des second stage clusters (households). To compare the results,
the same choice was also made for 3) and 5).

A

#
#

A simple example illustrating how calibration #
can be exploited to reduce nonresponse bias. #

A

#

Load sbs data:

data(sbs)

HHHHEEEE
Full-response case.
AR

Create a full-response design object:
sbsdes<-e.svydesign(data=sbs,ids=~id, strata=~strata,weights=~weight, fpc=~fpc)

Now estimate the average value added and its 95% confidence interval:

mean.VA<-svystatTM(design=sbsdes,y=~va.imp2,estimator="Mean",vartype= "cvpct”,
conf.int=TRUE,conf.lev=0.95)

mean. VA

Compare the obtained estimate with the true population parameter:
MEAN.VA<-mean(sbs. frame$va.imp2)
MEAN. VA

We get a small overestimation of about 4%...
100% (coef (mean.VA)-MEAN. VA) /MEAN. VA

which, anyway, doesn’t indicate a significant bias for the
full-response sample, because the 95% confidence interval
covers the true value.

S
Nonresponse case: assume a response propensity
which increases with enterprise size.
A

Set bigger response probabilities for bigger firms,
e.g. exploiting available information about the

number of employees (emp.cl):

levels(sbs$emp.cl)

p.resp <- c(.4,.6,.8,.95,.99)

Tie response probabilities to sample observations:
pr<-p.resplunclass(sbs$emp.cl)]

21

22

Now, randomly select a subsample of responding units from sbs:
set.seed(12345) # (fix the RNG seed for reproducibility)
rand<-runif(1:nrow(sbs))

sbs.nr<-sbs[rand<pr,]

This implies an overall response rate of about 73%:
nrow(sbs.nr)/nrow(sbs)

Treat the non-response sample as it was complete: this should
lead to biased estimates of value added, as the latter is
positively correlated with firms size...

sbsdes.nr<-e.svydesign(data=sbs.nr,ids=~id,strata=~strata,weights=~weight)

#...indeed:

options(”"RG.lonely.psu”"="adjust") # (prevent lonely-PSUs troubles)

mean.VA.nr<-svystatTM(design=sbsdes.nr,y=~va.imp2,estimator="Mean",
vartype= "cvpct"”,conf.int=TRUE, conf.lev=0.95)

mean.VA.nr

and, comparing with the true population average, we see a
significant overestimation effect, with the 95% confidence
interval not even covering the parameter:

MEAN. VA

Nonresponse bias can be effectively reduced by calibrating

on variables explaining the response propensity: e.g., in

the present example, on the population distribution of emp.cl:
Prepare the known totals template...
N.emp.cl<-pop.template(data=sbs,calmodel=~emp.cl-1)
N.emp.cl

Fill it by using the sampling frame...
.emp.cl<-fill.template(sbs.frame,N.emp.cl)
N.emp.cl

=

Lastly calibrate:
Get a hint on the calibration bounds:
hint<-bounds.hint(sbsdes.nr,N.emp.cl)
sbscal.nr<-e.calibrate(design=sbsdes.nr,df.population=N.emp.cl,
bounds=hint)
sbscal.nr

Now estimate the average value added on the calibrated design:
mean.VA.cal.nr<-svystatTM(design=sbscal.nr,y=~va.imp2,estimator="Mean",
vartype= "cvpct”,conf.int=TRUE, conf.lev=0.95)

As expected, we see a significant bias reduction:
MEAN. VA

mean.VA.nr

mean.VA.cal.nr

Even if the 95% confidence interval still doesn’t cover the

true value, by calibration we passed from an initial overestimation
of about 33% to a 7% one:

100* (coef (mean.VA.nr)-MEAN.VA) /MEAN. VA

100%(coef (mean.VA.cal.nr)-MEAN.VA) /MEAN.VA

e.calibrate

e.calibrate

HHHEHHHEHEE A
A multi-step calibration example showing that
a calibrated object can be calibrated again
(this can be sometimes useful in practice).
HEHHHHHHHEEEE AR

Suppose you already performed a first calibration step,
as shown in the example above, with the aim of softening
nonresponse bias:

sbscal.nr

Now you may want to calibrate again in order to reduce

estimators variance, by using further available auxiliary
information, e.g. the total number of employees (emp.num)
and enterprises (ent) inside the domains obtained

by crossing nace.macro and region:

Build the second step population totals template:
pop2<-pop.template(sbs,
calmodel=~emp.num+ent-1,
partition=~nace.macro:region)

Use the fill.template function to (i) automatically compute
the totals from the universe (sbs.frame) and (ii) safely fill
the template:

pop2<-fill.template(universe=sbs.frame, template=pop2)

Now perform the second calibration step:
Get a hint on the calibration bounds:
hint2<-bounds.hint(sbscal.nr,pop2)
sbscal.nr2<-e.calibrate(design=sbscal.nr,df.population=pop2,
bounds=hint2)

Notice that printing sbscal.nr2 you immediately understand
that it is a "twice-calibrated” object:
sbscal.nr2

Notice also that, even if the second calibration step causes

sbscal.nr2 to be no more exactly calibrated with respect to

emp.cl (look at the cvpct values)...
options(”"RG.lonely.psu”"="adjust") # (prevent lonely-PSUs troubles)
svystatTM(design=sbscal.nr2,y=~emp.cl,vartype="cvpct")

...the nonresponse bias has not been resurrected (i.e. it gets stuck

to its previous 7%):

mean.VA.cal.nr2<-svystatTM(design=sbscal.nr2,y=~va.imp2,estimator="Mean",
vartype= "cvpct”,conf.int=TRUE, conf.lev=0.95)

mean.VA.cal.nr2

100x(coef (mean.VA.cal.nr2)-MEAN.VA)/MEAN. VA

AR AR AR AR R
Example with heteroskedastic assisting linear model: shows how to obtain
the ratio estimator of a total by calibration.
HHHHHHEEEEE AR AR R

23

24

e.calibrate

Load sbs data:
data(sbs)

Create the design object to be calibrated:
sbsdes<-e.svydesign(data=sbs,ids=~id, strata=~strata,weights=~weight, fpc=~fpc)

Suppose you have to calibrate on the total amount of employees:
Prepare the template:
pop<-pop.template(data=shsdes,calmodel=~emp.num-1)

pop

Fill it by using the sampling frame (sbs.frame)...
pop<-fill.template(sbs.frame,pop)
pop

... thus the total number of employees is 984394.

Now calibrate assuming that error terms variances are proportional
to emp.num:
sbscal<-e.calibrate(design=sbsdes,df.population=pop, sigma2=~emp.num)

Now compute the calibration estimator of the total
of value added (i.e. variable va.imp2)...
VA.tot.cal<-svystatTM(design=sbscal,y=~va.imp2)
VA.tot.cal

#... and observe that this is identical to the ratio estimator of the total...
VA.ratio<-svystatlL (design=sbsdes, expression(984394*va.imp2/emp.num))
VA.ratio

...as it must be.

Recall that, for the calibration problem above, one must expect, by virtue of
simple theoretical arguments, that the g-weights are constant and equal to the
ratio between the known total of emp.num (984394) and its HT estimate.

This propertly is exactly stisfied by our numerical results, see below:
984394/coef (svystatTM(sbsdes, ~emp.num))

g.range(sbscal)

...as it must be.

B
A second example of calibration with heteroskedastic assisting linear
model. Shows that calibrated weights associated to higher values of
sigma2 tend to stay closer to their corresponding initial weights.
HHHH A AR A A

Perform a calibration process which exploits as auxiliary
information the total number of employees (emp.num)

and enterprises (ent) inside the domains obtained by:

1) crossing nace2 and region;

ii) crossing emp.cl, region and nace.macro;

Build the population totals template:
pop<-pop.template(sbsdes,
calmodel=~(emp.num+ent): (nace2+emp.cl:nace.macro)-1,

e.svydesign

25

partition=~region)

Use the fill.template function to (i) automatically compute
the totals from the universe (sbs.frame) and (ii) safely fill

the template:

pop<-fill.template(universe=sbs.frame, template=pop)

Now calibrate:

1) First, without any heteroskedasticy effect
sbscall<-e.calibrate(sbsdes,pop,calfun="linear"” ,bounds = c(0.01, 3),
sigma2=NULL)

2) Then, with heteroskedastic effect proportional to emp.num:
sbscal2<-e.calibrate(sbsdes,pop,calfun="1linear"”,bounds = c(0.01, 3),
sigma2=~emp.num)

Compute the g-weights for both the calibrated objects:
gl<-weights(sbscall)/weights(sbsdes)
g2<-weights(sbscal2)/weights(sbsdes)

Now visually compare the absolute deviations from 1 of the g-weights
as a function of emp.num:

plot(logl0(sbs$emp.num),abs(gl-1), col="blue"”, pch=19, cex=0.5)
points(log10(sbs$emp.num),abs(g2-1), col="red"”, pch=19, cex=0.5)

#...as emp.num grows red points clearly tend to stay closer to
the horizontal axis than blue ones, as expected.

e.svydesign

Specification of a complex survey design

Description

Binds survey data and sampling design metadata.

Usage

e.svydesign(data, ids, strata = NULL, weights,

Arguments

data
ids

strata

weights
fpc

self.rep.str

check.data

fpc = NULL, self.rep.str = NULL, check.data = TRUE)

Data frame of survey data.

Formula identifying clusters selected at subsequent sampling stages (PSUs, SSUs,
).

Formula identifying the stratification variable; NULL (the default) implies no

stratification.

Formula identifying the initial weights for the sampling units.

Formula identifying finite population corrections at subsequent sampling stages
(see ’Details’).

Formula identifying self-representing strata (SR), if any; NULL (the default)
means no SR strata (see 'Details’).

Check out the correct nesting of data clusters? The default is TRUE.

26 e.svydesign

Details

This function has the purpose of binding in an effective and persistent way the survey data to the
metadata describing the adopted sampling design. Both kinds of information are stored in a complex
object of class analytic, which extends the survey.design2 class from the survey package. The
sampling design metadata are then used to enable and guide processing and analyses provided by
other functions in the ReGenesees package (such as e.calibrate, svystatTM, ...).

The data, ids and weights arguments are mandatory, while strata, fpc, self.rep.str and
check.data arguments are optional. The data variables that are referenced by ids, weights and,
if specified, by strata, fpc, self.rep.str, check.data must not contain any missing value (NA).

The ids argument specifies the cluster identifiers. It is possible to specify a multi-stage sampling
design by simply using a formula which involves the identifiers of clusters selected at subsequent
sampling stages. For example, ids=~id.PSU + id.SSU declares a two-stage sampling in which the
first stage units are identified by the id.PSU variable and second stage ones by the id. SSU variable.

The strata argument identifies the stratification variable. The data variable referenced by strata
(if specified) must be a factor. By default the sample is assumed to be non-stratified.

The weights argument identifies the initial (or direct) weights for the units included in the sample.
The data variable referenced by weights must be numeric.

The fpc formula specifies the finite population corrections at subsequent sampling stages. If the
survey has only one stage, then the fpcs can be given either as the total population size in each
stratum or as the fraction of the total population that has been sampled. In either case the relevant
population size is the sampling units (be they actual units or clusters). That is, sampling 100 units
from a population stratum of size 500 can be specified as 500 or as 100/500=0.2.

For multistage sampling the population size for each sampling stage should also be specified in fpc.
For instance, when ids=~id.PSU + id.SSU the fpc formula should look like fpc=~fpc.PSU + fpc.SSU,
with variable fpc.PSU giving the sampling fractions in each stratum for the first stage units, while
variable fpc.SSU gives the sampling fractions for the second stage units in each sampled PSU. If
fpc is specified but for fewer stages than ids, sampling is assumed to be complete for subsequent
stages. The function will check that fpcs values at each sampling stage do not vary within strata.

When dealing with a multistage, stratified sampling design that includes self-representing (SR)
strata (i.e. strata containing PSUs selected with probability 1), the main contribution to the variance
of the SR strata arises from the second stage units ("variance PSUs").

When options(”RG.ultimate.cluster") is FALSE (which is the default for ReGenesees), vari-
ance estimation for SR strata is correctly handled provided the survey fpcs have been properly
specified.

When, on the contrary, the "Ultimate Cluster Approximation" holds (i.e.
options("RG.ultimate.cluster”) has been set to TRUE) the SR strata give no contribution at all
to the sampling variance.

A compromise solution (adopted by former existing survey softwares) is the one of retaining, for
both SR and not-SR strata, only the leading contribution to the sampling variance. This means that
only the SSUs are relevant for SR strata, whereby only the PSUs matter in not-SR strata. This
compromise solution can be achieved by using the self.rep.str argument. If this argument is ac-
tually specified (as a formula referencing the data variable that identifies the SR strata), a warning
is generated in order to remind the user that a compromise solution for variance estimation will be
adopted on that design. Notice that, when choosing the self.rep.str option, the user must ensure
that the variable referenced by self.rep.stris logical (with value TRUE for SR strata and FALSE
otherwise) or numeric (with value 1 for SR strata and 0 otherwise) or factor (with levels "1" for
SR strata and "0" otherwise).

The optional argument check. data allows to check out the correct nesting of data clusters (PSUSs,
SSUs, ...). If check.data=TRUE the function checks that every unit selected at stage k+1 is associ-

e.svydesign 27

ated to one and only one unit selected at stage k. For a stratified design the function checks also the
correct nesting of clusters within strata.

Value

An object of class analytic. The print method for that class gives a concise description of the
sampling design.

Note

The analytic class is a specialisation of the survey.design2 class from the survey package; this
means that an object created by e. svydesign inherits from the survey.design2 class and you can
use on it every method defined on the latter class.

Author(s)

Diego Zardetto.

References

Sarndal, C.E., Swensson, B., Wretman, J. (1992) "Model Assisted Survey Sampling", Springer Ver-
lag.

Lumley, T. (2006) "survey: analysis of complex survey samples”, http://cran.at.r-project.
org/web/packages/survey/index.html.

See Also

svystatTM, svystatR, svystatQ, svystatL for calculating estimates and standard errors, e.calibrate
for calibrating weights, ReGenesees. options for setting/changing variance estimation options.

Examples

HHHHHHEREEH AR R
The following examples illustrate how to create objects
(of class ’analytic’) defining different sampling designs.
Note: sometimes the same survey data will be used to
define more than one design: this serves only the purpose
of illustrating e.svydesign syntax.
HHHEHHAREEEE R AR A

data(data.examples)

Two-stage stratified cluster sampling design (notice that

the design contains lonely PSUs):

des<-e.svydesign(data=example, ids=~towcod+famcod, strata=~stratum,
weights=~weight)

des

The same using collapsed strata (SUPERSTRATUM variable) to remove

lonely PSUs:

des<-e.svydesign(data=example, ids=~towcod+famcod, strata=~SUPERSTRATUM,
weights=~weight)

des

Two stage cluster sampling (no stratification):
des<-e.svydesign(data=example, ids=~towcod+famcod,weights=~weight)

http://cran.at.r-project.org/web/packages/survey/index.html
http://cran.at.r-project.org/web/packages/survey/index.html

28

extractors

des

Stratified unit sampling design:

des<-e.svydesign(data=example, ids=~key, strata=~SUPERSTRATUM,
weights=~weight)

des

data(sbs)

One-stage stratified unit sampling without replacement

(notice the presence of the fpc argument):

des<-e.svydesign(data=sbs,ids=~id,strata=~strata,weights=~weight,
fpc=~fpc)

des

Same design as above but ignoring the finite population corrections:
des<-e.svydesign(data=sbs,ids=~id,strata=~strata,weights=~weight)
des

data(fpcdat)

Two-stage stratified cluster sampling without replacement

(notice that the fpcs are specified for both stages):

des<-e.svydesign(data=fpcdat,ids=~psu+ssu,strata=~stratum,weights=~w,
fpc=~fpcl+fpc2)

des

Same design as above but assuming complete sampling for the

second stage units (notice fpcs have been passed only for the

first stage):

des<-e.svydesign(data=fpcdat, ids=~psu+ssu, strata=~stratum,weights="w,
fpc=~fpcl)

des

Again a two-stage stratified cluster sampling without replacement but

specified in such a way as to retain, in the estimation phase, only

the leading contribution to the sampling variance (i.e. the one arising

from PSUs in SR strata and SSUs in not-SR strata). Notice that the

self.rep.str argument is used:

des<-e.svydesign(data=fpcdat, ids=~psu+ssu, strata=~stratum,weights="w,
fpc=~fpcl+fpc2, self.rep.str=~sr)

des

extractors Extractor functions for variance statistics

Description

These functions extract standard errors (SE), variances (VAR), coefficients of variation (cv) and de-
sign effects (deff) from an object which has been returned by a survey statistic function (e.g.
svystatTM, svystatR, svystatQ, svystatL,...).

extractors 29

Usage
SE(object, ...)
VAR(object, ...)
cv(object, ...)

deff(object, ...)

Arguments
object An object containing survey statistics.
Arguments for future expansion.
Details

With the exception of deff, all extractor functions can be used on any object returned by a survey
statistic function: the correct answer will be obtained wathever the call that generated the object.
For getting the design effect, object must have been built with option deff = TRUE.

Value

A vector storing the requested informations.

Note

Package ReGenesees provides extensions of methods coef and confint (originally from package
stats) that can be used to extract estimates and confidence intervals respectively.

Author(s)

Diego Zardetto

See Also

Function coef to extract estimates and function confint to extract confidence intervals. Estima-
tors of Totals and Means svystatTM, Ratios between Totals svystatR, Quantiles svystatQ and
Complex Analytic Functions of Totals and/or Means svystatL.

Examples

Creation of a design object:

data(sbs)

des<-e.svydesign(data=sbs,ids=~id,strata=~strata,weights=~weight,
fpc=~fpc)

Estimation of the average value added at the

nation level (by default one gets the SE):
VA.avg <- svystatTM(des,~va.imp2,estimator="Mean")
VA.avg

Extractions of some variance statistics from the
object above:

1) SE

SE(VA.avg)

2) CV

cv(VA.avg)

3) VAR

30 fill.template

VAR(VA.avg)

Design effects have to be requested in advance,
i.e. the following invocation produces an error:
Not run:
deff(VA.avg)

End(Not run)

...while the following works:

VA.avg <- svystatTM(des,~va.imp2,estimator="Mean",6deff=TRUE)
deff(VA.avg)

Further examples:

extract the statistic:

coef(VA.avg)

extract the confidence interval at 90%

confidence level (the default would be 95%):
confint(VA.avg, conf.lev=0.9)

fill.template Fill the known totals template for a calibration task

Description
Given a template prepared to store the totals of the auxiliary variables for a specific calibration task,
computes the actual values of such totals from a sampling frame.

Usage

fill.template(universe, template, mem.frac = 10)

Arguments
universe Data frame containing the complete list of the units belonging to the target pop-
ulation, along with the corrisponding values of the auxiliary variables (the sam-
pling frame).
template The template for the calibration task, an object of class pop.totals.
mem. frac A numeric and non-negative value (the default is 10). It triggers a memory-
efficient algorithm when universe is really huge (see ’Details’ and ’Performance”).
Details

Recall that a template object returned by function pop.template has a structure that complies
with the standard required by e.calibrate, but is empty, in the sense that all the known totals it
must be able to store are missing (NA). Whenever these totals are available to the user as such, that
is in the form of already computed aggregated values (e.g. because they come from an external
source, like a Population Census), the ReGenesees package cannot help the user to correctly fill the
template. Stated more explicitely: the user himself has to bear the responsibility of putting the right
values in the right slots of the prepared template data frame.

A lucky alternative arises when a "sampling frame" (that is a data frame containing the complete list
of the units belonging to the target population, along with the corrisponding values of the auxiliary

fill.template 31

variables) is available. In such cases, indeed, the fill. template function is able to: (i) automati-
cally compute the totals of the auxiliary variables from the universe data frame, (ii) safely arrange
and format these values according to the template structure.

Notice that fill.template will perform a complete coherence check between universe and
template. If this check fails, the program stops and prints an error message: the meaning of
the message should help the user diagnose the cause of the problem.

Argument mem. frac (whose value must be numeric and non-negative) triggers a memory-efficient
algorithm when universe is really huge. The only sound reason to ever change the value of this
argument from its default (mem. frac=10) is that an invocation of fill. template caused a memory-
failure (i.e. a messages beginning cannot allocate vector of size ...) on your machine. In
such a case, increasing the value of mem. frac (e.g. mem. frac=20) will provide a better chance of
succeeding (for more details, see 'Performance’ section below).

Value

An object of class pop.totals storing the actual values of the population totals for the specified
calibration task, ready to be safely passed to e.calibrate.

Performance

Real-world calibration tasks (e.g. in the field of Official Statistics) can simultaneously involve sev-
eral hundreds of auxiliary variables and refer to target populations of several millions units. In such
circumstances, the naive aggregation of the calibration model.matrix of universe may turn out to
be too memory-demanding (at least in ordinary PC environments) and determine a memory-failure
error.

The alternative implemented in fill. template is to: (i) split universe in chunks, (ii) compute
partial sums of auxiliary variables chunk-by-chunk, (iii) update template by adding progressively
such partial sums. This alternative is triggered by parameter mem. frac, which also implicitely con-
trols the number of chunks. The function estimates the memory that would be used to store the full
model.matrix of universe and compares it to the maximum memory allocable on the machine (as
returned by memory.1limit): if the resulting ratio is bigger than 1/mem. frac, the memory-efficient
algorithm starts; the number of chunks in which universe will then be split is determined in such
a way that the memory needed to store the model.matrix of each chunk does not exceed a fraction
1/mem. frac of the maximum allocable memory.

Whenever fill.template switchs to the memory-efficient "chunking" algorithm, a warning mes-
sage will signal it and will specify as well the number of chunks that are being processed.

Author(s)

Diego Zardetto

See Also

e.calibrate for calibrating weights, pop.template for the definition of the class pop.totals
and to build a "template" data frame for known population totals, and %into% for the compression
operator for nested factors.

Examples

Load sbs data:
data(sbs)

Build a design object:

32

fill.template

sbsdes<-e.svydesign(data=sbs,ids=~id,strata=~strata,weights=~weight, fpc=~fpc)

Now suppose you have to perform a calibration process which

exploits as auxiliary information the total number of employees (emp.num)
and enterprises (ent) inside the domains obtained by:

1) crossing nace2 and region;

ii) crossing emp.cl, region and nace.macro;

Due to the fact that nace2 is nested into nace.macro,

the calibration model can be efficiently factorised as follows:

1) Add to the design object and universe the new compressed

factor variable involving nested factors, namely:
sbsdes<-des.addvars(sbsdes,nace2.in.nace.macro=nace2 %into% nace.macro)
sbs.frame$nace2.in.nace.macro<-sbs.frame$nace2 %into% sbs.frame$nace.macro

2) Build the template exploiting the new variable:
pop<-pop. template(sbsdes,
calmodel=~(emp.num+ent): (nace2.in.nace.macro + emp.cl)-1,
partition=~nace.macro:region)

Note: given the dimension of the obtained template...
dim(pop)

...the number of (independent) known totals to be stored is 792.

3) Use the fill.template function to (i) automatically compute

such 792 totals from the universe (sbs.frame) and (ii) safely fill
the template:

pop<-fill.template(universe=sbs.frame, template=pop)

4) Lastly calibrate, e.g. with the unbounded linear distance and
heteroskedastic effects proportional to emp.num:
sbscal<-e.calibrate(sbsdes, pop, sigma2=~emp.num,bounds=c(-Inf,Inf))

Note: a global calibration task would have led to identical calibrated
weights, but in a more memory-hungry and time-consuming way, as you can
verify:
1) Build template:
pop.g<-pop.template(sbsdes,
calmodel=~(emp.numtent): (nace2:region + emp.cl:nace.macro:region)-1)
dim(pop.g)

2) Fill template:
pop.g <- fill.template(sbs.frame,pop.g)

3) Calibrate globally:
Not run:
sbscal.g<-e.calibrate(sbsdes,pop.g,sigma2=~emp.num,bounds=c(-1E6,1E6))

4) Compare calibrated weights (factorised vs. global solution):
range(weights(sbscal)/weights(sbscal.g))

... they are equal.
End(Not run)

Just a single example of the memory-efficient algorithm triggered

fpcdat 33

by mem.frac:

Not run:

First artificially increase the size of the sampling frame (e.g.

up to 5 millions rows):

sbs. frame.HUGE<-sbs.frame[sample(1:nrow(sbs.frame),5000000, rep=TRUE),]
dim(sbs. frame.HUGE)

Build the template:

pop<-pop.template(sbsdes,
calmodel=~(emp.num+ent): (nace2.in.nace.macro + emp.cl)-1,
partition=~nace.macro:region)

dim(pop)

Fill the template by using the HUGE universe:
pop<-fill.template(universe=sbs.frame.HUGE, template=pop)

End(Not run)

fpcdat Artificial sample data for the ReGenesees package

Description

A small dataset mimicking sample data selected with a 2-stage, stratified, cluster sampling without
replacement. Allows to run R code contained in the ’Examples’ section of the ReGenesees package
help pages.

Usage
data(fpcdat)

Format
A data frame with 28 observations on the following 12 variables.

psu Identifier of the primary sampling units, numeric

ssu Identifier of the second stage sampling units, numeric

stratum Stratification Variable, a factor with 5 levels: 5.1,5.2,S5.3,5.4,S5.5
sr Strata type, integer with values 0 (NSR strata) and 1 (SR strata)

fpc1 First stage finite population corrections, given as population sizes (in terms of psu clusters)
inside strata, numeric

fpc2 Second stage finite population corrections, given as population sizes (in terms of ssu clusters)
inside the corresponding sampled psu, numeric

X A numeric variable

y A numeric variable

dom1 A variable defining unplanned estimation domains, factor with 3 levels: A, B, C

dom2 A variable defining unplanned estimation domains, factor with 6 levels: a, b, ¢, d, e, f
w Direct weights, numeric

z A numeric variable

pl.domain A variable defining planned estimation domains, factor with 3 levels: pd.1, pd.2,
pd.3

34 g.range

Details

Though very small, the fpcdat dataset concentrates a lot of interesting features. The sampling
design is a complex one, with both self-representing (SR) and not-self-representing (NSR) strata.
Sampling fractions are deliberately not negligible, in order to stress the effects of finite population
corrections on variance estimation. Moreover, being the observations so few, performing computa-
tions on the fpcdat dataset allows to check and understand easily all the effects of setting/changing
the global variance estimation options of the ReGenesees package (see e.g. ReGenesees.options).

See Also

ReGenesees.options for setting/changing variance estimation options.

Examples

data(fpcdat)
str(fpcdat)

g.range Range of g-weights

Description

Computes the range of the ratios between calibrated weights and initial weights (g-weights).

Usage

g.range(cal.design)

Arguments

cal.design Object of class cal.analytic.

Details

This function computes the smallest interval which contains the ratios between calibrated weights
and initial weights.

Value

A numeric vector of length 2.

Note

If cal.design has undergone k subsequent calibration steps (with k > 2), the function will return
the range of the ratios between the output weights of calibration steps k and k - 1.

Author(s)

Diego Zardetto

pop.template 35

See Also

weights to extract the weights from a design object, e.calibrate for calibrating weights and
bounds.hint to obtain a hint for calibration problems where range restrictions are imposed on the
g-weights.

Examples

Creation of the object to be calibrated:

data(data.examples)

des<-e.svydesign(data=example, ids=~towcod+famcod, strata=~SUPERSTRATUM,
weights=~weight)

Calibration (iterative solution) on the marginal distribution

of age in 5 classes (age5c) inside provinces (procod)

(totals in pop06p) with bounds=c(0.5, 1.5):

descalO6p<-e.calibrate(design=des,df.population=pop06p,
calmodel=~age5c-1,partition=~procod,calfun="1logit",
bounds=c(0.5, 1.5),aggregate.stage=2)

Now let’s verify the actual range of the obtained g-weights:
g.range(descal06p)

which indeed is covered by c(0.5, 1.5), as required.

Now calibrate once again, this time on the joint distribution of sex

and marstat (totals in pop03) with the global solution:

descal2<-e.calibrate(design=descal06p,df.population=pop03,
calmodel=~marstat:sex-1,calfun="1linear",bounds=bounds)

Notice that the print method correctly takes the calibration chain
into account:
descal?

The range of the g-weights for the twice calibrated object is:
g.range(descal?2)

#... which is equal to:
range(weights(descal2)/weights(descal06p))

#... and must not be confused with:
range(weights(descal2)/weights(des))

pop.template Template data frame for known population totals

Description

Constructs a "template” data frame to store known population totals for a calibration problem.

Usage

pop.template(data, calmodel, partition = FALSE)

36 pop.template
Arguments
data Data frame of survey data (or an object inheriting from class analytic).
calmodel Formula defining the linear structure of the calibration model.
partition Formula specifying the variables that define the "calibration domains" for the
model. FALSE (the default) implies no calibration domains.
Details

This function creates an object of class pop. totals. A pop.totals object is made up by the union
of a data frame (whose structure conforms to the standard required by e.calibrate for the known
totals) and the metadata describing the calibration problem.

The mandatory argument data must identify the survey data frame on which the calibration problem
is defined (or, as an alternative, an analytic object built upon that data frame).

The mandatory argument calmodel symbolically defines the calibration model you intend using: it
identifies the auxiliary variables and the constraints for the calibration problem. The data variables
referenced by calmodel must be numeric or factor and must not contain any missing value (NA).

The optional argument partition specifies the variables that define the calibration domains for
the model. The default value (FALSE) means either that there are not calibration domains or that
you want to solve the problem globally (even though it could be factorised). If a formula is passed
through the partition argument the program checks that calmodel actually describes a "reduced
model", that is it does not reference any of the partition variables; if this is not the case, the program
stops and prints an error message. Notice that a formula like by=~D1+D2 will be automatically trans-
lated into the factor-crossing formula by=~D1:D2. The data variables referenced by partition (if
any) must be factor and must not contain any missing value (NA).

Value

An object of class pop.totals. The data frame it contains is a "template” in the sense that all the
known totals it must be able to store are missing (NA). However, this data frame has a structure that
complies with the standard required by e.calibrate (provided the latter is invoked with the same
calmodel and partition values used to create the template).

The operation of filling the template’s NAs with the actual values of the corresponding population
totals has, obviously, to be done by the user. If the user has access to a "sampling frame" (that is a
data frame containing the complete list of the units belonging to the target population along with the
corrisponding values of the auxiliary variables), then he can exploit the function fill. template to
automatically fill the template.

The pop.totals class is a specialisation of the data. frame class; this means that an object built
by pop. template inherits from the data. frame class and you can use on it every method defined
on that class.

Author(s)

Diego Zardetto

See Also

e.calibrate for calibrating weights, population.check to check that the known totals data frame
satisfies the standard required by e.calibrate, fill.template to automatically fill the template
when a sampling frame is available.

pop.template

Examples
Creation of population totals template data frames for different
calibration problems (if the calibration models can be factorised
both a global and an iterative solution are given):
data(data.examples)
1) Calibration on the total number of units in the population:

pop.template(data=example,calmodel=~1)

2) Calibration on the total number of units in the population

and on the marginal distribution of marstat (notice that the
total for the first level "married” of the marstat factor

variable is missing because it can be deduced from

the remaining totals):

pop.template(data=example,calmodel=~marstat)

3) Calibration on the marginal distribution of marstat (you
must explicitly remove the intercept term in the

calibration model adding -1 to the calmodel formula):
pop.template(data=example,calmodel=~marstat-1)

4) Calibration (global solution) on the joint distribution of sex
and marstat:
pop.template(data=example,calmodel=~sex:marstat-1)

4.1) Calibration (iterative solution) on the joint distribution
of sex and marstat:

4.1.1) Using sex to define calibration domains:
pop.template(data=example,calmodel=~marstat-1,partition=~sex)

4.1.2) Using marstat to define calibration domains:
pop.template(data=example,calmodel=~sex-1,partition=~marstat)

5) Calibration (global solution) on the total for the quantitative

variable x1 and on the marginal distribution of the qualitative
variable age5c, in the subpopulations defined by crossing sex
and marstat:

pop.template(data=example,calmodel=~(age5c+x1-1):sex:marstat)

5.1) The same problem with iterative solutions:
5.1.1) Using sex to define calibration domains:
pop.template(data=example,calmodel=~(age5c+x1-1):marstat,partition=~sex)

5.1.2) Using marstat to define calibration domains:
pop.template(data=example,calmodel=~(age5c+x1-1):sex,partition=~marstat)

5.1.3) Using sex and marstat to define calibration domains:
pop.template(data=example,calmodel=~age5c+x1-1,partition=~sex:marstat)

38 population.check

population.check Compliance test for known totals data frames

Description

Checks whether a known population totals data frame conforms to the standard required by e. calibrate
for a specific calibration problem.

Usage

population.check(df.population, data, calmodel, partition = FALSE)

Arguments

df .population Data frame of known population totals.

data Data frame of survey data (or an object inheriting from class analytic).
calmodel Formula defining the linear structure of the calibration model.
partition Formula specifying the variables that define the "calibration domains" for the

model. FALSE (the default) implies no calibration domains.

Details

The behaviour of this function depends on the outcome of the test. If df.population is found to
conform to the standard, the function first converts it into an object of class pop.totals and then
invisibly returns it. Failing this, the function stops and prints an error message: the meaning of the
message should help the user diagnose the cause of the problem.

The mandatory argument df . population identifies the known totals data frame for which compli-
ance with the standard is to be checked.

The mandatory argument data identifies the survey data frame on which the calibration problem is
defined (or, as an alternative, an analytic object built upon that data frame).

The mandatory argument calmodel symbolically defines the calibration model you intend using: it
identifies the auxiliary variables and the constraints for the calibration problem. The data variables
referenced by calmodel must be numeric or factor and must not contain any missing value (NA).

The optional argument partition specifies the variables that define the calibration domains for
the model. The default value (FALSE) means either that there are not calibration domains or that
you want to solve the problem globally (even though it could be factorised). If a formula is passed
through the partition argument the program checks that calmodel actually describes a "reduced
model", that is it does not reference any of the partition variables; if this is not the case, the program
stops and prints an error message. Notice that a formula like by=~D1+D2 will be automatically trans-
lated into the factor-crossing formula by=~D1:D2. The data variables referenced by partition (if
any) must be factor and must not contain any missing value (NA).

Value

An invisibile object of class pop. totals. The pop.totals class is a specialisation of the data. frame
class; this means that an object built by pop. template inherits from the data. frame class and you
can use on it every method defined on that class.

population.check 39

Note

The population.check function can be used to convert a known totals data frame that conforms
to the standard required by e.calibrate into an object of class pop.totals. The usefulness of
this conversion lies in the fact that, once you have known totals with this "certified format", you can
invoke e.calibrate without specifying the values for the calmodel and partition arguments
(this means that the function is able to extract them directly from the attributes of the pop.totals
object).

Author(s)

Diego Zardetto

See Also

e.calibrate for calibrating weights, pop. template for the definition of the class pop. totals and
to build a "template" data frame for known population totals, fill. template to automatically fill
the template when a sampling frame is available.

Examples

data(data.examples)

Suppose you have to calibrate the example survey data frame

on the totals of x1 by sex and you want the iterative solution.

Start creating a design object:

des<-e.svydesign(data=example, ids=~towcod+famcod, strata=~SUPERSTRATUM,
weights=~weight)

Then build a template data frame for the known totals:
pop<-pop.template(data=example, calmodel=~x1-1,partition=~sex)
pop

class(pop)

Now fill NAs with the actual values for the population
totals (suppose 123 for sex="f" and 456 for sex="m"):
popl, "x1"]1<-c(123,456)

pop

class(pop)

Finally check if pop complies with the kottcalibrate standard:
population.check(df.population=pop,data=example,calmodel=~x1-1,
partition=~sex)

If, despite keeping the content unchanged, we altered the
structure of the data frame (for example, by changing the
order of its rows)...

pop.mod<-pop ; pop.mod[1,]<-pop[2,] ; pop.mod[2,]<-pop[1,]
pop

pop .mod

...we would obtain an error:

Not run:

population.check(df.population=pop.mod, data=example, calmodel=~x1-1,
partition=~sex)

40 ReGenesees.options

End(Not run)

Remember that, if the known totals have been converted

into the pop.totals "format” by means of population.check,
it is possible to invoke kottcalibrate without specifying
calmodel and partition:

class(pop04p)

pop04p

descalO4p<-e.calibrate(design=des,df.population=pop04p,
calfun="logit",bounds=bounds,aggregate.stage=2)

...this option is not allowed if the known totals
are not of class pop.totals even if they conform to the
standard:

pop04p.mod=data. frame(pop04p)

class(pop04p.mod)

pop04p.mod

Not run:

e.calibrate(design=des,df.population=pop04p.mod,calfun="logit",
bounds=bounds, aggregate.stage=2)

End(Not run)

ReGenesees.options Variance estimation options for the ReGenesees package

Description

This help page documents the options that control the behaviour of the ReGenesees package with
respect to standard error estimation.

Details

The ReGenesees package provides three options for variance estimations which can be freely set
and modified by the user:

-RG.ultimate.cluster

-RG.1lonely.psu

- RG.adjust.domain.lonely

When options("RG.ultimate.cluster”) is TRUE, the ReGenesees package adopts the so called
"Ultimate Cluster Approximation” [Kalton 79]. Under this approximation, the overall sampling
variance for a multistage sampling design is estimated by taking into account only the contribution
arising from the estimated PSU totals (thus simply ignoring any available information about sub-
sequent sampling stages). This approach is known to underestimate the true multistage variance,
while - at the same time - overestimating its true first-stage component. Anyway, the underestima-
tion becomes negligible if the PSUs’ sampling fractions across strata are very small.

When options(”"RG.ultimate.cluster”) is FALSE, each sampling stage contributes and vari-
ances get estimated by means of a recursive algorithm [Bellhouse, 85] inherited and adapted from
package survey [Lumley 06]. Notice that the results obtained by choosing this option can differ

ReGenesees.options 41

from the one that would be obtained under the "Ultimate Cluster Approximation" only if first-stage
finite population corrections are specified.

Lonely PSUs (i.e. PSUs which are alone inside a not self-representing stratum) are a concern from
the viewpoint of variance estimation. The suggested ReGenesees facility to handle the lonely PSUs
problem is the strata aggregation technique (see e.g. [Wolter 85] and [Rust, Kalton 87]) provided
in function collapse.strata. As a possible alternative, you can get rid of lonely PSUs also by
setting proper variance estimation options via options(”RG.lonely.psu"). The default setting is
"fail”, which raises an error if a lonely PSU is met. Option "remove"” simply causes the software
to ignore lonely PSUS for variance computation porposes. Option "adjust” means that deviations
from the population mean will be used in variance estimation formulae, instead of deviations from
the stratum mean (a conservative choice). Finally, option "average" causes the software to replace
the variance contribution of the stratum by the average variance contribution across strata (this
can be appropriate e.g. when one believes that lonely PSU strata occur at random due to uniform
nonresponse among strata).

The variance formulae for domain estimation give well-defined, positive results when a stratum
contains only one PSU with observations in the domain, but are not unbiased.

If options(”RG.adjust.domain.lonely") is TRUE and

options("RG.lonely.psu") is "average" or "adjust” the same adjustment for lonely PSUs will
be used within a domain. Note that this adjustment is not available for calibrated designs.

References

Kalton, G. (1979). "Ultimate cluster sampling", Journal of the Royal Statistical Society, Series A,
142, pp. 210-222.

Bellhouse, D. R. (1985). "Computing Methods for Variance Estimation in Complex Surveys". Jour-
nal of Official Statistics, Vol. 1, No. 3, pp. 323-329.

Lumley, T. (2006) "survey: analysis of complex survey samples”, http://cran.at.r-project.
org/web/packages/survey/index.html.

Wolter, K.M. (1985) "Introduction to Variance Estimation", Springer-Verlag, New York.

Rust, K., Kalton, G. (1987) "Strategies for Collapsing Strata for Variance Estimation”, Journal of
Official Statistics, Vol. 3, No. 1, pp. 69-81.

See Also

e.svydesign and its self.rep.str argument for a "compromise solution" that can be adopted
when the sampling design involves self-representing (SR) strata, collapse.strata for the sug-
gested way of handling lonely PSUs, and fpcdat for useful data examples.

Examples

Define a two-stage stratified cluster sampling without

replacement:

data(fpcdat)

des<-e.svydesign(data=fpcdat,ids=~psu+ssu,strata=~stratum,weights=~w,
fpc=~fpcl+fpc2)

Now compare SE (or CV%) sizes under different settings:

1) Default setting, i.e. Ultimate Cluster Approximation is off

svystatTM(des, ~x+y+z,vartype=c("se","cvpct"))

2) Turn on the Ultimate Cluster Approximation, thus missing

http://cran.at.r-project.org/web/packages/survey/index.html
http://cran.at.r-project.org/web/packages/survey/index.html

42 sbs

#it the variance contribution from the second stage
#i# (hence SR strata give no contribution at all):
old.op <- options("RG.ultimate.cluster”=TRUE)
svystatTM(des, ~x+y+z,vartype=c("se", "cvpct"”))

options(old.op)

3) The "compromise solution” (see ?e.svydesign) i.e. retaining

only the leading contribution to the sampling variance (namely

#it the one arising from PSUs in SR strata and SSUs in not-SR strata):

des2<-e.svydesign(data=fpcdat,ids=~psu+ssu,strata=~stratum,weights=~w,
fpc=~fpcl+fpc2, self.rep.str=~sr)

svystatTM(des2,~x+y+z,vartype=c("se", "cvpct"))

Therefore, sampling variances come out in the expected

hierarchy: 1) > 3) > 2).

Under default settings lonely PSUs produce errors in standard
errors estimation (notice we didn’t pass the fpcs):

data(fpcdat)

des.lpsu<-e.svydesign(data=fpcdat,ids=~psu+ssu,strata=~stratum,
weights=~w)

Not run:

non

svystatTM(des. lpsu,~x+y+z,vartype=c("se"”, "cvpct"”))

End(Not run)

This can be circumvented in different ways, namely:
old.op <- options(”"RG.lonely.psu"="adjust")
svystatTM(des. lpsu,~x+y+z,vartype=c("se"”, "cvpct”))

options(old.op)

or:

options("RG.lonely.psu"="average")
svystatTM(des. lpsu, ~x+y+z,vartype=c("se","cvpct"))
options(old.op)

n_n

or otherwise by collapsing strata inside planned
estimation domains:
des.clps<-collapse.strata(design=des.lpsu,block.vars=~pl.domain)

svystatTM(des.clps,~x+y+z,vartype=c("se","cvpct"))

sbs Artificial Structural Business Statistics data for the ReGenesees pack-
age

Description

The sbs data frame stores artificial sbs-like sampling data, while sbs.frame is the artificial sam-
pling frame from which the sbs units have been drawn. They allow to run R code contained in the
’Examples’ section of the ReGenesees package help pages.

Usage
data(sbs)

sbs 43

Format

The sbs data frame mimics data observed in a Structural Business Statistics survey, under a one-
stage stratified unit sampling design. The sample is made up of 6909 units, for which the following
20 variables were observed:

id Identifier of the sampling units (enterprises), numeric

public Does the enterprise belong to the Public Sector? factor with levels 0 (No) and 1 (Yes)
emp.num Number of employees, numeric

emp.cl Number of employees classified into 5 categories, factor with levels [6,9] (9,19] (19,49]
(49,99] (99, Inf] (notice that small enterprises with less than 6 employees fell outside the
scope of the survey)

nace5 Economic Activity code with 5 digits, factor with 596 levels
nace2 Economic Activity code with 2 digits, factor with 57 levels
area Territorial Division, factor with 24 levels

cens Flag identifying statistical units to be censused (hence defining take-all strata), factor with
levels 0 (No) and 1 (Yes)

region Macroregion, factor with levels North Center South

va.cl Class of Value Added, factor with 27 levels

va Value Added, numeric (contains NAs)

dom1 A planned estimation domain, factor with 261 levels (dom1 crosses nace2 and emp.cl)

nace.macro Economic Activity Macrosector, factor with levels Agriculture Industry Commerce
Services

dom2 A planned estimation domain, factor with 12 levels (dom2 crosses nace.macro and region)

strata Stratification Variable, a factor with 664 levels (obtained by crossing variables region,
nace2, emp.cl and cens)

va.imp1 Value Added Imputedl, numeric (NAs were replaced with average values computed inside
imputation strata obtained by crossing region, nace.macro, emp.cl)

va.imp2 Value Added Imputed2, numeric (NAs were replaced with median values computed inside
imputation strata obtained by crossing region, nace.macro, emp.cl)

y A numeric variable correlated with va

weight Direct weights, numeric

fpc Finite Population Corrections (given as sampling fractions inside strata), numeric

ent Convenience numeric variable identically equal to 1 (sometimes useful, e.g. to estimate the

total number of enterprises)

The sbs. frame sampling frame (from which sbs units have been drawn) contains 17318 units.

Examples

data(sbs)
str(sbs)
str(sbs.frame)

44

svystatL

svystatL

Estimation of Complex Estimators in subpopulations

Description

Computes estimates, standard errors and confidence intervals for Complex Estimators in subpopu-
lations. A Complex Estimator can be any analytic function of (Horvitz-Thompson or Calibration)
estimators of Totals and Means.

Usage

svystatlL (design, expr, by = NULL,

n n

vartype = c("se"”, "cv", "cvpct”, "var"),
conf.int = FALSE, conf.lev = 0.95, deff = FALSE,

S3 method
coef(object, ..
S3 method
SE(object, ...
S3 method
VAR(object, ...
S3 method
cv(object, ...
S3 method
deff(object, ..
S3 method

na.rm = FALSE)

for class ’svystatL’
D)

for class ’svystatl’
for class ’svystatL’
for class ’svystatL’
for class ’svystatL’

)

for class ’svystatL’

confint(object,...)

Arguments

design

expr

by
vartype
conf.int
conf.lev

deff

na.rm

object

Object of class analytic (or inheriting from it) containing survey data and sam-
pling design metadata.

R expression defining the Complex Estimator (see *Details’).

Formula specifying the variables that define the "estimation domains". If NULL
(the default option) estimates refer to the whole population.

character vector specifying the desired variability estimators. It is possible to
choose one or more of: standard error (’ se’, the default), coefficient of variation
(’cv’), percent coefficient of variation (’ cvpct’), or variance (’var’).

Compute confidence intervals for the estimates? The default is FALSE.
Probability specifying the desired confidence level: the default value is 0. 95.
Should the design effect be computed? The default is FALSE (see 'Details’).

Should missing values (if any) be removed from the variables of interest? The
default is FALSE (see ’Details’).

An object of class svystatL.

Additional arguments to coef, ..., confint methods (if any).

svystatL 45

Details

This function computes weighted estimates for Complex Estimators using suitable weights depend-
ing on the class of design: calibrated weights for class cal.analytic and direct weights otherwise.
Standard errors are calculated using the Taylor linearization technique.

The mandatory argument expr, which identifies the Complex Estimator, must be an object of class
expression. It can be specified just a single Complex Estimator at a time, i.e. length(expr) must
be equal to 1. Any analytic function of estimators of Totals and Means is allowed.

Inside expr the estimator of the Total of a variable is simply represented by the name of the variable
itself. To represent the estimator of the Mean of a variable y, the expression y/ones has to be used
(ones being the convenience name of an artificial variable whose value is 1 for each sampling unit,
so that its Total estimator actually estimates the population total). Variables referenced inside expr
have obviously to belong to design and must be numeric.

At a minimal level, svystatL can be used to estimate Totals, Means and Ratios, thus reproduc-
ing the same results achieved by using the corresponding dedicated functions svystatTM and
svystatR. For instance, calling svystatL(design, expression(y/x)) is equivalent to invok-
ing svystatR(design, ~y, ~x), while using svystatL(design, expression(y/ones)) or
svystatTM(design, ~y, estimator = "Mean”) achieves an identical result.

The optional argument by specifies the variables that define the "estimation domains", that is the
subpopulations for which the estimates are to be calculated. If by=NULL (the default option), the esti-
mates produced by svystatL refer to the whole population. Estimation domains must be defined by
a formula: for example the statement by=~B1:B2 selects as estimation domains the subpopulations
determined by crossing the modalities of variables B1 and B2. Notice that a formula like by=~B1+B2
will be automatically translated into the factor-crossing formula by=~B1:B2: if you need to com-
pute estimates for domains B1 and B2 separately, you have to call svystatL twice. The design
variables referenced by by (if any) should be of type factor, otherwise they will be coerced.

The conf.int argument allows to request the confidence intervals for the estimates. By default
conf.int=FALSE, that is the confidence intervals are not provided.

Whenever confidence intervals are requested (i.e. conf. int=TRUE), the desired confidence level can
be specified by means of the conf. lev argument. The conf . lev value must represent a probability
(0<=conf.lev<=1) and its default is chosen to be 0. 95.

The optional argument deff allows to request the design effect [Kish 1995] for the estimates. By
default deff=FALSE, that is the design effect is not provided. The design effect of an estimator is
defined as the ratio between the variance of the estimator under the actual sampling design and the
variance that would be obtained for an ’equivalent’ estimator under a hypothetical simple random
sampling without replacement of the same size. To obtain an estimate of the design effect comparing
to simple random sampling "with replacement”, one must use deff="replace”.

For nonlinear estimators, the design effect is estimated on the linearized version of the estimator
(that is for the estimator of the total of the linearized variable, aka "Woodruff transform").

When dealing with domain estimation, the design effects referring to a given subpopulation are
currently computed by taking the ratios between the actual variance estimates and those that would
have been obtained if a simple random sampling were carried out within that subpopulation. This
is the same as the srssubpop option for Stata’s function estat.

Missing values (NA) in interest variables should be avoided. If na.rm=FALSE (the default) they gen-
erate NAs in estimates (or even an error, if design is calibrated). If na.rm=TRUE, observations
containing NAs are dropped, and estimates gets computed on non missing values only. This im-
plicitely assumes that missing values hit interest variables completely at random: should this be not
the case, computed estimates would be biased.

46 svystatL

Value

An object inheriting from the data. frame class, whose detailed structure depends on input param-
eters’ values.

Author(s)

Diego Zardetto

References

Sarndal, C.E., Swensson, B., Wretman, J. (1992) "Model Assisted Survey Sampling", Springer Ver-
lag.

Kish, L. (1995). "Methods for design effects". Journal of Official Statistics, Vol. 11, pp. 55-77.

See Also

Estimators of Totals and Means svystatTM, Ratios between Totals svystatR and Quantiles svystatQ.

Examples

Creation of a design object:

data(data.examples)

des<-e.svydesign(data=example, ids=~towcod+famcod, strata=~SUPERSTRATUM,
weights=~weight)

A first example: the ratio estimator of a Total,

which relies on auxiliary information.

Suppose you want to estimate the total of income

and you know from an external source that the

population size is, say, 1E6:

svystatL (des,expression(1E6*(income/ones)),vartype="cvpct")

By comparing the latter result with the ordinary
estimator of the mean one can see the variance
reduction stemming from the correlation between
numerator and denominator:
svystatTM(des,~income, vartype="cvpct")

Creation of another design object:

data(sbs)

des<-e.svydesign(data=sbs,ids=~id, strata=~strata,weights=~weight,
fpc=~fpc)

A complex example: estimation of the Population Standard
Deviation of a variable.
Suppose you want to estimate the standard deviation of the
population distribution of value added (va.imp2):
des<-des.addvars(des,va.imp2.sqg=va.imp22)
svystatL(des,expression(sqrt((ones/(ones-1))*
((va.imp2.sqg/ones)-(va.imp2/ones)*2)
)
), conf.int=TRUE)

The estimate above and the associated confidence interval (which

svystatQ 47

involves the estimate of the sampling variance of the complex

estimator) turn out to be very sound: indeed the TRUE value of the
parameter is:

sd(sbs.frame$va.imp2)

svystatQ Estimation of Quantiles in subpopulations

Description

Calculates estimates, standard errors and confidence intervals for quantiles of numeric variables in

subpopulations.
Usage
svystatQ(design, y, probs = ¢(0.25, 0.5, 0.75), by = NULL,
vartype = c("se”, "cv”, "cvpct”, "var"),
conf.lev = 0.95, na.rm = FALSE,
ties=c("discrete”, "rounded"))

S3 method for class ’svystatQ’
coef(object,...)

S3 method for class ’svystatQ’
SE(object,...)

S3 method for class ’svystatQ’
VAR(object,...)

S3 method for class ’svystatQ’
cv(object,...)

S3 method for class ’svystatQ’
confint(object,...)

Arguments

design Object of class analytic (or inheriting from it) containing survey data and sam-
pling design metadata.

y Formula defining the interest variable.

probs Vector of probability values to be used to calculate the quantiles estimates. The
default value selects estimates of quartiles.

by Formula specifying the variables that define the "estimation domains". If NULL
(the default option) estimates refer to the whole population.

vartype character vector specifying the desired variability estimators. It is possible to
choose one or more of: standard error (’ se’, the default), coefficient of variation
(’cv’), percent coefficient of variation (’ cvpct’), or variance (’var’).

conf.lev Probability specifying the desired confidence level: the default value is 0. 95.

na.rm Should missing values (if any) be removed from the variable of interest? The
default is FALSE (see ’Details’).

ties How should duplicated observed values be treated? Select *discrete’ for a
genuinely discrete interest variable and ’ rounded’ for a continuous one.

object An object of class svystatQ.

Additional arguments to coef, ..., confint methods (if any).

48 svystatQ

Details

This function calculates weighted estimates for the quantiles of a quantitative variable using suitable
weights depending on the class of design: calibrated weights for class cal.analytic and direct
weights otherwise.

Standard errors are calculated using the so-called "Woodruff method" [Woodruff 52][Sarndal, Swens-
son, Wretman 92]: (i) first a confidence interval (at a given confidence level 1-a) is constructed for
the relative frequency of units with values below the estimated quantile, (ii) then the inverse of the
estimated cumulative relative frequency distribution (ECDF) is used to map this interval to a con-
fidence interval for the quantile, (iii) lastly the desired standard error is estimated by dividing the
length of the obtained confidence interval by the value 2*qnorm(1-a/2). Notice that the procedure
above builds, in general, asymmetric confidence intervals around the estimated quantiles.

The mandatory argument y identifies the variable of interest, that is the variable for which estimates
of quantiles have to be calculated. The design variable referenced by y must be numeric.

The optional argument probs specifies the probability values (0.001<=probs[i]<=0.999) corre-
sponding to the quantiles one wants to estimate; the default option selects quartiles.

The optional argument by specifies the variables that define the "estimation domains", that is the
subpopulations for which the estimates are to be calculated. If by=NULL (the default option), the
estimates produced by svystatTM refer to the whole population. Estimation domains must be
defined by a formula: for example the statement by=~B1:B2 selects as estimation domains the
subpopulations determined by crossing the modalities of variables B1 and B2. Notice that a formula
like by=~B1+B2 will be automatically translated into the factor-crossing formula by=~B1:B2: if you
need to compute estimates for domains B1 and B2 separately, you have to call svystatQ twice.
The design variables referenced by by (if any) should be of type factor, otherwise they will be
coerced.

The conf.int argument allows to request the confidence intervals for the estimates. By default
conf.int=FALSE, that is the confidence intervals are not provided.

Whenever confidence intervals are requested (i.e. conf. int=TRUE), the desired confidence level can
be specified by means of the conf. lev argument. The conf . lev value must represent a probability
(0<=conf.lev<=1) and its default is chosen to be 0. 95.

Missing values (NA) in interest variables should be avoided. If na.rm=FALSE (the default) they gen-
erate NAs in estimates (or even an error, if design is calibrated). If na.rm=TRUE, observations
containing NAs are dropped, and estimates gets computed on non missing values only. This im-
plicitely assumes that missing values hit interest variables completely at random: should this be not
the case, computed estimates would be biased.

Argument ties addresses the problem of how to treat duplicated observed values (if any) when
computing the ECDF. Option ’discrete’ (the default) is appropriate when the variable of interest
is genuinely discrete, while ’rounded’ is a better choice for a continuous variable, i.e. when
duplicates stem from rounding. In the first case the ECDF will show a vertical step corresponding
to a duplicated value, in the second a smoother shape will be achieved by linear interpolation.

Value
An object inheriting from the data. frame class, whose detailed structure depends on input param-
eters’ values.

Author(s)

Diego Zardetto

svystatR 49

References

Woodruff, R.S. (1952) "Confidence Intervals for Medians and Other Position Measures", Journal
of the American Statistical Association, Vol. 47, No. 260, pp. 635-646.

Sarndal, C.E., Swensson, B., Wretman, J. (1992) "Model Assisted Survey Sampling", Springer Ver-
lag.

See Also

Estimators of Totals and Means svystatTM, Ratios between Totals svystatR and Complex Analytic
Functions of Totals and/or Means svystatL.

Examples

Creation of a design object:

data(data.examples)

des<-e.svydesign(data=example, ids=~towcod+famcod, strata=~SUPERSTRATUM,
weights=~weight)

Estimate of the deciles of the income variable for
the whole population:
svystatQ(des,~income,probs=seq(0.1,0.9,0.1),ties="rounded")

Another design object:

data(sbs)

des<-e.svydesign(data=sbs,ids=~id, strata=~strata,weights=~weight,
fpc=~fpc)

Estimation of the median value added

for economic activity macro-sectors:

svystatQ(des,~va.imp2,probs=0.5,by=~nace.macro,
ties="rounded",vartype="cvpct")

Estimation of the Interquartile Range (IQR) of the number
of employees for economic activity macro-sectors:
apply(svystatQ(des,~emp.num,probs=c(0.25,0.75),by=~nace.macro)[,2:3]1,1,diff)

svystatR Estimation of Ratios in subpopulations

Description

Calculates estimates, standard errors and confidence intervals for ratios between totals in subpopu-
lations.

Usage

svystatR(design, num, den, by = NULL, cross = FALSE,
vartype = c("se", "cv”, "cvpct”, "var"),
conf.int = FALSE, conf.lev = 0.95, deff = FALSE,

na.rm = FALSE)

50 svystatR
S3 method for class ’svystatR’
coef(object,...)
S3 method for class ’svystatR’
SE(object,...)
S3 method for class ’svystatR’
VAR(object,...)
S3 method for class ’svystatR’
cv(object,...)
S3 method for class ’svystatR’
deff(object,...)
S3 method for class ’svystatR’
confint(object,...)
Arguments
design Object of class analytic (or inheriting from it) containing survey data and sam-
pling design metadata.
num Formula defining the numerator variables for the ratio estimators.
den Formula defining the denominator variables for the ratio estimators.
by Formula specifying the variables that define the "estimation domains". If NULL
(the default option) estimates refer to the whole population.
cross Should ratios be estimated for all the pairs of variables in num’ and *den’? The
default is FALSE, meaning that ratios get estimated parallel-wise (see ’Details’).
vartype character vector specifying the desired variability estimators. It is possible to
choose one or more of: standard error (’ se’, the default), coefficient of variation
(’cv?), percent coefficient of variation (’cvpct’), or variance (’var’).
conf.int Compute confidence intervals for the estimates? The default is FALSE.
conf.lev Probability specifying the desired confidence level: the default value is 0. 95.
deff Should the design effect be computed? The default is FALSE (see 'Details’).
na.rm Should missing values (if any) be removed from the variables of interest? The
default is FALSE (see ’Details’).
object An object of class svystatR.
Additional arguments to coef, ..., confint methods (if any).
Details

This function computes weighted estimates for Ratios between Totals using suitable weights de-
pending on the class of design: calibrated weights for class cal.analytic and direct weights
otherwise. Standard errors are calculated using the Taylor linearization technique.

The mandatory argument num (den) identifies the variables whose totals appear as numerators (de-

nominators) in the Ratio estimators: the corresponding formula must be of the type num = ~num.1 + ...

(den = ~den.1 + ... + den.l). The design variables referenced by num (den) must be numeric.

If cross=TRUE, the function computes estimates for all the Ratios between pairs of variables coming
from num and den (that is kx1 estimates for the formulae above). If, on the contrary, cross=FALSE
(the default), Ratios get estimated parallel-wise and R recycling rule is applied whenever k!=1: for
the formulae above, this generates r Ratios, where r=max(k, 1).

The optional argument by specifies the variables that define the "estimation domains", that is the
subpopulations for which the estimates are to be calculated. If by=NULL (the default option), the esti-
mates produced by svystatR refer to the whole population. Estimation domains must be defined by

+ num.k

svystatR 51

a formula: for example the statement by=~B1:B2 selects as estimation domains the subpopulations
determined by crossing the modalities of variables B1 and B2. Notice that a formula like by=~B1+B2
will be automatically translated into the factor-crossing formula by=~B1:B2: if you need to com-
pute estimates for domains B1 and B2 separately, you have to call svystatR twice. The design
variables referenced by by (if any) should be of type factor, otherwise they will be coerced.

The conf.int argument allows to request the confidence intervals for the estimates. By default
conf.int=FALSE, that is the confidence intervals are not provided.

Whenever confidence intervals are requested (i.e. conf . int=TRUE), the desired confidence level can
be specified by means of the conf. lev argument. The conf. lev value must represent a probability
(0<=conf.lev<=1) and its default is chosen to be 0. 95.

The optional argument deff allows to request the design effect [Kish 1995] for the estimates. By
default deff=FALSE, that is the design effect is not provided. The design effect of an estimator is
defined as the ratio between the variance of the estimator under the actual sampling design and the
variance that would be obtained for an ’equivalent’ estimator under a hypothetical simple random
sampling without replacement of the same size. To obtain an estimate of the design effect comparing
to simple random sampling "with replacement”, one must use deff="replace”.

Being Ratios nonlinear estimators, the design effect is estimated on the linearized version of the
estimator (that is: for the estimator of the total of the linearized variable, aka "Woodruff transform").
When dealing with domain estimation, the design effects referring to a given subpopulation are
currently computed by taking the ratios between the actual variance estimates and those that would
have been obtained if a simple random sampling were carried out within that subpopulation. This
is the same as the srssubpop option for Stata’s function estat.

Missing values (NA) in interest variables should be avoided. If na. rm=FALSE (the default) they gen-
erate NAs in estimates (or even an error, if design is calibrated). If na.rm=TRUE, observations
containing NAs are dropped, and estimates gets computed on non missing values only. This im-
plicitely assumes that missing values hit interest variables completely at random: should this be not
the case, computed estimates would be biased. Notice that the na. rm=TRUE option is only allowed
for a single Ratio, i.e. if num and den references a single interest variable.

Value

An object inheriting from the data. frame class, whose detailed structure depends on input param-
eters’ values.

Warning

It can happen that, in some subpopulations, the estimate of the Total of some den variables turns
out to be zero. In such cases svystatR returns NaN for the corresponding estimates.

Author(s)

Diego Zardetto

References

Sarndal, C.E., Swensson, B., Wretman, J. (1992) "Model Assisted Survey Sampling", Springer Ver-
lag.

Kish, L. (1995). "Methods for design effects". Journal of Official Statistics, Vol. 11, pp. 55-77.

52 svystatTM

See Also

Estimators of Totals and Means svystatTM, Quantiles svystatQ and Complex Analytic Functions
of Totals and/or Means svystatL.

Examples

Creation of a design object:

data(sbs)

des<-e.svydesign(data=sbs,ids=~id,strata=~strata,weights=~weight,
fpc=~fpc)

Estimation of the average value added per employee
at the nation level:
svystatR(des,~va.imp2,~emp.num)

The same as above by economic activity macro-sector:
svystatR(des,~va.imp2,~emp.num,~nace.macro,vartype="cvpct")

Another design object:

data(data.examples)

des<-e.svydesign(data=example, ids=~towcod+famcod, strata=~SUPERSTRATUM,
weights=~weight)

Estimation of the ratios y1/x1, y1/x2, y2/x1 and y2/x2 by region,
notice the use of argument cross:
svystatR(des,~y1+y2,~x1+x2,by=~regcod, cross=TRUE)

... compare the latter with the default (i.e. cross=FALSE)
svystatR(des,~y1+y2,~x1+x2,by=~regcod)

Estimation of the ratios z/x1, z/x2 e z/x3
for the whole population (notice the recycling rule):
svystatR(des,~z,~x1+x2+x3, conf.int=TRUE)

Estimators of means can be thought as

estimators of ratios:
svystatTM(des,~income,estimator="Mean")
svystatR(des.addvars(des,ones=1),num=~income, den=~ones)

svystatTM Estimation of Totals and Means in subpopulations

Description
Computes estimates, standard errors and confidence intervals for Totals and Means in subpopula-
tions.

Usage

svystatTM(design, y, by = NULL, estimator = c("Total”, "Mean"),

n n

vartype = c("se”, "cv”, "cvpct”, "var"),

svystatTM

conf.int = FALSE, conf.lev =

53

0.95, deff = FALSE,

na.rm = FALSE)

S3 method for class ’svystatTM’
coef(object,...)

S3 method for class ’svystatTM’
SE(object,...)

S3 method for class ’svystatTM’
VAR(object,...)

S3 method for class ’svystatTM’
cv(object,...)

S3 method for class ’svystatTM’
deff(object,...)

S3 method for class ’svystatTM’

confint(object,...)

Arguments

design

y
by

estimator
vartype
conf.int
conf.lev

deff

na.rm

object

Details

Object of class analytic (or inheriting from it) containing survey data and sam-
pling design metadata.

Formula defining the variables of interest.

Formula specifying the variables that define the "estimation domains". If NULL
(the default option) estimates refer to the whole population.

character specifying the desired estimator: it may be ’Total’ (the default) or
"Mean’.

character vector specifying the desired variability estimators. It is possible to
choose one or more of: standard error (’ se’, the default), coefficient of variation
(’cv’), percent coefficient of variation (’ cvpct’), or variance (’var’).

Compute confidence intervals for the estimates? The default is FALSE.
Probability specifying the desired confidence level: the default value is 0. 95.
Should the design effect be computed? The default is FALSE (see 'Details’).

Should missing values (if any) be removed from the variables of interest? The
default is FALSE (see ’Details’).

An object of class svystatTM.

Additional arguments to coef, ..., confint methods (if any).

This function computes weighted estimates for Totals and Means using suitable weights depending
on the class of design: calibrated weights for class cal.analytic and direct weights otherwise.
Standard errors for nonlinear estimators (e.g. calibration estimators) are calculated using the Taylor
linearization technique.

The mandatory argument y identifies the variables of interest, that is the variables for which esti-
mates are to be calculated. The corresponding formula should be of the type y=~vari1+...+varn.
The design variables referenced by y should be numeric or factor (variables of other types - e.g.
character - will be coerced). It is admissible to specify for y "mixed" formulae that simultaneously
contain quantitative (numeric) variables and qualitative (factor) variables.

To override the restriction to formulae of the type y=~var1+. . .+varn, the Asls operator I() can be
used (see ’Examples’). Though the latter opportunity could appear quite useful in some occasion,

54

svystatTM

actually it should be almost always possible to find a work-around by using other functions of the
ReGenesees package.

The optional argument by specifies the variables that define the "estimation domains", that is the
subpopulations for which the estimates are to be calculated. If by=NULL (the default option), the
estimates produced by svystatTM refer to the whole population. Estimation domains must be
defined by a formula: for example the statement by=~B1:B2 selects as estimation domains the
subpopulations determined by crossing the modalities of variables B1 and B2. Notice that a formula
like by=~B1+B2 will be automatically translated into the factor-crossing formula by=~B1:B2: if you
need to compute estimates for domains B1 and B2 separately, you have to call svystatTM twice.
The design variables referenced by by (if any) should be of type factor, otherwise they will be
coerced.

The optional argument estimator makes it possible to select the desired estimator. If
estimator="Total" (the default option), svystatTM calculates, for a given variable of interest
vark, the estimate of the total (when vark is numeric) or the estimate of the absolute frequency
distribution (when vark is factor). Similarly, if estimator="Mean", the function calculates the es-
timate of the mean (when vark is numeric) or the the estimate of the relative frequency distribution
(when vark is factor).

The conf.int argument allows to request the confidence intervals for the estimates. By default
conf.int=FALSE, that is the confidence intervals are not provided.

Whenever confidence intervals are requested (i.e. conf. int=TRUE), the desired confidence level can
be specified by means of the conf.lev argument. The conf. lev value must represent a probability
(0<=conf.lev<=1) and its default is chosen to be 0. 95.

The optional argument deff allows to request the design effect [Kish 1995] for the estimates. By
default deff=FALSE, that is the design effect is not provided. The design effect of an estimator is
defined as the ratio between the variance of the estimator under the actual sampling design and the
variance that would be obtained for an ’equivalent’ estimator under a hypothetical simple random
sampling without replacement of the same size. To obtain an estimate of the design effect comparing
to simple random sampling "with replacement”, one must use deff="replace”.

Understanding what ’equivalent’ estimator actually means is straightforward when dealing with
Horvitz-Thompson estimators of Totals and Means. This is not the case when, on the contrary, the
estimator to which the deff refers is a nonlinear estimator (e.g. for Calibration estimators of Totals
and Means). In such cases, the standard approach is to use as ’equivalent’ estimator the linearized
version of the original estimator (that is: the estimator of the total of the linearized variable, aka
"Woodruff transform").

When dealing with domain estimation, the design effects referring to a given subpopulation are
currently computed by taking the ratios between the actual variance estimates and those that would
have been obtained if a simple random sampling were carried out within that subpopulation. This
is the same as the srssubpop option for Stata’s function estat.

Missing values (NA) in interest variables should be avoided. If na.rm=FALSE (the default) they gen-
erate NAs in estimates (or even an error, if design is calibrated). If na.rm=TRUE, observations
containing NAs are dropped, and estimates gets computed on non missing values only. This im-
plicitely assumes that missing values hit interest variables completely at random: should this be not
the case, computed estimates would be biased. Notice that the na. rm=TRUE option is only allowed
if y references a single interest variable.

Value

An object inheriting from the data. frame class, whose detailed structure depends on input param-
eters’ values.

svystatTM 55

Author(s)

Diego Zardetto

References

Sarndal, C.E., Swensson, B., Wretman, J. (1992) "Model Assisted Survey Sampling"”, Springer Ver-
lag.

Kish, L. (1995). "Methods for design effects". Journal of Official Statistics, Vol. 11, pp. 55-77.

See Also

Estimators of Ratios between Totals svystatR, Quantiles svystatQ, and Complex Analytic Func-
tions of Totals and/or Means svystatL.

Examples

data(data.examples)

Creation of a design object:
des<-e.svydesign(data=example, ids=~towcod+famcod, strata=~SUPERSTRATUM,
weights=~weight)

Estimation of the total of 3 quantitative variables for the whole
population:
svystatTM(des, ~y1+y2+y3)

Estimation of the total of the same 3 variables by region, with SE
and CV%:

svystatTM(des,~yl1+y2+y3,~regcod,vartype=c("se"”,"cvpct”))

Estimation of the mean of the same 3 variables by marstat and sex:
svystatTM(des,~y1+y2+y3,~marstat:sex,estimator="Mean")

Estimation of the absolute frequency distribution of the qualitative
variable age5c for the whole population, with the design effect:
svystatTM(des, ~age5c,deff=TRUE)

Estimation of the relative frequency distribution of the qualitative
variable marstat by sex:
svystatTM(des, ~marstat,~sex,estimator="Mean")

Estimation of the relative frequency of the joint distribution of sex
and marstat:

First Solution (using the AsIs operator I()):
svystatTM(des,~I(sex:marstat),estimator="Mean")

Second Solution (adding a new variable to des):
des2 <- des.addvars(des, sex.marstat=sex:marstat)
svystatTM(des2,~sex.marstat,estimator="Mean")

Estimation of the mean income inside provinces, with confidence intervals
at a confidence level of 0.9:

56 weights

svystatTM(des, ~income, ~procod, estimator="Mean", conf.int=TRUE,conf.lev=0.9)

Quantitative and qualitative variables together: estimation of the
total of income and of the absolute frequency distribution of sex,
by marstat:

svystatTM(des,~incomet+sex,~marstat)

Under default settings lonely PSUs produce errors in standard
errors estimation (notice we didn’t pass the fpcs):

data(fpcdat)

des. lpsu<-e.svydesign(data=fpcdat, ids=~psu+ssu,strata=~stratum,
weights=~w)

Not run:

non

svystatTM(des.1lpsu,~x+y+z,vartype=c("se","cvpct"))

End(Not run)

This can be circumvented in different ways, namely:
old.op <- options("”RG.lonely.psu”="adjust")
svystatTM(des. 1lpsu,~x+y+z,vartype=c("se","cvpct"))
or otherwise:

options("RG.lonely.psu"="average")

svystatTM(des. lpsu,~x+y+z,vartype=c("se","cvpct"))
options(old.op)

n_n

weights Retrieve sampling units weights

Description

Extracts the current weights of the units belonging to a survey design object.

Usage
weights(object, ...)
Arguments
object Object of class analytic (or inheriting from it) containing survey data and sam-
pling design metadata.
Arguments for future expansion.
Details

The current weights of object are, by definition, those weights that would be used for estimation
purposes on that object (e.g. by functions svystatTM, svystatR, svystatQ, svystatL, ...). The
nature of such weights depends on the class of object: calibrated weights for class cal.analytic
and direct weights otherwise.

weights 57

Value

A vector of weights, whose components are positionally tied to the sampling units belonging to
object.

Note

If object has undergone multiple, subsequent calibration steps, the function will return the output
weights generated by the /ast calibration step.

Author(s)

Diego Zardetto

See Also

Function g. range to asses the range of the g-weights of a calibrated design object.

Examples

Creation of the object to be calibrated:

data(data.examples)

exdes<-e.svydesign(data=example, ids=~towcod+famcod, strata=~SUPERSTRATUM,
weights=~weight)

Retrieve the weights and summarize their distribution:
summary (weights(exdes))

Now calibrate (global solution) on the joint distribution of sex

and marstat (totals in pop03):

excal.lst<-e.calibrate(design=exdes,df.population=pop03,
calmodel=~marstat:sex-1,calfun="1linear"”,bounds=bounds)

Retrieve the current weights (i.e. the calibrated ones) and
summarize their distribution:
summary (weights(excal.1st))

Now calibrate once again, this time on the marginal distribution

of age in 5 classes (age5c) inside provinces (procod) (totals in pop06p)

with the iterative solution, the logit distance and bounds=c(0.5, 1.5):

excal.2nd<-e.calibrate(design=excal.l1st,df.population=pop06p,
calmodel=~age5c-1,partition=~procod,calfun="1logit",
bounds=c(0.5, 1.5))

Notice that the print method correctly takes the calibration chain
into account:
excal.2nd

Now retrieve the current weights (i.e. the ones generated by the second
calibration step) and summarize their distribution:
summary (weights(excal.2nd))

58 write.svystat

write.svystat Export Survey Statistics

Description

Prints Survey Statistics to a file or connection.

Usage
write.svystat(x, ...)
Arguments
X An object containing survey statistics.
Arguments to write.table
Details

This function is just a convenience wrapper to write. table, designed to export objects which have
been returned by survey statistics functions (e.g. svystatTM, svystatR, svystatQ, svystatL).

Author(s)

Diego Zardetto

See Also

write.table and the 'R Data Import/Export’ manual.

Examples

Creation of a design object:

data(sbs)

des<-e.svydesign(data=sbs,ids=~id, strata=~strata,weights=~weight,
fpc=~fpc)

Estimation of the average value added per employee

for economic activity region and macro-sectors,

with SE, CV% and standard confidce intervals:

stat <- svystatR(des,~va.imp2,~emp.num,by=~region:nace.macro,
vartype=c("se","cvpct"),conf.int=TRUE)

stat

In order to export the summary statistics above
into a CSV file for input to Excel one can use:
Not run:
write.svystat(stat,file="stat.csv",sep=";")

End(Not run)
...and to read this file back into R one needs

Not run:
stat.back <- read.table("stat.csv"”, header=TRUE,sep=";",

%into% 59

check.names=FALSE)
stat.back

End(Not run)

Notice, however, that the latter object has
lost a lot of meta-data as compared to the
original one, so that e.g.:

Not run:

confint(stat.back)

End(Not run)

...while, on the contrary:
confint(stat)

%into% Compress nested factors

Description

The special binary operator %into% transforms nested factors in such a way as to reduce the dimen-
sion and/or the sparseness of the model matrix of a calibration problem.

Usage

inner %into% outer
"%into%" (inner, outer)

Arguments

inner Factor with levels nested into outer (see ’Details’).

outer Factor whose levels are an aggregation of those in inner (see *Details’).
Details

Arguments inner and outer must be both factors and must have the same length. Moreover,
inner has to be strictly nested into outer. Nesting is defined by treating elements in inner and
outer as if they were positionally tied (i.e. as if they belonged to columns of a given dataframe).
The definition is as follows:

inner and outer are strictly nested if, and only if, 1) every set of equal elements in inner cor-
respond to a set of equal elements in outer, and 2) inner has more non-empty levels than outer.

If inner and outer do not fulfill the conditions above, evaluating inner %into% outer gives
an error.

Suppose inner is actually nested into outer and define inner.in.outer <- inner %into% outer.
The output factor inner.in.outer is built by recoding inner levels in such a way that each of them
is mapped into the integer which represents its order inside the corresponding level of outer (see
’Examples’). As a consequence, the levels of inner.in.outer will be 1:n.max, being n.max the
maximum number of levels of inner tied to a level of outer. Since this number is generally consid-
erably smaller than the number of levels of inner, inner.in.outer can be seen as a compressed

60

%into%

representation of inner. Obviously, compression comes at a price: indeed inner.in.outer can
now be used to identify a level of inner only inside a given level of outer (see ’Examples’).

The usefulness of the %into% operator emerges in the calibration context. As we already docu-
mented in e. calibrate, factorizing a calibration problem (i.e. exploiting the partition argument
of e.calibrate) determines a significant reduction in computation complexity, especially for big
surveys. Now, it is sometimes the case that a calibration model is actually factorizable, even if this
property is not self-apparent, due to factor nesting. In such cases, anyway, trying naively to factorize
the outer variable(s) typically leads to very big and sparse model matrices (as well as population
totals dataframes), with the net result of vashing-out the expected efficiency gain. A better alterna-
tive is to exploit the %into% operator in order to compress the inner variable in such a way that the
outer variable can be actually factorized without giving rise to huge and sparse matrices. Section
’Examples’ reports some practical illustration of the above line of reasoning.

Value

A factor with levels 1:n.max, being n.max the maximum number of levels of inner tied to a level
of outer.

Author(s)

Diego Zardetto

See Also

Further examples can be found in the fill. template help page.

Examples

B s s s
General properties of the %into% operator
B s s R S
First build a small dataframe with 2 nested factors representing
regions and provinces:
dd <- data.frame(
reg factor(rep(LETTERS[1:3], c(6, 3, 1))),
prov = factor(rep(letters[1:6]1, c(3, 2, 1, 2, 1, 1)))
)

dd

Since prov is strictly nested into reg we can compute:
prov.in.reg <- dd$prov %into% dd$reg
prov.in.reg

Note that prov.in.reg has 3 levels because, as can be seen from dd,

the maximum number of provinces inside regions is 3. Thus prov.in.reg

is actually a compressed version of dd$prov (whose levels were 6)

but, obviously, it can now be used to identify a province only inside

a given region. This means that the the two factors below are identical (up
to levels’ labels):

dd$prov

interaction(prov.in.reg,dd$reg,drop=TRUE)

Note that all the statements below generate errors:
Not run:
dd$reg %into% dd$prov

%into%

dd
dd

#it

##
##
#i#

#
da
ex
we

o ¥ O K ¥ M O B O O R ¥ O OE N E E

#

t<

#

tp

$reg %into% dds$reg
$prov %into% dd$prov

End(Not run)

SHHHHEHE A A

A more useful (and complex) example from the calibration context #
s S S S
First define a design object:

ta(data.examples)
des <- e.svydesign(data=example, ids=~towcod+famcod, strata=~SUPERSTRATUM,
ights=~weight)

Now suppose you have to perform a calibration process which

exploits the following known population totals:

1) Joint distribution of sex and agel0Oc (age in 10 classes)
at the region level;

2) Joint distribution of sex and age5c (age in 5 classes)
at the province level;

The auxiliary variables corresponding to the population totals above
can be symbolically represented by a calibration model like the following:
~(procod:age5c + regcod:agel0c - 1):sex

At first sight it seems that only the sex variable can be factorized

in the model above. However if one observe that regions are an aggregation
of provinces, one realizes that also the regcod variable can be factorized.
Similarly, since categories of age5c are an aggregation of categories of
agel10c, agelOc can be factorized too. In both cases, using the %into%
operator will save computation time and memory usage.

Let us see it in practice:

1) Global calibration (i.e. calmodel=~(procod:age5c + regcod:agel0Oc - 1):sex,
no partition variable, known totals stored in pop07):
-system. time(
cal07<-e.calibrate(design=exdes,df.population=pop07,
calmodel=~(procod:age5c + regcod:agelOc - 1):sex,
calfun="logit",bounds=c(0.2,1.8),aggregate.stage=2)

2) Partitioned calibration on the self evident variable sex only
(i.e. calmodel=~procod:age5c + regcod:agel0Oc - 1, partition=~sex,
known totals stored in pop07p):
<-system.time(
cal07p<-e.calibrate(design=exdes,df.population=pop07p,
calmodel=~procod:age5c + regcod:agel0c - 1,partition=~sex,
calfun="logit",bounds=c(0.2,1.8),aggregate.stage=2)

3) Full partitioned calibration on variables sex, regcod and age5c

ex

ex

by exploiting %into%.
First add to the design object the new compressed factor variables
involving nested factors, namely provinces inside regions...

des<-des.addvars(exdes,procod. in.regcod=procod %into% regcod)
...and agel0Oc inside age5c:
des<-des.addvars(exdes,agel0c.in.age5c=agel0c %into% age5c)

61

62

Now calibrate exploiting the new variables

(i.e. calmodel=~procod.in.regcod + agel0c.in.age5c - 1,

partition=~sex:regcod:age5c, known totals stored inside calO7pp)

tpp<-system.time(
cal07pp<-e.calibrate(design=exdes,df.population=pop07pp,

calmodel=~procod.in.regcod + agel0Oc.in.age5c - 1,
partition=~sex:regcod:age5c,
calfun="logit",bounds=c(0.2,1.8),aggregate.stage=2)

)
Now compare execution times:
t
tp
tpp

thus, tpp < tp < t, as expected.

%into%

Index

*Topic datasets
data.examples, 12
fpcdat, 33
sbs, 42

+Topic survey
%into%, 59
aux.estimates, 2
bounds.hint, 4
check.cal, 7
collapse.strata, 8
des.addvars, 13
e.calibrate, 15
e.svydesign, 25
extractors, 28
fill.template, 30
g.range, 34
pop.template, 35
population.check, 38
ReGenesees.options, 40
svystatL, 44
svystatQ, 47
svystatR, 49
svystatTM, 52
weights, 56

%into%, 31, 59

aux.estimates, 2

bounds (data.examples), 12
bounds.hint, 4, 19, 35

check.cal, 7, 18, 19

coef, 29

coef.svystatL (svystatlL), 44
coef.svystatQ (svystatQ), 47
coef.svystatR (svystatR), 49
coef.svystatTM (svystatTM), 52
collapse.strata, 8, 41
confint, 29

confint.svystatL (svystatL), 44
confint.svystatQ (svystatQ), 47
confint.svystatR (svystatR), 49
confint.svystatTM (svystatTM), 52
cv (extractors), 28

63

cv.svystatl (svystatlL), 44
cv.svystatQ (svystatQ), 47
cv.svystatR (svystatR), 49
cv.svystatTM (svystatTM), 52

data.examples, 12

deff (extractors), 28
deff.svystatlL (svystatlL), 44
deff.svystatR (svystatR), 49
deff.svystatTM (svystatTM), 52
des.addvars, 13

e.calibrate, 3,6, 7, 13, 14, 15, 26, 27, 31,
35, 36, 39, 60

e.svydesign, 3, 14, 19, 25,41

ecal.status (e.calibrate), 15

example (data.examples), 12

extractors, 28

fill.template, 3, 16, 19, 30, 36, 39, 60
fpcdat, 33, 41

g.range, 6, 19, 34, 57
memory.limit, 3/

pop.template, 3, 6, 16, 19, 31, 35, 39
pop01 (data.examples), 12

pop02 (data.examples), 12

pop03 (data.examples), 12

pop03p (data.examples), 12

pop04 (data.examples), 12

pop04p (data.examples), 12

pop05 (data.examples), 12

pop05p (data.examples), 12

pop06p (data.examples), 12

pop07 (data.examples), 12

pop07p (data.examples), 12
pop07pp (data.examples), 12
population.check, 3, 5, 6, 16, 19, 36, 38

ReGenesees.options, 9, 10, 27, 34, 40

RG.adjust.domain.lonely
(ReGenesees.options), 40

RG.1lonely.psu (ReGenesees.options), 40

64

RG.ultimate.cluster
(ReGenesees.options), 40

sbs, 42

SE (extractors), 28

SE.svystatL (svystatl), 44

SE.svystatQ (svystatQ), 47

SE.svystatR (svystatR), 49

SE.svystatTM (svystatTM), 52

svystatL, 19, 27-29, 44, 49, 52, 55, 56, 58

svystatQ, 19, 27-29, 46, 47, 52, 55, 56, 58

svystatR, 19, 27-29, 46, 49, 49, 55, 56, 58

svystatTM, 2, 3, 19, 26-29, 46, 49, 52, 52, 56,
58

VAR (extractors), 28
VAR.svystatL (svystatL), 44
VAR.svystatQ (svystatQ), 47
VAR.svystatR (svystatR), 49
VAR.svystatTM (svystatTM), 52

weights, 35, 56
write.svystat, 58
write.table, 58

INDEX

	aux.estimates
	bounds.hint
	check.cal
	collapse.strata
	data.examples
	des.addvars
	e.calibrate
	e.svydesign
	extractors
	fill.template
	fpcdat
	g.range
	pop.template
	population.check
	ReGenesees.options
	sbs
	svystatL
	svystatQ
	svystatR
	svystatTM
	weights
	write.svystat
	%into%
	Index

