

ADMS.F/OSS

 2

DOCUMENT METADATA

Property Value

Release date 21/02/2012

Status: Draft

Version: 0.01

Authors: Phil Archer W3C

Reviewed by:

Approved by:

DOCUMENT HISTORY

Version Description Action

0.01 Creation Creation

 3

TABLE OF CONTENTS

1. Introduction... 3

2. Conformance Statement .. 4

3. Namespaces .. 4

4. Conceptual Model .. 7

4.1 The Software Asset Class .. 7

4.2 ADMS Asset Relationships and Properties inherited by ADMS.F/OSS Software Asset

Class 7

4.3 Technical Description of the Software .. 9

4.3.1 Topic .. 10

4.3.2 Intended Audience ... 10

4.3.3 Locale .. 10

4.3.4 User Interface Type ... 10

4.3.5 Programming Language .. 11

4.3.6 Operating System .. 11

4.4 Usage and Assessment .. 11

4.4.1 Used By ... 11

4.4.2 Assessment and Assesses .. 12

4.4.3 Metrics ... 12

4.4.4 The Assessment Class .. 12

4.4.5 The Metrics Class .. 13

4.5 The Project and Community ... 15

4.6 Functional Classification for the Public Sector ... 16

4.7 Languages .. 16

5. Properties Considered and Excluded .. 17

6. The RDF Schema (To Do) ... 17

7. The XML Schema (To Do) ... 17

8. Usage Guidelines ... 17

9. Background and Objectives ... 18

10. Approach & Community ... 19

11. Change Control .. 19

12. References ... 19

1. INTRODUCTION

The Asset Description Metadata Schema [ADMS], is a vocabulary for describing Semantic

Assets, defined as a collection of reference data items that is used for eGovernment metadata,

the sharing of which among administrations contributes to increased interoperability across

organisational and geographic boundaries. This broad definition covers specifications, guideline

 4

documents, metadata schemas, code lists, controlled vocabularies, and references to various

types of entities in the real world, such as organisations, people and places.

ADMS.F/OSS (ADMS for Free and Open Source Software) is an extension to ADMS to

encompass software, typically made available through a catalogue known as a 'software forge.'

Like ADMS, ADMS.F/OSS has been created under Action 1.1 of the ISA Programme [A11].

Further background is available in "Towards Open Government Metadata" [TOGM] which offers

an overview and context for the work.

The intention is not to create a new vocabulary, but to identify and re-use existing methods for

describing software assets. In particular, ADMS.F/OSS draws on the following work:

@@@ Insert details from Related Work page@@@

2. CONFORMANCE STATEMENT

A publisher using the vocabularies can choose whether to publish using either RDF or XML as

their technology and may use any of the terms defined in this document.

A consumer of data published using the vocabularies must understand all the terms defined

below in one of three ways which should be declared when claiming conformance:

RDF conformance, meaning that RDF data published using any term in the

vocabularies will be consumed and processed accordingly;

XML conformance, meaning that XML data published using any term in the

vocabularies will be consumed and processed accordingly;

XML and RDF conformance, meaning that both RDF and XML data published using any

term in the vocabularies will be consumed and processed accordingly.

3. NAMESPACES

At the time of publication, an active discussion is ongoing concerning the namespace to be

used for ADMS and ADMS.F/OSS. Factors such as long term stability and change control are

paramount. For the time being, we are simply using 'example.org' as a place holder, to be

replaced in the near future.

With that in mind, we define the namespaces and suggested prefixes for ADMS and

ADMS.F/OSS as simply:

 5

Prefix Namespace

adms http://example.org/ns/adms#

admsf http://example.org/ns/admsf#

Figure 1 UML diagram of ADMS.F/OSS

Key: Grey - Classes inherited from ADMS. Light Blue - the software asset itself. Purple - the project, people and funding behind the software asset.

Light brown - usage and assessment. Yellow - what the software is for, technical aspects etc.

7

4. CONCEPTUAL MODEL

The conceptual model presented in Figure 1 is independent of any technology that may be used

to represent it. It describes an extension to ADMS that provides the minimal set of classes,

relationships and properties necessary to describe software assets.

This specification is arranged in sections as reflected in the colour coding used in Figure 1.

After introducing the Software Asset Class, it reviews the ADMS relationships and properties

providing notes designed to interpret them in the context of ADMS.F/OSS (section 4.2). The

document then works through the relationships, secondary classes and properties in three

sections:

 Technical description of the software asset - what is it designed to do, what operating

system and programming language is used etc. (coloured yellow in Figure 1 and

described in Section 4.3)

 Usage and Assessment - who uses the software and what comments have they made

about it (coloured light brown in Figure 1)

 The project, people and funding behind the software (coloured purple in Figure 1)

4.1 THE SOFTWARE ASSET CLASS

The Software Asset class is the key class for ADMS.F/OSS. It is a sub class of the ADMS Asset

class and therefore inherits all the latter's properties and relationships. These are defined in the

ADMS specification and are summarised in the following section with notes on their use within

the ADMS.F/OSS context.

4.2 ADMS ASSET RELATIONSHIPS AND PROPERTIES INHERITED BY
ADMS.F/OSS SOFTWARE ASSET CLASS

Relationship Class Cardinality Notes (where applicable)

repositoryOrigin Repository [0..1] The forge

release Release [0..*]
A software package that can be

downloaded

spatialCoverage
Geographic

Coverage
[0..1]

The geographic locations for

which the software is applicable.

This is likely to be left unused in

ADMS.F/OSS

8

domain Domain [0..*]
The public sector for which the

software is relevant.

assetType Asset Type [1..*]

This is relationship is mandatory

in ADMS. See Section @@@

for a controlled vocabulary

language Language [0..*]

This may not be relevant to a

software asset for which there

are separate relationships for

programming language (4.3.5)

and locale (4.3.3)

publisher Publisher [0..*]

subject Subject [0..*]

This may be relevant but note

the provision of the

topic/Function relationship and

class (4.3.1)

status Status [0..*]

Alpha, beta, RC etc.

@@@Controlled voc for

this?@@

relatedAsset Asset [0..*]

documentation Documentation [0..*]

This may include screenshots

and videos as well as textual

documentation.

Table 1 ADMS relationships inherited by the Software Asset Class

Property Data type Cardinality Notes

name text [1..*]

The software must have a

name. See section 4.7 for notes

multiple languages

alternativeName text [0..*]
Any number of alternative

names may be supplied.

dateOfCreation dateTime [0..1] Dates (and time if relevant)

should be conformant with ISO

9

8601:2004. All xsd date and

time formats meet this criteria.

dateOfLastModification dateTime [0..*]

description text [1..*]
A free text description of the

software must be provided.

ID URI [1..1]
Each software asset must have

a URI.

identifier string [0..*]

Any number of identifiers,

whether URIs or not, may also

be assigned to the software

asset.

keyword text [0..*]

version string [0..1]

Table 2 ADMS properties inherited by the Software Asset Class

4.3 TECHNICAL DESCRIPTION OF THE SOFTWARE

ADMS.F/OSS uses common terms to describe what a software asset does, its intended

audience and the key technical parameters of programming language and operating system.

Following the ADMS approach, for each relationship the associated class has two properties:

 a code - a value from a controlled vocabulary

 a URI.

Either or both properties may be used.

There are two terms within ADMS Core that are worthy of highlight in this respect too:

 licence - ADMS provides a licence relationship between a Release and a Licence;

 development status - this is covered by the ADMS relationship of status (see Table 1).

10

4.3.1 Topic

Attribute Abstract Data Type Cardinality

topic Function [0..*]

The topic relationship associates a Software Asset with its Function. The @@@TBA@@@

vocabulary provides a suitable classification system but further options tailored to the public

sector are provided in section 4.6.

It should be noted that a software asset may be associated with any number of Function

classes via the topic relationship.

4.3.2 Intended Audience

Attribute Abstract Data Type Cardinality

audience Intended Audience [0..*]

@@@ rely on the @@@ classification @@@

4.3.3 Locale

Attribute Abstract Data Type Cardinality

locale Localisation [0..*]

@@@ADMS uses RFC 3066 for this (the familiar en, es-mx etc. codes) and their associated

DBpedia URIs for ID (check with ADMS discussion - there's been a lot of it)@@@

4.3.4 User Interface Type

Attribute Abstract Data Type Cardinality

uiType User Interface Type [0..*]

@@@ Rely on @@@ controlled vocabulary

11

4.3.5 Programming Language

Attribute Abstract Data Type Cardinality

programmingLanguage ProgrammingLanguage [0..*]

@@@ Rely on @@@ controlled vocabulary

4.3.6 Operating System

Attribute Abstract Data Type Cardinality

os Operating System [0..*]

@@@ Rely on @@@ controlled vocabulary

4.4 USAGE AND ASSESSMENT

ADMS records three distinct types of data that can be used to assess the suitability of a

software asset:

 who uses it;

 what those users think of it;

 key metrics about the project.

Relationships exist between a Software Asset and classes that represent all three of these.

4.4.1 Used By

Attribute Abstract Data Type Cardinality

usedBy Organisation [0..*]

An important piece of information for anyone considering using a piece of software is "who else

uses this?" In the context of the public sector, the important information is likely to be which

other organisation use this software. The usedBy relationship associates a Software Asset with

any organisation that uses it.

The Organisation class is not defined in ADMS.F/OSS as several vocabularies already exist for

this purpose, notably Friend of a Friend [FOAF] and the Organization Ontology [ORG].

12

4.4.2 Assessment and Assesses

Attribute Abstract Data Type Cardinality

assessment

assesses

Assessment

Software Asset

[0..*]

[1..*]

assessment and assesses are inverse relationships that associate a Software Asset with an

Assessment class (see section 4.4.4). A Software Asset may be connected to any number of

assessments and each assessment must be connected to at least one Software Asset that it

assesses. A single assessment that describes the experiences of using more than one Software

Asset is perfectly acceptable.

4.4.3 Metrics

Attribute Abstract Data Type Cardinality

metrics Metrics [0..*]

metrics associates a Software Asset with a Metrics class (see section 4.4.5).

@@@What is the correct cardinality for metrics? (a software asset may be available from more

than one forge…)

4.4.4 The Assessment Class

This represents a review of the software and has a number of relationships and properties. The

Dublin Core creator relationship is used to link such a review to the organisation that provided it

which should also be associated with the Software Asset via the usedBy relationship (see

beginning section 4.4).

Usage

Attribute Abstract Data Type Cardinality

usage Text [0..*]

A free text description of what the software was used for. This should be an objective

description of the original intention of the user organisation at the time of selection and

installation.

13

Comments

Attribute Abstract Data Type Cardinality

comments Text [0..*]

A free text description of the experience of using the software. This should be a subjective

description, ideally giving details of where the software was good and bad.

Rating

Attribute Abstract Data Type Cardinality

rating string [0..*]

A rating for the software. Typically this will be given using a 5 star rating scale where 1 is poor

and 5 is excellent.

@@@Do we want to tighten this and specify a 5 star scheme?? @@@

Licence

Attribute Abstract Data Type Cardinality

licence Licence [0..*]

The licence relationship associates an Assessment with information about whether and how

that Assessment may be published. The Licence class itself is not defined as part of

ADMS.F/OSS.

@@@ More detail to add here??@@@

4.4.5 The Metrics Class

The properties of this class record a variety of objective facts about the software. It is

associated with a Software Asset via the metrics relationship.

@@@ Should we say anything about how numbers should be captured?@@@

14

Number of Downloads

Attribute Abstract Data Type Cardinality

noDownloads integer [0..*]

The number of times a software asset has been downloaded.

Number of Installations

Attribute Abstract Data Type Cardinality

noInstallations integer [0..*]

The number of times a software asset has been installed.

Number of Users

Attribute Abstract Data Type Cardinality

noUsers integer [0..*]

The number of users of a software asset.

Number of Commits

Attribute Abstract Data Type Cardinality

noCommits integer [0..*]

The number of times code for the asset has been committed to the forge.

Number of Lines of Code

Attribute Abstract Data Type Cardinality

15

noLinesCode integer [0..*]

The number of lines of code within the asset (not including any dependencies).

Commit Average

Attribute Abstract Data Type Cardinality

commitAv AvNoCommits [0..*]

The commitAv relationship associates a Metrics Class with an AvNoCommits Class.

Average Number of Commits Class

This class has two properties: the average number of commits itself and the time period over

which the average is calculated.

Attribute Abstract Data Type Cardinality

value

periodicity

integer

string

[1..1]

[1..1]

Periodicity is recorded using one of the following values:

daily

weekly

monthly

yearly

@@@ Need to check this is sensible!!@@@

4.5 THE PROJECT AND COMMUNITY

By its very nature, open source software is a collaborative effort. ADMS.F/OSS provides classes

and relationships to describe the project that created the software, the participating

organisations and funding sources.

16

4.6 FUNCTIONAL CLASSIFICATION FOR THE PUBLIC SECTOR

As noted in section 4.3.1, ADMS.F/OSS provides a topic relationship that associates a software

asset with its function. @@@ provides a generic classification system for any software and the

terms there are likely to be applicable. However, for the public sector, we offer the following

additional terms which were developed by Centro de Transferencia de Tecnología [CTT].

It should be noted that a software asset may be associated with any number of Function

classes via the topic relationship. Where the @@@ and CTT classifications overlap, provide

both.

@@@ provide example showing that the string in the left hand column is a value for the code

property @@@

 Examples

Web sites and virtual offices

Citizens Attention Integrated offices, information phone lines, citizens folder,
where is my transaction with the administration.

Web Tools Searches, forum, geo-reference, etc

Electronic Processing The applications that perform the electronic processing
such us registries, management of grants, etc.

Support to Electronic Processing Products and services that makes possible electronic
management such us digital signature, exchange of data,
payment gateway, etc.

Management for internal Procedures Requests for materials, room reservations, etc.

Management of Finances Procurement, budgets, comptroller

Management of Human Resources Personnel management, payroll, time control, training,
vacation

Management of knowledge and support
to taking decisions

Content Managers, dashboards, data ware house, etc

Infrastructure for Communications Networks and management tools

Infrastructure for Security DMZ, proxies, DNS, IPS, backup, antivirus, etc

Infrastructure for Messaging email, chat, Twitter, social networks, etc

Infrastructure for Managing Identities Digital signatures, LDAP, PKI, identity management, etc

Services and Systems Management Monitoring, statistics, managing of data processing
centres managing of request of users,
of bugs, service interruptions

Development and running Platforms

Desktop Environment Applications, virtualizations, models for PCs

Normalisation and Regularisation Methodologies, recommendations, specifications, etc.

Common Services for Public
Administrations

Common services offered, generally for free, to the rest of
public administrations

4.7 LANGUAGES

@@@ Needs updating for ADMS.F/OSS as this example is from the core vocabularies@@@

17

Where data such as names exist in multiple languages, each version of the data should be

included and each one associated with the relevant language identifier. RFC 3066 [RFC 3066]

provides a commonly used set of identifiers for natural languages. This is the set recognised by

UN/CEFACT and XML Schema.

Languages are represented by two character codes, optionally followed by a locale definition

such as "de" meaning German and "de-at" meaning "German as spoken in Austria."

XML Example:

<Location>

 <geographicName xml:lang="en">London</geoGraphicName>

 <geographicName xml:lang="fr">Londres</geoGraphicName>

</Location>

RDF Example:

[] a locn:Location ;

 locn:geographicName "London"@en ;

 locn:geographicName "Londres"@fr .

5. PROPERTIES CONSIDERED AND EXCLUDED

6. THE RDF SCHEMA (TO DO)

To follow.

7. THE XML SCHEMA (TO DO)

Most, if not all the properties listed in this specification exist in the UN/CEFACT CCL.

8. USAGE GUIDELINES

18

9. BACKGROUND AND OBJECTIVES

As noted in the introduction, this Core Vocabulary is one of set produced under Action 1.1 of the

ISA Programme [A11]. Further background is available in "Towards Open Government

Metadata" [TOGM] which offers an overview and context for the work.

The natural course of action for any practitioner or team given the task of recording information

about a natural person is to write a list of the data elements they need (or already have) and to

work within the specific context of their project. This often works in that it demonstrably meets

the project's needs. The problems only arise when one team wants to exchange data with

another. It's at that point that the choice of, say, 'first name' over 'given name' and 'surname'

over 'family name' becomes an obstacle. Such terms are well defined in a variety of

vocabularies and their use cannot be regarded as 'wrong', however, it's easy for simple choices

to lead to unintended difficulties further down the road.

The aim of providing Core Vocabularies via the Joinup Platform is not to force teams to use a

particular set of terms, or to require the re-engineering of data sets to use them (which can be

prohibitively expensive). Rather the aim is to make it easy to see and use the terms that crop up

across multiple domains; terms that, when used by public sector agencies, will make data more

interoperable.

Figure 2 The struggle between enabling interoperability and giving flexibility

Identifiers are a case in point. In an international context, a person's passport number is likely to

be critically important. This is not so within a university where the likelihood is that an in-house

19

identifier will be assigned. Rather than one agency defining a term for 'passport number' and

another for 'student number', both can use the core vocabulary term 'identifier', preferably with

some additional contextual information. As Figure 2 illustrates, there is a balance to be struck

between flexibility and interoperability.

10. APPROACH & COMMUNITY

The process and methodology followed in the development is set out in detail in the Process

and Methodology for Developing Core Vocabularies [PMDCV].

Specific acknowledgement is due to:

11. CHANGE CONTROL

ADMS.F/OSS is published by DG DIGIT. Review comments and requests for changes can be

made via the mailing list which is archived at

http://joinup.ec.europa.eu/mailman/private/adms_foss-wg/.

12. REFERENCES

[A11] Action 1.1 Improving semantic interoperability in European eGovernment

systems http://ec.europa.eu/isa/actions/01-trusted-information-exchange/1-

1action_en.htm

[ADMS] Asset Description Metadata Schema, Makx Dekkers (Editor), PwC EU Services,

 http://joinup.ec.europa.eu/asset/adms/home

[CTT] Centro de Transferencia de Tecnología,

http://administracionelectronica.gob.es/ctt

[DBpedia] DBpedia is a community effort to extract structured information from Wikipedia

and to make this information available on the Web. http://dbpedia.org/

[DC] DCMI Metadata Terms, Dublin Core Metadata Initiative.

http://dublincore.org/documents/dcmi-terms/

[FOAF] Friend of a Friend

20

 http://xmlns.com/foaf/spec/

[ISA] Interoperability Solutions for European Public Administrations,

http://ec.europa.eu/isa/

[ISO 3166-1] ISO 3166 code lists, ISO. http://www.iso.org/iso/iso_3166_code_lists

[ISO 8601] Data elements and interchange formats -- Information interchange --

Representation of dates and times, ISO 8601:2004.

http://www.iso.org/iso/catalogue_detail?csnumber=40874

[JOINUP] The Joinup Platform is operated by the European Commission designed to

enable the sharing and reuse open-source software, semantic assets and other

interoperability solutions for public administrations. See

http://joinup.ec.europa.eu/

[ORG] An Organization Ontology, Dave Reynolds, October 2010. Soon to be

republished by W3C at http://www.w3.org/TR/gld-org/

[PMDCV] Process and Methodology for Developing Core Vocabularies, 22 November

2011. https://joinup.ec.europa.eu/elibrary/document/isa-deliverable-process-

and-methodology-developing-core-vocabularies

[RFC 3066] H. Alvestrand, ed. RFC 3066: Tags for the Identification of Languages 1995.

Available at: http://www.ietf.org/rfc/rfc3066.txt

[TOGM] Towards Open Government Metadata, Vassilios Peristeras, DG DIGIT, ISA

Unit, September 2011

https://joinup.ec.europa.eu/sites/default/files/towards_open_government_metad

ata_0.pdf

[XSD] XML Schema Part 2: Datatypes Second Edition. W3C Recommendation 28

October 2004. http://www.w3.org/TR/xmlschema-2/#date

