Pattern for application services
creation and integration

Do It The jAPS Way

Eugenio Santoboni, AgileTec s.r.l. <e. sant oboni @gi |l etec.it>
William Ghelfi, AgileTec s.r.l. <w. ghel fi @gil etec.it>
Matteo Minnai, Tzente s.r.l. <m m nnai @ zente.it>

Draft Draft

Pattern for application services creation and integration
by Eugenio Santoboni, William Ghelfi, and Matteo Minnai

Publication date 2009-11-26
Copyright © 2009 AgileTecsir.l.

L egal Notice

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of thelicenseisincluded in the Appendix entitled "GNU Free Documentation License".

The copyright holders make no representation about the suitability of this Document for any purpose. It is provided “asis’ without expressed
or implied warranty. If you modify this Document in any way, identify your resulting Document as a variant of this Document.

Draft Draft

Table of Contents

1. Scope Of the HOCUMENL .. .eeuieii e e e e e e e e e e e e e et r e e e eaneees 1
g1 [0 ot [o SR 1

QI 01 A1 (o[oo 1

1= 1= 0 011 =S 1

RESOUITES ...ttt ettt et e e e e e e e e e e ens 1

P22 g1 oo (1o ' o PSPPI 2
3. Architectural model of the JAPS 2.0 frameworkccoviiiiiiiiii e 4
POMBI WVIBW ..o et e e et e e et e e e e et e e eab e e aae 5
AdMINISITAION VIBW ... e e a e e e e eannns 5
Distribution of the components of the system layers........ccoveveiiiiiiiiii e, 5

4. HOW 1O Create @ JAPS2 SEIVICE . .ivviiiii ittt et e e e e e e e ees 6
Business Layer and Data Layerovevuuieiiieiii e e et e e 6
IMPIEMENTALION ...eeeeeee e e e e e e 6

jUnit tests for the Data Layer and Business Layerccccveveviiiiiieciiiieciieccieee, 8

How to extend existing JAPS-MaNager'Sucvuuieeiieiiiieiiieeei e e e e e et e eeaneeees 9
Presentation Layer - AAMINIStration Ar€accuuiiiiniiiiii e e e 10
100011011 1o 10
Internationalization and [0CAlIZatioNcoouiiiiiiiiiiiii e 12

Testing Actions With JUNIToiiiiii e e 12

Creation of the jsp for the Administration area............ccoevevviiieeiiieiiiccceeee e, 13

Creation of anew voice in the Administration Ar€a.........coooeeueviiiiiineeiiiiineeeennn, 13

Modify the existing Administration areainterfaces..........c.ccoeveviieii i, 14

A. GNU Free Documentation LICENSEviiiureieiiiiiieee it e e et e et e e e et e eeeeie e eees 15

Draft Draft
List of Examples
4.1, Package Manager Cardccuuieiinieiiiieeii e e e e e s e e e e e e e e e aen 6
4.2. name oOf the Manager Cardooviiiiiiiii e e 6
G TV =0T o (= g O 0 I = L\ 6
4.4. Implementation of the init Method ..o 7
4.5. Definition of the name of a manager through a constantcccevevviveiiiieiiiierieeeiiees 7
IV K= 1 100 IR [7= L1 = P 8
B 7 @ N - 8
4.8. Full definition of the Managerccoeuiiiiiii e e 8
4.9. Extension of the User Manager using the same id of the core service (UserManagey) 10
4.10. Create a package for the Action classes for the Card Serviceovvvviviiiiiciiii e 10
4.11. Package containing the class Action for Card managementcooooeveviiieeiiiievieeeennn, 10
4.12. Definition of the action Bean ... 11
4.13. Action definitions in the file card.Xmlccooiiiiiiiiiii e 11
4.14. Example of actions definition in the file PortalExamplexmlccoooeviveiiiiiiiieeennnn, 12
4.15. jsp of the card MaNAgEr SEIVICEuiiii et e e e et e e e e e aenaees 13
4.16. Declaration Of the MENUiiiiiiii e 13
4.17. Redefinition of the "Pages Tree" interfaceccuvvviiiiiii e 14

Draft Draft

Chapter 1. Scope of the document

Introduction

The aim of this document is to give a detailed description of the architectural model of jJAPS 2.0 and
the steps to follow to create a new application service.

Target audience

This document is for devel opers aiming to build a new Application Service su jAPS 2.0.

Prerequisites

In order to take maximum advantage from the present document, it is necessary to have a basic
knowledge about: the Java platform, the Eclipse IDE, the Apache Tomcat servlet container, the
PosgreSQL DBMSS and the JAPS 2.0 framework.

Resources

Additional informations may be obtained through the following mailing-lists:
» <japs-devs@i sts. sourcef orge. net >, focused on developers

* <japs-users@i sts. sourceforge. net >, focused on final users

Draft

Draft

Chapter 2. Introduction

We definethejAPS Manager as apart of the jAPS Core which implements abasic system funtionality.
A JAPS Manger is aso the main handler of that particular functionality.

The main services belong to one of the following groups:

Basic services:

AuthenticationProviderManager: authenticator service..

BaseConfigManager: configuration service. Load the configuration parameters from system
database, making it available to the invoker.

CacheManager: cache handler service.

CategoryManager: category handler service.

ControllerManager: this service supervises the execution of arequest coming from the client.
GroupManager: group handler.

118nManager: this service returns the localized strings upon request
KeyGeneratorManager: this service superintends the generation of primary keys
LangManager: this service handles the various languages of the system
NotifyManager: event notification dispatcher service

PageManager: page handler

PageModelManager: this service handles the various page models
RoleManager: role manager

ShowletTypeManager: this service manages the showlets (ShowletTypes) types defined in the
system

UrlManager: this manager creates a URL to page of the Portal from essential informations.

UserManager: account manager

CMS services (served by the JACMS plugin):

ContentManager: contents manager

ContentPageMapperManager: this service manages the map of the contents published in the pages
of the portal

LinkResolverManager : this manager resolves the symbolic links
ResourceManager: resources (audio, video, images etc.) handler

SearcheEngineManager: this service createstheindexes of all the objectswhich will belater parsed
by the search engine.

The services defined in the system areinitialized during system start-up through the Factory provided
by the Spring Framework.

It'simportant to underline that each service has one and only oneinstance. The invocation of aservice
can be obtained in either two ways: through the "Dependency Injection” technique favored by Spring

Draft

Introduction Draft

or using the appropriate elements of the system like ApsWebAppl i cati onUti | s. Every jAPS
manager is described through a specific interface and every object class access a service always using
the appropriate interface, never invoking the class directly.

The manager (o jJAPS Manager) is the only linking point between the system data -whatever their
origin is- and the functionality which use them. An example of service isthe PageManager which
manages the tree of the portal pages. Every operation involving the pages, such as addition, removal,
displaying and so on is handled by the PageManager.

Draft Draft

Chapter 3. Architectural model of the
JAPS 2.0 framework

e

Presentation Layer

View
Ammlnlslra zione

w
Business Layer
[Manager - Core Spring

/ Data Layer

s
E
R
v v
|
Z
]

View Portale
Front Controller

/U

I H
\Dg-; =

H

C)
N
\‘/

(DB Esterni) (Altre basi di dati)

Architectural model of the jJAPS 2.0

To fully understand this document it's necessary to describe the architectural model of jAPS: jAPS
ismainly composed by 3 layers:

e Data Access Layer: It is composed by all the elements which superintend the Persistence Layer.
The main component are the DA O classes (Data Access Object) which are the only linking element
between the framework and the data sources (Database, Filesystem, LDAP service directory etc.)

» BusinessLayer: Thisisthe core of the system. Herethe concept of jAPSservice as manager of every
macro functionality, takes place. This layer is built upon the Spring Framework, whose listener,
during the system start-up, initializes all the services and injects them in the web application context
asbeans. The Business Layer utilizes the Data Access layer to get the data needed, gives to the
higher layer (the Presentation layer) the elements to display and supports it in the execution of
actions.

* Presentation Layer: The aim of this layer is to build the graphic interfaces which represent the
mean through which the users interact with the system. This layer gives a pure View layer (that
is, ajsp without any business logic) and a"slim" controller (which checks the consistency of the
data submitted and serves the data produced); both of them provide support to the layer below, the
Business Layer. In the jJAPS framework this layer isdivided in two parts: the Portal View (referred

Draft

Architectural model of Draft
the jAPS 2.0 framework

as Front-end) and the Administration View (Back-end). These views, which differs by functionality
and architecture, are completely independent from each other.

Every application service must be developed in the total respect of the architectural schema above,
placing every part in the right layer. The presence of the elements of the new service in al of the
three layers depends on characteristics of the service itself. The typical service which needs the usual
addition, removal, editing and searching operationswill have elementsin each layer - take asreference
the "Personal Card" management service explained further in this document and found implemented
in the "Portal Example" demo. Moreover the "Personal Card" service has customized elementsin the
"View" layer, both in the Portal and the Administration area. The LDAP plugin, on the contrary, has
elementsin the Business layer only.

Portal View

Thisisthepart of the presentation layer wheretheresultsof the queriesto system servicesaredisplayed
mainly through the Showlets. Showlets are the preferred method to use to make the system services
interact with users. The tasks of the Portal View are to provide services based on the current user
permissions (every element of the Portal Layer incorporates the rules which govern the access to
services) and to serve content as fast as possible (using content caching mechanism). The portal view
is handled by a specialized servlet (ControllerServlet) whose primary target is to invoke a precise
succession of services (coherency of the URL, user privilege checks etc) which will finally result in
the rendering of the requested page.

Administration View

This is the area reserved for administration of the various elements of the Portal (Pages, Contents,
Resources etc.) whose access is reserved to arestricted pool of users. The view of the Adminstration
Area, comprehensive of the controller logic) has been completely redesigned: the reference
framework, firmly tied to the Spring framework, is now Struts2. The View has been modified to met
the (Italian) Public Administration requisites of accessibility - taking as a firm point the respect of
all the W3C standards.

Distribution of the components of the system
layers

The sourcefiles, with the exclusion of the test packages and certain supporting elements (eg. the static
resources and the templates directories etc.), are enclosed in two packages:

* com agi | et ec. aps : here can be found al the elements of the Data Access Layer, Business
and presentation Layer (the last limited to the Portal View only)

* com agi |l et ec. apsadm n : this package contains al the elements need to manage the
presentation layer of the Administration View

A similar division exists in the directory VEEB- | NF of the web application: here are contained,
including the supporting folders, the usual aps (which containsall the jsp and thetld files of the Portal
View layer) and apsadni n (containing al the jsp files belonging to the Administration Area).

Draft Draft

Chapter 4. How to create a JAPS2
service

The following paragraphs explain in detail how to create a new service in the JAPS 2.0 framework.
The main objective of the present document is to allow the jAPS-Developers a fast development of

new services to integrate with existing ones, without modifying the Base Core sources (java classes,
jsp files, configurations, etc).

Business Layer and Data Layer

During the process of the creation of a new service, the following procedure starts from the
implementation of the Business and Data Layer of the new functionality.

Active elements: the classes involved are <NAME_OF_THE _HANDLED_OBJECT>Manager (the
name of the service) which must extend the AbstractService class. In a similar manner, if the DAO

classesare needed, the<NAME_OF THE_HANDLED OBJECT>DAO must extend the AbstractDao
class.

Implementation
Create the package, external to the core classes, respecting the same schema used by the core.

Example 4.1. Package Manager Card

If the new service is cdled Card, the resulting name will be
it.projectnane. aps. system services. card.

Create an interface, namely Firma del Servizio, which respects the following syntax
| <NAVE_OF_THE_HANDLED OBJECT>Manager .

Example 4.2. name of the Manager Card

| Car dManager

Thisinterfaceincludesall the public methods (and the costants, if present) of the service which will be
accessiblefrom the outside. Every use of theimplemented methods must happen through theinvocation
of thisinterface.

Create the class of the service <NAME_OF THE HANDLED OBJECT>Manager which extendsin
turn the AbstractService and implements the methods declared in the interface seen before.

Example 4.3. Manager Card class

public class CardManager extends AbstractService inplenments |CardManager {

}....

Takecaretoimplementthei ni t method of the abstract service (which allowsthe correctinitiaization
of the service), and the methods declared in the interface properly

Draft

How to create ajAPS2 service Draft

Example 4.4. Implementation of theinit method

/**

* Service initialization

*/

public void init() throws Exception {

Add, in the class (or interface) <PROJECT _NAME>SystemConstants contained in a sub-package
aps.system of the project, the constant <NAME_OF THE HANDLED_ OBJECT> MANAGER
which uniquely identifies the name of the service within the project.

Example 4.5. Definition of the name of a manager through a constant

public interface MyProject SystenConstants {

public static final String CARD MANAGER = " Car dManager";

Add the service in anew configuration file, which will be later parsed by Spring. The configuration
files must be inserted in a directory under the / VEB- | NF/ <PRQJECT_NAME>/ conf/ following
the same pattern used for the configuration files of the core.

The new Manager must beinserted in the Spring context using asyntax similar to the one shown bel ow:

<bean i d="Car dManager"
class="it.projectnane. aps. system servi ces. card. Car dvanager"
par ent =" abstract Servi ce" >

</ bean>

where theid is the value of the constant defined previously.

I mportant

Care must be taken in the definition of the bean since it must not match any other existing

idsin the system unless we intend to extend an existing service on purpose.
Make the system aware of the new service by instructing Spring to load every xml file in the
configuration directoriesof your service. Thisistypically doneediting the/ VEB- | NF/ web. xm and
adding to the xml attribute par am val ue of the parameter cont ext Confi gLocat i on thefile
pattern string VEB- | NF/ <PRQIECT_NAME>/ conf / **/ ** _xml . This definition must be added
in the last position. The same pattern must be inserted in method get Spri ngConf i gFi | ePat hs
of theclasst est. com agi | et ec. aps. ConfigUtils. Thisclassis used to setup the proper
environment for the test suites; again, the definition must be placed in the last position.

If the new service uses a DAO (Data Access Object) so that it adds new elements in the
Data Layer, the first thing to do is to crate an interface Firma del DAO using this declaration

Draft How to create ajAPS2 service Draft

I<NAME_OF_THE_HANDLED_OBJECT>DAO and add, in the class which implements that
interface, an instance variable of the same type of the newly created one. Thisvariable must have both
getter and setter, with the former being rigorously public.

Example 4.6. Methods signature

public void setCardDao(| Car dDAO car dDao) ;
prot ected | Car dDAO get CardDao() ;

Create the DAO class <NAME_OF THE HANDLED_ OBJECT>DAO which implements the
interfacejust created. If wearewilling to use astandard JDBC, the class DA O just created must extend
the class AbstractDAO.

Example 4.7. DAO Class

public class CardDAO extends Abstract DAO i npl ements | Car dDAO {

}....

Inject the new DAO in the bean of the service previously described.

Example 4.8. Full definition of the Manager

<bean i d="Car dManager"
class="it.projectnane. aps. system servi ces. card. Car dvanager"
par ent =" abstract Servi ce" >
<property nane="car dDao" >
<bean cl ass="it.projectnane. aps. system services. card. Car dDAO' >
<property nane="dat aSour ce" ref="dataSourceBeanNane" />
</ bean>
</ property>
</ bean>

NOTE: inject the datasource having care to choose the proper reference between the default
"portDataSource" or "servDataSource" (which always exist in a jJAPS installation) and the new data
sources eventually created for the new service.

junit tests for the Data Layer and Business Layer

Every servicein the DAO must be tested in its public methods. In other words it's hecessary to:

e create a java class named <PROJECT NAME>ConfigUtils (in the package
test.it.projectnanme) which extends the class ConfigUtils; the methods
getSpringConfigFilePaths and closeDataSources must be extended aswell. Theformer providesthe
path for the configuration files of the new service needed by Spring, the latter handles the database
connection closure of the new datasources.

* create a java class <PROJECT_NAME>BaseTestCase (in the
package test.it.projectname. aps) which extends the class

Draft How to create ajAPS2 service Draft

test.com agil et ec. aps. BaseTest Case. Override the method getConfigUtils so that it
returns an instance of <PROJECT_NAME>ConfigUtils (that is, the class previously created).

* Create the test classes Test<NAME _OF THE HANDLED_ OBJECT>Manager and,
if needed, the Test<NAME OF THE HANDLED OBJECT>DAO in the package
test.it.projectnane. aps. system servi ces. <NAME_OF_THE HANDLED OBJECT>
Such classes must extend the classes previously created. Remember to test al the public methods
of the new service.

To check a service we have obviously to invoke it in every test class; thisis done with the following
code:

| nyServi ceManager mnyServi ceManager =
(I nyServi ceManager)
t hi s. get Servi ce(MyProj ect Syst enConst ant s. MY_SERVI CE_ MANAGER) ;

To test a DAO is necessary to create it as Spring does, passing to it the datasource and as every
requested bean.

Dat aSour ce dat aSource = (Dat aSour ce)

this. get Appli cati onCont ext (). get Bean("dat aSour ceNane") ;
MySer vi ceDAO nyServi ceDao = new MyServi ceDAQ() ;
nmySer vi ceDao. set Dat aSour ce(dat aSour ce) ;

Two databases, namely jAPStestPort and jAPStestServ, are provided for testing purposes. They reflect
their "production” counterparts, the jJAPSPort and jAPSServ. If the new service requires additional
databases they all must have atest and a production version as well.

For every method of the service to test a corresponding method in the appropriate test class must be
created:

public void testNoneMet odoDaTestare() {

When creating test methods it's important to plan the restore of the data in the state they were prior
the execution of the test(s), whatever the result is. This assures the coherence and the correctness of
the following test. You don't want a failed test to cause a succession of failures in different classes
which previously were just fine.

How to extend existing JAPS-Managers

If the newly born service alters existing managers (by either integrating or modifying
functionalities) you are strongly adviced to avoid modifying the core! Create inside the package
it.projectnane. aps. system servi ces of your project, anew manager which extends the
existing one. In the Spring configuration file of your service theid of the service must perfectly match
the one of the existing service (of the core of jAPS) that we are going to extend.

Draft

How to create ajAPS2 service Draft

Example4.9. Extension of the User Manager usingthesameid of thecoreservice
(UserManager)

<bean i d="User Manager"
class="it.projectnane. aps. system servi ces. user. User Manager"
par ent =" abstract Servi ce" >

<property nanme="user DAO' >
<bean class="it.projectnane. aps. system services. user. User DAO' >
<property nane="dat aSour ce" ref="servDataSource" />
</ bean>

</ property>

<property nane="confi gManager" ref="BaseConfi gManager"/>

</ bean>

In the previous example, the new bean id User Manager substitutes, having the same name, the one
of the core of JAPS. Remember to insert all the properties found in the declaration of the core bean
in the new one.

Presentation Layer - Administration Area

The most of the Application services will need an administration interface. In the core of
JAPS, the class which superintend the interface mechanism are all grouped inside the package
com.agiletec.aspadmin. This package in turn contains other sub packages organized (and separated)
by functionality; each serves a well determined function whose controls are displayed in the
Administration Area. The new service must present the sources to manage the back-end interfaces
developed following the same structure used in the core.

Implementation

Create the package -outside the Core path!- respecting the schemaused in jAPS 2.0, as stated earlier.

Example 4.10. Create a package for the Action classesfor the Card service

Suppose to have the need to create Actions to handle the Cards (defined in the homonym class): the
resulting name of the package will be: i t . pr oj ect nane. apsadni n. card.

Crate the java interface Firma delle Action which respectes the syntax
I<NAME_OF _THE_HANDLED_OBJECT>Action.

Example 4.11. Package containing the class Action for Card management

| Car dAct i on.

Thisinterface presentsall the public methods and eventually the constants, which will beimplemented
in the service class. Every method presented in the interface is an action which can be executed.

If our service provides some search function of the object handled by the service we have to create
an additional javainterface, namely IKNAME_OF THE HANDLED_ OBJECT>FinderAction. This
is the gate to the finder action class.

Create the action class named <NAME_OF THE HANDLED_OBJECT>Action which extends the
BaseAction and implements the interface above. If needed, create the finder action class which
manages the search operations.

Any action class must have a corresponding Spring configuration file; the syntax to useis close to the
one shown in the example below.

10

Draft

How to create ajAPS2 service Draft

Example 4.12. Definition of the action bean

<bean i d="cardActi on" scope="prototype”
class="it.projectnane. apsadm n. card. Car dActi on"
par ent =" abst ract BaseActi on" >

</ bean>

I mportant

The scope of the bean of the action classes must be pr ot ot ype and care must be taken
when defining the bean: it must not match any other bean id in of the core, unless we are
extending an existing service, as we have aready seen.
Insert the configuration file in a directory named / VEB- | NF/ <PRQJECT_NAME>/ apsadmni n/
conf/.

Once again, make spring aware of the new action by adding the followin string WEB- | NF/
<PRQIECT_NAME>/ apasadni n/ conf/**/** xm inthexml attributepar am val ue of the
parameter cont ext Conf i gLocat i on located in the file/ VEB- | NF/ web. xmi . This definition
must be placed in the last position.

Create, at the same level of the interfaces and classes, axml file which contains the definitions of the
actions previously implemented. These definitions follow the Struts2 rules; there is one definition for
every action which can be triggered by users from the user interface.

Example 4.13. Action definitionsin thefile card.xml

<struts>
<package name="port al Exanpl e_do/ Car d"
nanespace="/do/ Card" extends="japs-default">
<action nane="list" class="cardFi ndi ngActi on">
<result type="tiles">adm n.Card.list</result>
<interceptor-ref name="japsDefault Stack">
<par am nane="r equest Aut h. r equi r edPer m ssi on" >super user </ par anp
</interceptor-ref>
</action>
<action nane="edit" class="cardAction" nethod="edit">
<result type="tiles">adnm n.Card.entry</result>
<interceptor-ref name="japsDefaul t Stack">
<par am nane="r equest Aut h. r equi r edPer i ssi on" >super user </ par anp
</interceptor-ref>
</action>
</ package>
</struts>

Note: the name of the Struts2 package must present as prefix the name of the project.

Make use of the stack interceptors defined in thefilest rut s. xm :

» japsDef aul t St ack: this is the default for the actions of the Administration view which
need specific permissions to be executed (eg. check for the user permission when accessing the
Administration area). This stack does not enforce validation or range check of the submitted

11

Draft How to create ajAPS2 service Draft

parameters. This stack needs the explicit declaration of the permission needed to execute the action
inther equi r edPer ni ssi on tag.

» japsVal i dati onSt ack: extension of the japsDefaultStack with the addition of validation
checks.

e japsFreeSt ack: This stack is to be used for actions both internal and external to the
Administration area, which require neither permission nor validation checks.

e japsFreeVal i dati onSt ack: Extension of the japsFreeStack stack with validation check
enabled.

Create at the same level of the javainterface and action classes the appropriate xml files to define the
kind and the number of validation checks to perform. These validation files follow the Struts2 syntax
for the validation.

Create a new <PROJECT _NAME>-struts.xml in the root of the source files or, in other word, in the
same level of the directory where the struts.xml resides. This file must contain all the references to
the configuration files of the new actions of the project.

Example 4.14. Example of actions definition in the file PortalExample.xml

<struts>
<include file="it/myprojectnane/apsadm n/card/card.xm "/>
</struts>

The xml file containing the definitions of the various actions of the project must be declared in the
parameter St r ut s2Conf i g within the/ VWEB- | NF/ web. xm file. As always the definition must
be inserted in the last position.

Internationalization and localization

The property filesresidein the same directory of the newly created Action classes; theesefiles provide
support for the Internationalization (i18n). These file must follow strictly the rules as specified in
documentation released in the Struts2 framework website.

Inthe propertiesfiles must beinserted not only the static |abel s of thejsp files of the user interfaces, but
all the labels correlated to the validation support. These labels must be provided for both English and
Italian language (the file package_it. properti es and package_en. properti es serve
this purpose).

As for the id of the service beans, the keys of the labels must not match any of the common
resources keys contained in the files gl obal - nessages_en. properties and gl obal -
nmessages_it.properties.

To avoid problems, you are encouraged to subdivide the label in the following groups:
* Oonmenu basis

* pertitles (h1 eh2)

o dtatic strings of the jsp files

* string used by the validation files

Testing Actions with jUnit

Create the proper environment and the classes to test new newly created actions. In other words:

12

Draft How to create ajAPS2 service Draft

 createajavaclassnamed <PROJECT_NAME>ConfigUtils(or usethe classused to test the manager
methods) which extends the class Confi gUt i | s; the methods getSpringConfigFilePaths and
closeDataSources must be extended aswell. The former provide the path for the configuration files
of the new service needed by Spring, the latter handles the database connection closure of the new
datasources.

* Create a java class <PROJECT_NAME>ApsAdminTestCase (inside
the package test.it.projectname.apsadmin) which extends the class
test.com.agiletec.apsadmin.ApsAdminTestCase, then override the method getConfigUtils (so that
it returns an instance of the class previously created) and the setInitParameters (so to load the
definition of your actions and all those defined in the same level of the struts.xml)

» Create the Action classes named Test<NAME OF THE HANDLED OBJECT>Action which
extends the class of the previous step. If needed create the test class of the action which uses the
search engine of your service; awaystest all the Actions!

Creation of the jsp for the Administration area

All the jsp files composing the user interfaces are located in the directory /WEB- | NF/
<PRQIECT_NAME>/ apsadmi n/j sp/ .

Example 4.15. jsp of the card manager service

» car dFi nder. j sp: thisistheinterface for the search card service; the search itself is handled by
the Action class CardFinderAction.

e entryCard. j sp generates the Card add/remove interface, handled by the Action class
CardAction.

The (jsp) interfaces must be declared inside the template called mai n. | ayout in the file / V\EB-
I NF/ apsadmi n/ til es.xm which specifies the configuration of the pages being invoked as a
result of the action. Such configuration must obey the rules of Tiles2, a Struts2 plugin.

Define a new Tiles configuration file for the pages, <PROJECT_NAME>-tiles.xml
inside the folder /WEB-1 NF/ <PROJECT_NAME>/ apsadmni n. The pages must extend
the mai n.layout and the single ids represent the result (in the form of tiles
type) of every action. The tiles configuration must be declared within the parameter
org. apache.tiles.inpl.BasicTil esContainer. DEFI NI TI ONS_CONFI G of the
descritptor file web.xml of the web application. Again, it must be placed in the last position.

Creation of a new voice in the Administration Area

Toadd anew elementinthe Pl ugi n menu createinthedirectory / VEB- | NF/ <PRQJECT _NANVE>/
apsadm n/j sp/ conmon/ t enpl at e/ afile named subMenu. j sp which contains the new
menu item referring to the new application service (a plugin, in this case) Then create a
new bean (a Spring Object) with id <SERVICE_NAME>SubMenu which refers to the class
Pl ugi nSubMenuCont ai ner ; thisclass has a property called submenuFi | ePat h whose value
isthe path of the subMenu. j sp just created.

Example 4.16. Declar ation of the Menu

<bean i d="car dPl ugi nSubMenu"
cl ass="com agi | et ec. apsadni n. syst em pl ugi n. Pl ugi nSubMenuCont ai ner" >
<property nane="subMenuFi | ePat h" >
<val ue>/ WEB- | NF/ deno/ apsadmni n/ j sp/ comon/ t enpl at e/ subMenu. j sp</val ue>
</ property>
</ bean>

13

Draft How to create ajAPS2 service Draft

Following carefully these steps the new menu item will be included in the Pl ugi n menu in the
administration area.

Modify the existing Administration area interfaces

If the Application serviceisgoing to modify exinsting interfacesfor any reason (eg. integration of new
modules, link or whatever) you are adviced to avoid any modification of the Core interfaces. Create
instead in the tiles configuration file <PROJECT_NAME>-tilesxml a new definition with the same
name of the core interface to override. So the element to modify is simply rewritten from scratch.

Example 4.17. Redefinition of the " Pages Tree" interface

copy the following definition in the files <PROJECT_NAME>-tiles.xml:

<definition extends="main.|layout" name="admi n. Page. vi ewTr ee" >
<put-attribute nane="title" value="title. pageManagenent" />
<put-attribute nane="extraResources"
val ue="/WEB- | NF/ apsadmi n/j sp/ cormon/t enpl at e/ extr ar esour ces/ pageTree. jsp" />
<put-attribute nane="body"
val ue="/VWEB- | NF/ <PRQJECT_NAME>/ apsadni n/ j sp/ page/ pageTree. jsp" />
</ definition>

wheretheadm n. Page. vi ewlr ee istheid of the interface of the page tree handler.

The path of the jsp must be the same of the jsp files of the interface to extend with the solely exclusion
of the root directory of your project.

Nei limiti del possibile, & sconsigliato utilizzare questa tecnica; nel caso di inserimento nuove
funzionalita che integrano alcune preesistenti, € consigliato utilizzare la tecnica dei SubMenu dei
Plugin per creare gli Ent r yPoi nt della funzionalita. Whenever it's possible please follow these
directions; if the new service adds some new functionality extentending the existing ones, a good
practice is to use the submenu technique used for the plugins so to create the entry point for the new
service.

14

Draft

Draft

Appendix A. GNU Free
Documentation License

Version 1.3, 3 November 2008
Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. [http://www.fsf.org/]

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing
itisnot alowed.

0. PREAMBLE

The purpose of this License isto make a manual, textbook, or other functional and useful document
“free” inthe sense of freedom: to assure everyonethe effective freedom to copy and redistributeit, with
or without modifying it, either commercially or noncommercially. Secondarily, this License preserves
for the author and publisher away to get credit for their work, while not being considered responsible
for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which is a
copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms
that the software does. But this License is not limited to software manuals; it can be used for any
textual work, regardless of subject matter or whether it is published as a printed book. We recommend
this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manua or other work, in any medium, that contains a notice placed by
the copyright holder saying it can be distributed under the terms of this License. Such anotice grants
aworld-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated
herein. The “Document”, below, refers to any such manual or work. Any member of the public is a
licensee, and is addressed as “you”. Y ou accept the license if you copy, modify or distribute the work
in away requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a portion of it,
either copied verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document’s
overall subject (or to related matters) and contains nothing that could fall directly within that overall
subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not
explain any mathematics.) The relationship could be amatter of historical connection with the subject
or with related matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The“Invariant Sections” are certain Secondary Sections whose titles are designated, as being those of
Invariant Sections, in the notice that saysthat the Document is rel eased under this License. If asection
does not fit the above definition of Secondary then it is not allowed to be designated as Invariant.
The Document may contain zero Invariant Sections. If the Document does not identify any Invariant
Sections then there are none.

The “Cover Texts’ are certain short passages of text that are listed, as Front-Cover Texts or Back-
Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover
Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

15

http://www.fsf.org/
http://www.fsf.org/

Draft

GNU Free Documentation License Draft

A “Transparent” copy of the Document means a machine-readable copy, represented in a format
whose specification is available to the general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of pixels) generic paint programs
or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters
or for automatic tranglation to a variety of formats suitable for input to text formatters. A copy made
in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image format is not
Transparent if used for any substantial amount of text. A copy that is not “ Transparent” is called
“Opague’.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo
input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-
conforming simple HTML, PostScript or PDF designed for human modification. Examples of
transparent image formats include PNG, X CF and JPG. Opaque formats include proprietary formats
that can be read and edited only by proprietary word processors, SGML or XML for which the DTD
and/or processing tools are not generally available, and the machine-generated HTML, PostScript or
PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as are
needed to hold, legibly, the material this License requires to appear in the title page. For works in
formats which do not have any title page as such, “ Title Page” means the text near the most prominent
appearance of the work’ stitle, preceding the beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document to the public.

A section “Entitled XY Z" means anamed subunit of the Document whosetitle either isprecisely XYZ
or contains XY Z in parentheses following text that translates XY Z in another language. (Here XY Z
stands for a specific section name mentioned below, such as “ Acknowledgements’, “Dedications’,
“Endorsements’, or “History”.) To “Preserve the Title” of such a section when you modify the
Document means that it remains a section “Entitled XY Z" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License
applies to the Document. These Warranty Disclaimers are considered to be included by reference in
this License, but only as regards disclaiming warranties: any other implication that these Warranty
Disclaimers may have isvoid and has no effect on the meaning of this License.

2. VERBATIM COPYING

Y ou may copy and distribute the Document in any medium, either commercially or noncommercially,
provided that this License, the copyright notices, and the license notice saying this License appliesto
the Document are reproduced in all copies, and that you add no other conditionswhatsoever to those of
this License. Y ou may not use technical measuresto obstruct or control the reading or further copying
of the copies you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute alarge enough number of copiesyou must aso follow the conditionsin section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display
copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copiesin mediathat commonly have printed covers) of the Document,
numbering more than 100, and the Document’ s license notice requires Cover Texts, you must enclose
the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the
front cover, and Back-Cover Textson the back cover. Both coversmust also clearly and legibly identify
you as the publisher of these copies. The front cover must present the full title with all words of the
title equally prominent and visible. You may add other material on the covers in addition. Copying
with changeslimited to the covers, aslong asthey preservethetitle of the Document and satisfy these
conditions, can be treated as verbatim copying in other respects.

16

Draft GNU Free Documentation License Draft

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones
listed (as many asfit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opague copies of the Document numbering more than 100, you must either
include a machine-readable Transparent copy along with each Opague copy, or state in or with each
Opaque copy a computer-network location from which the general network-using public has access
to download using public-standard network protocols a complete Transparent copy of the Document,
free of added material. If you use the latter option, you must take reasonably prudent steps, when you
begin distribution of Opaque copiesin quantity, to ensure that this Transparent copy will remain thus
accessible at the stated location until at |east one year after the last time you distribute an Opaque copy
(directly or through your agents or retailers) of that edition to the public.

Itisrequested, but not required, that you contact the authors of the Document well before redistributing
any large number of copies, to give them a chance to provide you with an updated version of the
Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections
2 and 3 above, provided that you release the Modified Version under precisely this License, with the
Modified Version filling the role of the Document, thus licensing distribution and modification of
the Modified Version to whoever possesses a copy of it. In addition, you must do these thingsin the
Modified Version:

A. Use in the Title Page (and on the covers, if any) atitle distinct from that of the Document, and
from those of previous versions (which should, if there were any, be listed in the History section
of the Document). Y ou may use the sametitle asaprevious version if the original publisher of that
Version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of
the modifications in the Modified Version, together with at least five of the principal authors of
the Document (all of its principal authors, if it has fewer than five), unless they release you from
this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, alicense notice giving the public permission to use
the Modified Version under the terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given
in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at least the
title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there
is no section Entitled “History” in the Document, create one stating the title, year, authors, and
publisher of the Document as given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

J. Preservethenetwork location, if any, giveninthe Document for public accessto a Transparent copy
of the Document, and likewise the network locations given in the Document for previous versions
it was based on. These may be placed inthe“History” section. Y ou may omit anetwork location for
awork that was published at |east four years before the Document itself, or if the original publisher
of the version it refers to gives permission.

17

Draft

GNU Free Documentation License Draft

K. For any section Entitled “ Acknowledgements’ or “Dedications’, Preserve the Title of the section,
and preserve in the section all the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preservedl thelnvariant Sectionsof the Document, unaltered intheir text and in their titles. Section
numbers or the equivalent are not considered part of the section titles.

M.Delete any section Entitled “ Endorsements’. Such a section may not be included in the Modified
Version.

N. Do not retitle any existing section to be Entitled “Endorsements’ or to conflict in title with any
Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary
Sections and contain no material copied from the Document, you may at your option designate some
or all of these sections asinvariant. To do this, add their titles to the list of Invariant Sections in the
Modified Version’s license notice. These titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements’, provided it contains nothing but endorsements of
your Modified Version by various parties — for example, statements of peer review or that the text
has been approved by an organization as the authoritative definition of a standard.

Y ou may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as
aBack-Cover Text, to the end of thelist of Cover Textsinthe Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by)
any one entity. If the Document already includes a cover text for the same cover, previously added by
you or by arrangement made by the same entity you are acting on behalf of, you may not add ancther;
but you may replace the old one, on explicit permission from the previous publisher that added the
old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their
names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

Y ou may combine the Document with other documents released under this License, under the terms
definedin section 4 abovefor modified versions, provided that you includein the combination al of the
Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections
of your combined work in its license notice, and that you preserve al their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same
name but different contents, make the title of each such section unique by adding at the end of it, in
parentheses, the name of the original author or publisher of that section if known, or else a unique
number. Make the same adjustment to the section titles in the list of Invariant Sectionsin the license
notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various origina
documents, forming one section Entitled “History”; likewise combine any sections Entitled
“ Acknowledgements’, and any sections Entitled “ Dedications’. Y ou must delete all sections Entitled
“Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this
License, and replace the individual copies of this License in the various documents with a single
copy that isincluded in the collection, provided that you follow the rules of this License for verbatim
copying of each of the documentsin all other respects.

18

Draft GNU Free Documentation License Draft

You may extract a single document from such a collection, and distribute it individually under this
License, provided youinsert acopy of thisLicenseinto the extracted document, and follow thisLicense
in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or
works, in or on avolume of astorage or distribution medium, is called an “ aggregate” if the copyright
resulting from the compilation is not used to limit the legal rights of the compilation’s users beyond
what the individual works permit. When the Document is included in an aggregate, this License
does not apply to the other works in the aggregate which are not themselves derivative works of the
Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one half of the entire aggregate, the Document’s Cover Texts may be placed
on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if
the Document is in electronic form. Otherwise they must appear on printed covers that bracket the
whole aggregate.

8. TRANSLATION

Trandlation is considered a kind of modification, so you may distribute trandlations of the Document
under theterms of section 4. Replacing Invariant Sectionswith translations requires special permission
from their copyright holders, but you may include translations of some or al Invariant Sections in
addition to the origina versions of these Invariant Sections. You may include a trandation of this
License, and all thelicense noticesin the Document, and any Warranty Disclaimers, provided that you
aso include the original English version of this License and the original versions of those notices and
disclaimers. In case of a disagreement between the translation and the original version of thisLicense
or anotice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements’, “Dedications’, or “History”, the
requirement (section 4) to Preserveits Title (section 1) will typically require changing the actual title.

9. TERMINATION

Y ou may not copy, modify, sublicense, or distribute the Document except as expressly provided under
this License. Any attempt otherwise to copy, modify, sublicense, or distribute it is void, and will
automatically terminate your rights under this License.

However, if you cease all violation of thisLicense, then your license from aparticular copyright holder
is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates
your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some
reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright
holder notifies you of the violation by some reasonable means, thisis the first time you have received
notice of violation of thisLicense (for any work) from that copyright holder, and you curetheviolation
prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have
received copies or rights from you under this License. If your rights have been terminated and not
permanently reinstated, receipt of a copy of some or al of the same material does not give you any
rightsto useit.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation
License from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns. See Copyleft [http://www.gnu.org/copyleft/].

19

http://www.gnu.org/copyleft/
http://www.gnu.org/copyleft/

Draft GNU Free Documentation License Draft

Each version of the License is given a distinguishing version number. If the Document specifies that
aparticular numbered version of this License “or any later version” appliesto it, you have the option
of following the terms and conditions either of that specified version or of any later version that has
been published (not as a draft) by the Free Software Foundation. If the Document does not specify a
version number of thisLicense, you may choose any version ever published (not asadraft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future versions of this
License can be used, that proxy’s public statement of acceptance of aversion permanently authorizes
you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Sit€”) means any World Wide Web server
that publishes copyrightable works and also provides prominent facilities for anybody to edit those
works. A public wiki that anybody can edit is an example of such a server. A “Massive Multiauthor
Collaboration” (or “MMC”) contained in the site means any set of copyrightable works thus published
on the MMC site.

“CC-BY-SA” meansthe Creative Commons Attribution-Share Alike 3.0 license published by Creative
Commons Corporation, anot-for-profit corporation with aprincipal place of businessin San Francisco,
Cadlifornia, aswell as future copyleft versions of that license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part of another
Document.

An MMC is “€eligible for relicensing” if it is licensed under this License, and if al works that were
first published under this License somewhere other than this MMC, and subsequently incorporated
in whole or in part into the MMC, (1) had no cover texts or invariant sections, and (2) were thus
incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MM C contained in the site under CC-BY -SA on the
same site at any time before August 1, 2009, provided the MMC is digible for relicensing.

ADDENDUM: How to use this License for your
documents

To use this License in a document you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:

Copyri ght © YEAR YOUR NAME

Permi ssion is granted to copy, distribute and/or nodify this docunent under the
terns of the GNU Free Docunentation License, Version 1.3 or any |later version
publ i shed by the Free Software Foundation; with no Invariant Sections, no
Front - Cover Texts, and no Back-Cover Texts. A copy of the license is included i
the section entitled “GNU Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with... Texts.”
line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts
being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge
those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these
examples in parallel under your choice of free software license, such as the GNU General Public
License, to permit their usein free software.

20

